|
|
Bose−Einstein condensates with tunable spin−orbit coupling in the two-dimensional harmonic potential: The ground-state phases, stability phase diagram and collapse dynamics |
Chen Jiao1, Jun-Cheng Liang1, Zi-Fa Yu1, Yan Chen2, Ai-Xia Zhang1, Ju-Kui Xue1( ) |
1. College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China 2. School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China |
|
|
Abstract We study the ground-state phases, the stability phase diagram and collapse dynamics of Bose−Einstein condensates (BECs) with tunable spin−orbit (SO) coupling in the two-dimensional harmonic potential by variational analysis and numerical simulation. Here we propose the theory that the collapse stability and collapse dynamics of BECs in the external trapping potential can be manipulated by the periodic driving of Raman coupling (RC), which can be realized experimentally. Through the high-frequency approximation, an effective time-independent Floquet Hamiltonian with two-body interaction in the harmonic potential is obtained, which results in a tunable SO coupling and a new effective two-body interaction that can be manipulated by the periodic driving strength. Using the variational method, the phase transition boundary and collapse boundary of the system are obtained analytically, where the phase transition between the spin-nonpolarized phase with zero momentum (zero momentum phase) and spin-polarized phase with non-zero momentum (plane wave phase) can be manipulated by the external driving and sensitive to the strong external trapping potential. Particularly, it is revealed that the collapsed BECs can be stabilized by periodic driving of RC, and the mechanism of collapse stability manipulated by periodic driving of RC is clearly revealed. In addition, we find that the collapse velocity and collapse time of the system can be manipulated by periodic driving strength, which also depends on the RC, SO coupling strength and external trapping potential. Finally, the variational approximation is confirmed by numerical simulation of Gross−Pitaevskii equation. Our results show that the periodic driving of RC provides a platform for manipulating the ground-state phases, collapse stability and collapse dynamics of the SO coupled BECs in an external harmonic potential, which can be realized easily in current experiments.
|
Keywords
spin−orbit coupled Bose−Einstein condensates
stability
collapse dynamics
|
Corresponding Author(s):
Ju-Kui Xue
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 15 August 2022
|
|
1 |
H. Anderson M., R. Ensher J., R. Matthews M., E. Wieman C., A. Cornell E.. Observation of Bose−Einstein condensation in a dilute atomic vapor. Science , 1995, 269( 5221): 198
https://doi.org/10.1126/science.269.5221.198
|
2 |
B. Davis K., O. Mewes M., R. Andrews M., J. van Druten N., S. Durfee D., M. Kurn D., Ketterle W.. Bose−Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. , 1995, 75( 22): 3969
https://doi.org/10.1103/PhysRevLett.75.3969
|
3 |
Rajan R., R. Babu P., Senthilnathan K.. Photon condensation: A new paradigm for Bose–Einstein condensation. Front. Phys. , 2016, 11( 5): 110502
https://doi.org/10.1007/s11467-016-0568-3
|
4 |
DeMarco B., S. Jin D.. Onset of Fermi degeneracy in a trapped atomic gas. Science , 1999, 285( 5434): 1703
https://doi.org/10.1126/science.285.5434.1703
|
5 |
J. Wang P., Zhang J.. Spin-orbit coupling in Bose−Einstein condensate and degenerate Fermi gases. Front. Phys. , 2014, 9( 5): 598
https://doi.org/10.1007/s11467-013-0377-x
