Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 61503    https://doi.org/10.1007/s11467-022-1180-3
RESEARCH ARTICLE
Bose−Einstein condensates with tunable spin−orbit coupling in the two-dimensional harmonic potential: The ground-state phases, stability phase diagram and collapse dynamics
Chen Jiao1, Jun-Cheng Liang1, Zi-Fa Yu1, Yan Chen2, Ai-Xia Zhang1, Ju-Kui Xue1()
1. College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
2. School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China
 Download: PDF(9686 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the ground-state phases, the stability phase diagram and collapse dynamics of Bose−Einstein condensates (BECs) with tunable spin−orbit (SO) coupling in the two-dimensional harmonic potential by variational analysis and numerical simulation. Here we propose the theory that the collapse stability and collapse dynamics of BECs in the external trapping potential can be manipulated by the periodic driving of Raman coupling (RC), which can be realized experimentally. Through the high-frequency approximation, an effective time-independent Floquet Hamiltonian with two-body interaction in the harmonic potential is obtained, which results in a tunable SO coupling and a new effective two-body interaction that can be manipulated by the periodic driving strength. Using the variational method, the phase transition boundary and collapse boundary of the system are obtained analytically, where the phase transition between the spin-nonpolarized phase with zero momentum (zero momentum phase) and spin-polarized phase with non-zero momentum (plane wave phase) can be manipulated by the external driving and sensitive to the strong external trapping potential. Particularly, it is revealed that the collapsed BECs can be stabilized by periodic driving of RC, and the mechanism of collapse stability manipulated by periodic driving of RC is clearly revealed. In addition, we find that the collapse velocity and collapse time of the system can be manipulated by periodic driving strength, which also depends on the RC, SO coupling strength and external trapping potential. Finally, the variational approximation is confirmed by numerical simulation of Gross−Pitaevskii equation. Our results show that the periodic driving of RC provides a platform for manipulating the ground-state phases, collapse stability and collapse dynamics of the SO coupled BECs in an external harmonic potential, which can be realized easily in current experiments.

Keywords spin−orbit coupled Bose−Einstein condensates      stability      collapse dynamics     
Corresponding Author(s): Ju-Kui Xue   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 15 August 2022
 Cite this article:   
Chen Jiao,Jun-Cheng Liang,Zi-Fa Yu, et al. Bose−Einstein condensates with tunable spin−orbit coupling in the two-dimensional harmonic potential: The ground-state phases, stability phase diagram and collapse dynamics[J]. Front. Phys. , 2022, 17(6): 61503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1180-3
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/61503
Fig.1  The energy band of the system as a function of R and s for different g and g 12, where Ω 0=2.0 and ω=0.1. (a1−a3) for k0=1.0, g=15 and g12=180. (b1−b3) for k0= 2.0, g=50 and g 12= 150.
Fig.2  Quasimomentum k m corresponding to the minimum of energy as a function of Ω0 for different g12, ω and χ, where g=10 and k 0=1.0. ω=0.1 for the left column and ω= 0.5 for the right column.
Fig.3  Phase diagram in Ω 0k 0 plane for different g 12, ω and χ, where g=10. ω= 0.1 for the left column and ω =0.5 for the right column.
Fig.4  The critical RC Ω c as a function of χ, where g=10 and k0= 1. ω=0.1 for the left column and ω= 0.5 for the right column.
Fig.5  The critical SO coupling strength kc as a function of χ, where g=10 and Ω 0=2.0. ω= 0.1 for the left column and ω =0.5 for the right column.
Fig.6  Stability diagram in gg12 plane with different SO coupling strength ( k0=1.0 for the top row, where Ω 02J02(χ)k02; k0= 2.0 for the bottom row, where Ω 0<2 J02(χ)k02.) and χ for ω=0.1, Ω 0=2.0 and ωR= 20. The border of regions is obtained by using the variational calculation (the black solid line) and the complete numerical simulation of the G−P equation acquired from the Hamiltonian Eq. (1) (red dots). A1−A3 and B1−B3 are selected points corresponding to(a1)−(a3) and (b1)−(b3) in Fig.1.
Fig.7  Stability diagram in χk0 plane with different interatomic interactions. Here ω=0.1 for the left column and ω=0.5 for the right column, and the top row for g=15, g12=180 and the bottom row for g=50, g 12= 150.