|
6 |
Hauke P., M. Cucchietti F., Tagliacozzo L., Deutsch I., Lewenstein M.. Can one trust quantum simulators. Rep. Prog. Phys. , 2012, 75( 8): 082401
https://doi.org/10.1088/0034-4885/75/8/082401
|
7 |
Ueda M., J. Leggett A.. Macroscopic quantum tunneling of a Bose−Einstein condensate with attractive interaction. Phys. Rev. Lett. , 1998, 80( 8): 1576
https://doi.org/10.1103/PhysRevLett.80.1576
|
8 |
Saito H., Ueda M.. Dynamically stabilized bright solitons in a two-dimensional Bose−Einstein condensate. Phys. Rev. Lett. , 2003, 90( 4): 040403
https://doi.org/10.1103/PhysRevLett.90.040403
|
9 |
Pedri P., Santos L.. Two-dimensional bright solitons in dipolar Bose−Einstein condensates. Phys. Rev. Lett. , 2005, 95( 20): 200404
https://doi.org/10.1103/PhysRevLett.95.200404
|
10 |
D. Montesinos G., M. Perez-Garćia V., Michinel H.. Stabilized two-dimensional vector solitons. Phys. Rev. Lett. , 2004, 92( 13): 133901
https://doi.org/10.1103/PhysRevLett.92.133901
|
11 |
Dalfovo F., Giorgini S., P. Pitaevskii L., Stringari S.. Theory of Bose−Einstein condensation in trapped gases. Rev. Mod. Phys. , 1999, 71( 3): 463
https://doi.org/10.1103/RevModPhys.71.463
|
12 |
Koch T., Lahaye T., Metz J., Fröhlich B., Griesmaier A., Pfau T.. Stabilization of a purely dipolar quantum gas against collapse. Nat. Phys. , 2008, 4( 3): 218
https://doi.org/10.1038/nphys887
|
13 |
Chin C., Grimm R., Julienne P., Tiesinga E.. Feshbach resonances in ultracold gases. Rev. Mod. Phys. , 2010, 82( 2): 1225
https://doi.org/10.1103/RevModPhys.82.1225
|
14 |
G. Kevrekidis P., Theocharis G., J. Frantzeskakis D., A. Malomed B.. Feshbach resonance management for Bose−Einstein condensates. Phys. Rev. Lett. , 2003, 90( 23): 230401
https://doi.org/10.1103/PhysRevLett.90.230401
|
15 |
Horchani R.. Laser cooling of internal degrees of freedom of molecules. Front. Phys. , 2016, 11( 4): 113301
https://doi.org/10.1007/s11467-016-0565-6
|
16 |
Kh. Abdullaev F., G. Caputo J., A. Kraenkel R., A. Malomed B.. Controlling collapse in Bose−Einstein condensates by temporal modulation of the scattering length. Phys. Rev. A , 2003, 67( 1): 013605
https://doi.org/10.1103/PhysRevA.67.013605
|
17 |
L. Cornish S., R. Claussen N., L. Roberts J., A. Cornell E., E. Wieman C.. Stable 85Rb Bose−Einstein condensates with widely tunable interactions. Phys. Rev. Lett. , 2000, 85( 9): 1795
https://doi.org/10.1103/PhysRevLett.85.1795
|
18 |
Sabari S., Dey B.. Stabilization of trapless dipolar Bose−Einstein condensates by temporal modulation of the contact interaction. Phys. Rev. E , 2018, 98( 4): 042203
https://doi.org/10.1103/PhysRevE.98.042203
|
19 |
M. Lushnikov P.. Collapse of Bose−Einstein condensates with dipde−dipole interactions. Phys. Rev. A , 2002, 051601(R)
|
20 |
J. Lin Y., L. Compton R., Jiménez-García K., V. Porto J., B. Spielman I.. Synthetic magnetic fields for ultracold neutral atoms. Nature , 2009, 462( 7273): 628
https://doi.org/10.1038/nature08609
|
21 |
J. Lin Y. L. Compton R. Jimnez-Garca K. D. Phillip W. V. Porto J. B. Spielman I., A synthetic electric force acting on neutral atoms, Nat. Phys . 7(7), 531 ( 2011)
|
22 |
J. Lin Y., Jiménez-García K., B. Spielman I.. Spin–orbit-coupled Bose–Einstein condensates. Nature , 2011, 471( 7336): 83
https://doi.org/10.1038/nature09887
|
23 |
Wang P., Q. Yu Z., Fu Z., Miao J., Huang L., Chai S., Zhai H., Zhang J.. Spin−orbit coupled degenerate Fermi gases. Phys. Rev. Lett. , 2012, 109( 9): 095301
https://doi.org/10.1103/PhysRevLett.109.095301
|
24 |