Fig.8  The time evolution of the wave packet width for different χ with the fixed Ω 0=2.0. (a1, a2) for k 0=1.0, g=15 and g 12=180, χ=0,0.5,1.0 corresponding to A1−A3 as marked inFig.6, respectively. (b1, b2) for k 0=2.0, g=50 and g 12= 150, χ=0,0.5,1.0 corresponding to B1−B3 as marked inFig.6, respectively. Here the left column for ω =0.1 and the right column for ω=0.5.
Fig.9  The critical collapse time tc versus χ for different phases by means of the variational method. The vertical black dot lines represent the values of χc. Here the left column for g=15, g 12=180 and the right column for g=50, g 12= 150.
Fig.10  (a1−a3) Dynamical evolution of the wave packets corresponding to the cases as marked by A1, A2 and A3 in Fig.6(a1)−(a3).(b1−b3) Dynamical evolution of the wave packets corresponding to the cases as marked by B1, B2 and B3 in Fig.6(b1)−(b3).
1 H. Anderson M., R. Ensher J., R. Matthews M., E. Wieman C., A. Cornell E.. Observation of Bose−Einstein condensation in a dilute atomic vapor. Science , 1995, 269( 5221): 198
https://doi.org/10.1126/science.269.5221.198
2 B. Davis K., O. Mewes M., R. Andrews M., J. van Druten N., S. Durfee D., M. Kurn D., Ketterle W.. Bose−Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. , 1995, 75( 22): 3969
https://doi.org/10.1103/PhysRevLett.75.3969
3 Rajan R., R. Babu P., Senthilnathan K.. Photon condensation: A new paradigm for Bose–Einstein condensation. Front. Phys. , 2016, 11( 5): 110502
https://doi.org/10.1007/s11467-016-0568-3
4 DeMarco B., S. Jin D.. Onset of Fermi degeneracy in a trapped atomic gas. Science , 1999, 285( 5434): 1703
https://doi.org/10.1126/science.285.5434.1703
5 J. Wang P., Zhang J.. Spin-orbit coupling in Bose−Einstein condensate and degenerate Fermi gases. Front. Phys. , 2014, 9( 5): 598
https://doi.org/10.1007/s11467-013-0377-x
6 Hauke P., M. Cucchietti F., Tagliacozzo L., Deutsch I., Lewenstein M.. Can one trust quantum simulators. Rep. Prog. Phys. , 2012, 75( 8): 082401
https://doi.org/10.1088/0034-4885/75/8/082401
7 Ueda M., J. Leggett A.. Macroscopic quantum tunneling of a Bose−Einstein condensate with attractive interaction. Phys. Rev. Lett. , 1998, 80( 8): 1576
https://doi.org/10.1103/PhysRevLett.80.1576
8 Saito H., Ueda M.. Dynamically stabilized bright solitons in a two-dimensional Bose−Einstein condensate. Phys. Rev. Lett. , 2003, 90( 4): 040403
https://doi.org/10.1103/PhysRevLett.90.040403
9 Pedri P., Santos L.. Two-dimensional bright solitons in dipolar Bose−Einstein condensates. Phys. Rev. Lett. , 2005, 95( 20): 200404
https://doi.org/10.1103/PhysRevLett.95.200404
10 D. Montesinos G., M. Perez-Garćia V., Michinel H.. Stabilized two-dimensional vector solitons. Phys. Rev. Lett. , 2004, 92( 13): 133901
https://doi.org/10.1103/PhysRevLett.92.133901
11 Dalfovo F., Giorgini S., P. Pitaevskii L., Stringari S.. Theory of Bose−Einstein condensation in trapped gases. Rev. Mod. Phys. , 1999, 71( 3): 463
https://doi.org/10.1103/RevModPhys.71.463
12 Koch T., Lahaye T., Metz J., Fröhlich B., Griesmaier A., Pfau T.. Stabilization of a purely dipolar quantum gas against collapse. Nat. Phys. , 2008, 4( 3): 218
https://doi.org/10.1038/nphys887
13 Chin C., Grimm R., Julienne P., Tiesinga E.. Feshbach resonances in ultracold gases. Rev. Mod. Phys. , 2010, 82( 2): 1225
https://doi.org/10.1103/RevModPhys.82.1225
14 G. Kevrekidis P., Theocharis G., J. Frantzeskakis D., A. Malomed B.. Feshbach resonance management for Bose−Einstein condensates. Phys. Rev. Lett. , 2003, 90( 23): 230401
https://doi.org/10.1103/PhysRevLett.90.230401
15 Horchani R.. Laser cooling of internal degrees of freedom of molecules. Front. Phys. , 2016, 11( 4): 113301
https://doi.org/10.1007/s11467-016-0565-6
16 Kh. Abdullaev F., G. Caputo J., A. Kraenkel R., A. Malomed B.. Controlling collapse in Bose−Einstein condensates by temporal modulation of the scattering length. Phys. Rev. A , 2003, 67( 1): 013605
https://doi.org/10.1103/PhysRevA.67.013605
17 L. Cornish S., R. Claussen N., L. Roberts J., A. Cornell E., E. Wieman C.. Stable 85Rb Bose−Einstein condensates with widely tunable interactions. Phys. Rev. Lett. , 2000, 85( 9): 1795
https://doi.org/10.1103/PhysRevLett.85.1795
18 Sabari S., Dey B.. Stabilization of trapless dipolar Bose−Einstein condensates by temporal modulation of the contact interaction. Phys. Rev. E , 2018, 98( 4): 042203
https://doi.org/10.1103/PhysRevE.98.042203
19 M. Lushnikov P.. Collapse of Bose−Einstein condensates with dipde−dipole interactions. Phys. Rev. A , 2002, 051601(R)
20 J. Lin Y., L. Compton R., Jiménez-García K., V. Porto J., B. Spielman I.. Synthetic magnetic fields for ultracold neutral atoms. Nature , 2009, 462( 7273): 628
https://doi.org/10.1038/nature08609
21 J. Lin Y. L. Compton R. Jimnez-Garca K. D. Phillip W. V. Porto J. B. Spielman I., A synthetic electric force acting on neutral atoms, Nat. Phys . 7(7), 531 ( 2011)
22 J. Lin Y., Jiménez-García K., B. Spielman I.. Spin–orbit-coupled Bose–Einstein condensates. Nature , 2011, 471( 7336): 83
https://doi.org/10.1038/nature09887
23 Wang P., Q. Yu Z., Fu Z., Miao J., Huang L., Chai S., Zhai H., Zhang J.. Spin−orbit coupled degenerate Fermi gases. Phys. Rev. Lett. , 2012, 109( 9): 095301
https://doi.org/10.1103/PhysRevLett.109.095301
24 Wu Z., Zhang L., Sun W., T. Xu X., Z. Wang B., C. Ji S., Deng Y., Chen S., J. Liu X., W. Pan J.. Realization of two-dimensional spin−orbit coupling for Bose−Einstein condensates. Science , 2016, 354( 6308): 83
https://doi.org/10.1126/science.aaf6689
25 Huang L., Meng Z., Wang P., Peng P., L. Zhang S., Chen L., Li D., Zhou Q., Zhang J.. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys. , 2016, 12( 6): 540
https://doi.org/10.1038/nphys3672
26 Zhang D., Gao T., Zou P., Kong L., Li R., Shen X., L. Chen X., G. Peng S., Zhan M., Pu H., Jiang K.. Ground-state phase diagram of a spin−orbital−angular−momentum coupled Bose−Einstein condensate. Phys. Rev. Lett. , 2019, 122( 11): 110402
https://doi.org/10.1103/PhysRevLett.122.110402
27 Han W., Juzeliūnas G., Zhang W., M. Liu W.. Supersolid with nontrivial topological spin textures in spin−orbit-coupled Bose gases. Phys. Rev. A , 2015, 91( 1): 013607
https://doi.org/10.1103/PhysRevA.91.013607
28 Zhang Y., E. Mossman M., Busch T., Engels P., Zhang C.. Properties of spin–orbit-coupled Bose–Einstein condensates. Front. Phys. , 2016, 11( 3): 118103
https://doi.org/10.1007/s11467-016-0560-y
29 W. Song S., Wen L., F. Liu C., C. Gou S., M. Liu W.. Ground states, solitons and spin textures in spin-1 Bose−Einstein condensates. Front. Phys. , 2013, 8( 3): 302
https://doi.org/10.1007/s11467-013-0350-8
30 K. Liu Y., X. Yue H., L. Xu L., J. Yang S.. Vortex-pair states in spin−orbit-coupled Bose–Einstein condensates with coherent coupling. Front. Phys. , 2018, 13( 5): 130316
https://doi.org/10.1007/s11467-018-0821-z
31 Sakaguchi H., Li B., A. Malomed B.. Creation of two-dimensional composite solitons in spin−orbit-coupled self-attractive Bose−Einstein condensates in free space. Phys. Rev. E , 2014, 89( 3): 032920
https://doi.org/10.1103/PhysRevE.89.032920
32 C. Zhang Y., W. Zhou Z., A. Malomed B., Pu H.. Stable solitons in three dimensional free space without the ground state: self-trapped Bose−Einstein condensates with spin−orbit coupling. Phys. Rev. Lett. , 2015, 115( 25): 253902
https://doi.org/10.1103/PhysRevLett.115.253902