Wu Z., Zhang L., Sun W., T. Xu X., Z. Wang B., C. Ji S., Deng Y., Chen S., J. Liu X., W. Pan J.. Realization of two-dimensional spin−orbit coupling for Bose−Einstein condensates. Science , 2016, 354( 6308): 83
https://doi.org/10.1126/science.aaf6689
|
25 |
Huang L., Meng Z., Wang P., Peng P., L. Zhang S., Chen L., Li D., Zhou Q., Zhang J.. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys. , 2016, 12( 6): 540
https://doi.org/10.1038/nphys3672
|
26 |
Zhang D., Gao T., Zou P., Kong L., Li R., Shen X., L. Chen X., G. Peng S., Zhan M., Pu H., Jiang K.. Ground-state phase diagram of a spin−orbital−angular−momentum coupled Bose−Einstein condensate. Phys. Rev. Lett. , 2019, 122( 11): 110402
https://doi.org/10.1103/PhysRevLett.122.110402
|
27 |
Han W., Juzeliūnas G., Zhang W., M. Liu W.. Supersolid with nontrivial topological spin textures in spin−orbit-coupled Bose gases. Phys. Rev. A , 2015, 91( 1): 013607
https://doi.org/10.1103/PhysRevA.91.013607
|
28 |
Zhang Y., E. Mossman M., Busch T., Engels P., Zhang C.. Properties of spin–orbit-coupled Bose–Einstein condensates. Front. Phys. , 2016, 11( 3): 118103
https://doi.org/10.1007/s11467-016-0560-y
|
29 |
W. Song S., Wen L., F. Liu C., C. Gou S., M. Liu W.. Ground states, solitons and spin textures in spin-1 Bose−Einstein condensates. Front. Phys. , 2013, 8( 3): 302
https://doi.org/10.1007/s11467-013-0350-8
|
30 |
K. Liu Y., X. Yue H., L. Xu L., J. Yang S.. Vortex-pair states in spin−orbit-coupled Bose–Einstein condensates with coherent coupling. Front. Phys. , 2018, 13( 5): 130316
https://doi.org/10.1007/s11467-018-0821-z
|
31 |
Sakaguchi H., Li B., A. Malomed B.. Creation of two-dimensional composite solitons in spin−orbit-coupled self-attractive Bose−Einstein condensates in free space. Phys. Rev. E , 2014, 89( 3): 032920
https://doi.org/10.1103/PhysRevE.89.032920
|
32 |
C. Zhang Y., W. Zhou Z., A. Malomed B., Pu H.. Stable solitons in three dimensional free space without the ground state: self-trapped Bose−Einstein condensates with spin−orbit coupling. Phys. Rev. Lett. , 2015, 115( 25): 253902
https://doi.org/10.1103/PhysRevLett.115.253902
|
33 |
Achilleos V., J. Frantzeskakis D., G. Kevrekidis P., E. Pelinovsky D.. Matter-wave bright solitons in spin−orbit coupled Bose−Einstein condensates. Phys. Rev. Lett. , 2013, 110( 26): 264101
https://doi.org/10.1103/PhysRevLett.110.264101
|
34 |
Mardonov S., Ya. Sherman E., G. Muga J., W. Wang H., Ban Y., Chen X.. Collapse of spin−orbit-coupled Bose−Einstein condensates. Phys. Rev. A , 2015, 91( 4): 043604
https://doi.org/10.1103/PhysRevA.91.043604
|
35 |
F. Yu Z., X. Zhang A., A. Tang R., P. Xu H., M. Gao J., K. Xue J.. Spin−orbit-coupling stabilization of a collapsing binary Bose−Einstein condensate. Phys. Rev. A , 2017, 95( 3): 033607
https://doi.org/10.1103/PhysRevA.95.033607
|
36 |
Ozawa T., Baym G.. Stability of ultracold atomic Bose condensates with Rashba spin−orbit coupling against quantum and thermal fluctuations. Phys. Rev. Lett. , 2012, 109( 2): 025301
https://doi.org/10.1103/PhysRevLett.109.025301
|
37 |
X. Zhong R., P. Chen Z., Q. Huang C., H. Luo Z., S. Tan H., A. Malomed B., Y. Li Y.. Self-trapping under two-dimensional spin−orbit coupling and spatially growing repulsive nonlinearity. Front. Phys. , 2018, 13( 4): 130311
https://doi.org/10.1007/s11467-018-0778-y
|
38 |
X. Yang Y., Gao P., C. Zhao L., Y. Yang Z.. Kink-like breathers in Bose−Einstein condensates with helicoidal spin−orbit coupling. Front. Phys. , 2022, 17( 3): 32503
https://doi.org/10.1007/s11467-021-1127-0
|
39 |
Han Y., Q. Luo X., F. Li T., Zhang W.. Analytical double-unitary-transformation approach for strongly and periodically driven three-level systems. Phys. Rev. A , 2020, 101( 2): 022108
https://doi.org/10.1103/PhysRevA.101.022108
|
40 |
Bukova M., Alessioab L, Polkovnikova D.. Universal high-frequency behavior of periodically driven systems: From dynamical stabilization to Floquet engineering. Adv. Phys. , 2015, 64 : 139
|
41 |
Eckardt A.. Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. , 2017, 89( 1): 011004
https://doi.org/10.1103/RevModPhys.89.011004
|
42 |
Zhang Y., Chen G., Zhang C.. Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate. Sci. Rep. , 2013, 3( 1): 1937
https://doi.org/10.1038/srep01937
|
43 |
Jiménez-García K., J. LeBlanc L., A. Williams R., C. Beeler M., Qu C., Gong M., Zhang C., B. Spielman I.. Tunable spin−orbit coupling via strong driving in ultracold-atom systems. Phys. Rev. Lett. , 2015, 114( 12): 125301
https://doi.org/10.1103/PhysRevLett.114.125301
|
44 |
M. Gomez Llorente J., Plata J.. Periodic driving control of Raman-induced spin−orbit coupling in Bose−Einstein condensates: The heating mechanisms. Phys. Rev. A , 2016, 93( 6): 063633
https://doi.org/10.1103/PhysRevA.93.063633
|
45 |
Salerno M., Kh. Abdullaev F., Gammal A., Tomio L.. Tunable spin−orbit-coupled Bose−Einstein condensates in deep optical lattices. Phys. Rev. A , 2016, 94( 4): 043602
https://doi.org/10.1103/PhysRevA.94.043602
|
46 |
Kh. Abdullaev F., Brtka M., Gammal A., Tomio L.. Solitons and Josephson-type oscillations in Bose−Einstein condensates with spin−orbit coupling and time-varying Raman frequency. Phys. Rev. A , 2018, 97( 5): 053611
https://doi.org/10.1103/PhysRevA.97.053611
|
47 |
W. Luo X., W. Zhang C.. Tunable spin−orbit coupling and magnetic superstripe phase in a Bose−Einstein condensate. Phys. Rev. A , 2019, 100( 6): 063606
https://doi.org/10.1103/PhysRevA.100.063606
|
48 |
C. Liang J., C. Zhang Y., Jiao C., X. Zhang A., K. Xue J.. Ground-state phase and superfluidity of tunable spin−orbit-coupled Bose−Einstein condensates. Phys. Rev. E , 2021, 103( 2): 022204
https://doi.org/10.1103/PhysRevE.103.022204
|
49 |
Lin Z.. Phase diagrams of periodically driven spin–orbit coupled 87Rb and 23Na Bose–Einstein condensates. Ann. Phys. , 2021, 533( 1): 2000194
https://doi.org/10.1002/andp.202000194
|
50 |
Kengne E., M. Liu W.. Management of matter-wave solitons in Bose−Einstein condensates with time-dependent atomic scattering length in a time-dependent parabolic complex potential. Phys. Rev. E , 2018, 98( 1): 012204
https://doi.org/10.1103/PhysRevE.98.012204
|
51 |
A. Donley E., R. Claussen N., L. Cornish S., L. Roberts J., A. Cornell E., E. Wieman C.. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature , 2001, 412( 6844): 295
https://doi.org/10.1038/35085500
|
52 |
C. Xiong Y., Yin L.. Self-bound quantum droplet with internal stripe structure in one-dimensional spin−orbit-coupled Bose gas. Chin. Phys. Lett. , 2021, 38( 7): 070301
https://doi.org/10.1088/0256-307X/38/7/070301
|
53 |
Sachdeva R., N. Tengstrand M., M. Reimann S.. Self-bound supersolid stripe phase in binary Bose−Einstein condensates. Phys. Rev. A , 2020, 102( 4): 043304
https://doi.org/10.1103/PhysRevA.102.043304
|
54 |
Sanchez-Baena J., Boronat J., Mazzanti F.. Supersolid striped droplets in a Raman spin−orbit-coupled system. Phys. Rev. A , 2020, 102( 5): 053308
https://doi.org/10.1103/PhysRevA.102.053308
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|