33 Achilleos V., J. Frantzeskakis D., G. Kevrekidis P., E. Pelinovsky D.. Matter-wave bright solitons in spin−orbit coupled Bose−Einstein condensates. Phys. Rev. Lett. , 2013, 110( 26): 264101
https://doi.org/10.1103/PhysRevLett.110.264101
34 Mardonov S., Ya. Sherman E., G. Muga J., W. Wang H., Ban Y., Chen X.. Collapse of spin−orbit-coupled Bose−Einstein condensates. Phys. Rev. A , 2015, 91( 4): 043604
https://doi.org/10.1103/PhysRevA.91.043604
35 F. Yu Z., X. Zhang A., A. Tang R., P. Xu H., M. Gao J., K. Xue J.. Spin−orbit-coupling stabilization of a collapsing binary Bose−Einstein condensate. Phys. Rev. A , 2017, 95( 3): 033607
https://doi.org/10.1103/PhysRevA.95.033607
36 Ozawa T., Baym G.. Stability of ultracold atomic Bose condensates with Rashba spin−orbit coupling against quantum and thermal fluctuations. Phys. Rev. Lett. , 2012, 109( 2): 025301
https://doi.org/10.1103/PhysRevLett.109.025301
37 X. Zhong R., P. Chen Z., Q. Huang C., H. Luo Z., S. Tan H., A. Malomed B., Y. Li Y.. Self-trapping under two-dimensional spin−orbit coupling and spatially growing repulsive nonlinearity. Front. Phys. , 2018, 13( 4): 130311
https://doi.org/10.1007/s11467-018-0778-y
38 X. Yang Y., Gao P., C. Zhao L., Y. Yang Z.. Kink-like breathers in Bose−Einstein condensates with helicoidal spin−orbit coupling. Front. Phys. , 2022, 17( 3): 32503
https://doi.org/10.1007/s11467-021-1127-0
39 Han Y., Q. Luo X., F. Li T., Zhang W.. Analytical double-unitary-transformation approach for strongly and periodically driven three-level systems. Phys. Rev. A , 2020, 101( 2): 022108
https://doi.org/10.1103/PhysRevA.101.022108
40 Bukova M., Alessioab L, Polkovnikova D.. Universal high-frequency behavior of periodically driven systems: From dynamical stabilization to Floquet engineering. Adv. Phys. , 2015, 64 : 139
41 Eckardt A.. Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. , 2017, 89( 1): 011004
https://doi.org/10.1103/RevModPhys.89.011004
42 Zhang Y., Chen G., Zhang C.. Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate. Sci. Rep. , 2013, 3( 1): 1937
https://doi.org/10.1038/srep01937
43 Jiménez-García K., J. LeBlanc L., A. Williams R., C. Beeler M., Qu C., Gong M., Zhang C., B. Spielman I.. Tunable spin−orbit coupling via strong driving in ultracold-atom systems. Phys. Rev. Lett. , 2015, 114( 12): 125301
https://doi.org/10.1103/PhysRevLett.114.125301
44 M. Gomez Llorente J., Plata J.. Periodic driving control of Raman-induced spin−orbit coupling in Bose−Einstein condensates: The heating mechanisms. Phys. Rev. A , 2016, 93( 6): 063633
https://doi.org/10.1103/PhysRevA.93.063633
45 Salerno M., Kh. Abdullaev F., Gammal A., Tomio L.. Tunable spin−orbit-coupled Bose−Einstein condensates in deep optical lattices. Phys. Rev. A , 2016, 94( 4): 043602
https://doi.org/10.1103/PhysRevA.94.043602
46 Kh. Abdullaev F., Brtka M., Gammal A., Tomio L.. Solitons and Josephson-type oscillations in Bose−Einstein condensates with spin−orbit coupling and time-varying Raman frequency. Phys. Rev. A , 2018, 97( 5): 053611
https://doi.org/10.1103/PhysRevA.97.053611
47 W. Luo X., W. Zhang C.. Tunable spin−orbit coupling and magnetic superstripe phase in a Bose−Einstein condensate. Phys. Rev. A , 2019, 100( 6): 063606
https://doi.org/10.1103/PhysRevA.100.063606
48 C. Liang J., C. Zhang Y., Jiao C., X. Zhang A., K. Xue J.. Ground-state phase and superfluidity of tunable spin−orbit-coupled Bose−Einstein condensates. Phys. Rev. E , 2021, 103( 2): 022204
https://doi.org/10.1103/PhysRevE.103.022204
49 Lin Z.. Phase diagrams of periodically driven spin–orbit coupled 87Rb and 23Na Bose–Einstein condensates. Ann. Phys. , 2021, 533( 1): 2000194
https://doi.org/10.1002/andp.202000194
50 Kengne E., M. Liu W.. Management of matter-wave solitons in Bose−Einstein condensates with time-dependent atomic scattering length in a time-dependent parabolic complex potential. Phys. Rev. E , 2018, 98( 1): 012204
https://doi.org/10.1103/PhysRevE.98.012204
51 A. Donley E., R. Claussen N., L. Cornish S., L. Roberts J., A. Cornell E., E. Wieman C.. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature , 2001, 412( 6844): 295
https://doi.org/10.1038/35085500
52 C. Xiong Y., Yin L.. Self-bound quantum droplet with internal stripe structure in one-dimensional spin−orbit-coupled Bose gas. Chin. Phys. Lett. , 2021, 38( 7): 070301
https://doi.org/10.1088/0256-307X/38/7/070301
53 Sachdeva R., N. Tengstrand M., M. Reimann S.. Self-bound supersolid stripe phase in binary Bose−Einstein condensates. Phys. Rev. A , 2020, 102( 4): 043304
https://doi.org/10.1103/PhysRevA.102.043304
54 Sanchez-Baena J., Boronat J., Mazzanti F.. Supersolid striped droplets in a Raman spin−orbit-coupled system. Phys. Rev. A , 2020, 102( 5): 053308
https://doi.org/10.1103/PhysRevA.102.053308
[1] Yaofeng Li, Huilin Lai, Chuandong Lin, Demei Li. Influence of the tangential velocity on the compressible Kelvin−Helmholtz instability with nonequilibrium effects[J]. Front. Phys. , 2022, 17(6): 63500-.
[2] Bin Liu, Chunhua Zhang, Qin Lou, Hong Liang. Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage[J]. Front. Phys. , 2022, 17(5): 53506-.
[3] Feng Chen, Aiguo Xu, Yudong Zhang, Yanbiao Gan, Bingbing Liu, Shuang Wang. Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system[J]. Front. Phys. , 2022, 17(3): 33505-.
[4] Lu Chen (陈璐), Huilin Lai (赖惠林), Chuandong Lin (林传栋), Demei Li (李德梅). Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method[J]. Front. Phys. , 2021, 16(5): 52500-.
[5] Yang-Ting Fu, Wei-Lun Gu, Zong-Yu Hou, Sher Afgan Muhammed, Tian-Qi Li, Yun Wang, Zhe Wang. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Front. Phys. , 2021, 16(2): 22502-.
[6] Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Chuan-Dong Lin, Hui-Lin Lai, Zhi-Peng Liu. Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows[J]. Front. Phys. , 2019, 14(4): 43602-.
[7] Xiao-Ning Wang, Jun-Zhe Lu, Heng-Jiang Zhu, Fang-Fang Li, Miao-Miao Ma, Gui-Ping Tan. Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings[J]. Front. Phys. , 2018, 13(4): 136106-.
[8] Ning Liang, Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403-.
[9] Fan Zhong. Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model[J]. Front. Phys. , 2017, 12(5): 126402-.
[10] L. P. Horwitz,A. Yahalom,J. Levitan,M. Lewkowicz. An underlying geometrical manifold for Hamiltonian mechanics[J]. Front. Phys. , 2017, 12(1): 124501-.
[11] Feng Chen,Ai-Guo Xu,Guang-Cai Zhang. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability[J]. Front. Phys. , 2016, 11(6): 114703-.
[12] Chun Li, Zheng-Lin Jia, Dong-Cheng Mei. Effects of correlation time between noises on the noise enhanced stability phenomenon in an asymmetric bistable system[J]. Front. Phys. , 2015, 10(1): 100501-.
[13] Tai-Gang Liu, Wen-Qing Zhang, Yan-Li Li. First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters[J]. Front. Phys. , 2014, 9(2): 210-218.
[14] Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Xi-Jun Yu. Simulation study on cavity growth in ductile metal materials under dynamic loading[J]. Front. Phys. , 2013, 8(4): 394-404.
[15] Ai-Guo Xu, Guang-Cai Zhang, Yan-Biao Gan, Feng Chen, Xi-Jun Yu. Lattice Boltzmann modeling and simulation of compressible flows[J]. Front. Phys. , 2012, 7(5): 582-600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed