Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 63502    https://doi.org/10.1007/s11467-022-1182-1
RESEARCH ARTICLE
High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures
Yue Chen1, Zhengtao Liu1, Ziyue Lin1, Qiwen Jiang1, Mingyang Du1, Zihan Zhang1, Hao Song1, Hui Xie1, Tian Cui2,1, Defang Duan1()
1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
2. Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
 Download: PDF(5939 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The theoretical predictions and experimental synthesis of H3S and LaH10 superconductors with record high superconducting transition temperatures (Tc) have promoted the hydrogen-based superconducors to be a research hotspot in the field of solid-state physics. Here, we predict an unprecedented layered structure CaH15, with high Tc of 189 K at 200 GPa using ab initio calculations. As concerns the novel structure, one layer is made of a hydrogen nonagon, the other layer consists of a Ca atom and six H2 molecular units surrounding the Ca atom. This layered structure was also found in SrH15, YH15, and LaH15 at high pressures, each materials exhibit high Tc especially YH15 can reach above 200 K at 220 GPa. It represents the second class of layered superhydrides with high value of Tc after pentagraphene like HfH10.

Keywords high pressure      hydrides      superconductivity      ab initio calculation     
Corresponding Author(s): Defang Duan   
Issue Date: 08 July 2022
 Cite this article:   
Yue Chen,Zhengtao Liu,Ziyue Lin, et al. High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures[J]. Front. Phys. , 2022, 17(6): 63502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1182-1
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/63502
Fig.1  The convex hull of the Ca?H system relative to CaH2 and H2 at 100, 140, 200, and 300 GPa.
Fig.2  (a) The structural model of layered P6ˉ2m in CaH15, where the layers are stacked in an ABAB fashion. The A layer contains nonagon hydrogen colored pink, the B layer contains six H2 molecules and a calcium atom colored orange and blue, respectively. (b) Top view of crystal structure of P6ˉ2m phase. Electron localization function of P6ˉ2m-CaH15 at 300 GPa of (c) nonagon planes and (d) six H2 molecules planes.
Fig.3  Top view of (a) the hydrogen nonagon layer and (b) the H2 molecular units layer. (c) The crystalline orbital Hamiltonian population (COHP) of different H?H bonds denoted as d1, d2, d3, d4 for P6ˉ2m-CaH15 at 300 GPa.
Fig.4  Electronic density of states of CaH15, SrH15, YH15, and LaH15 at 300 GPa. The red and bule lines represent the contributions of H s-orbitals and p-orbitals to the electronic density of states, and the green, brown and purple lines represent the contributions from s, p, d orbitals of metal atoms, respectively.
Fig.5  The phonon band structure, PHDOS, EPC parameter λ, logarithmic average phonon frequency ωlog and Eliashberg spectral function α2F(ω) of (a) CaH15, (b) SrH15, (c) YH15, (d) LaH15 at 300 GPa. The size of the red solid dots on phonon dispersion curves signifies the contribution to electron?phonon coupling.
Fig.6  The calculated electron?phonon coupling parameter λ (top panel), logarithmic average phonon frequency ωlog (middle panel), and Tc with μ* = 0.1 (bottom panel) of XH15 (X = Ca, Sr, Y, La) at different pressures.
1 M. McMahon J. , M. Ceperley D. . Ground-state structures of atomic metallic hydrogen. Phys. Rev. Lett., 2011, 106( 16): 165302
https://doi.org/10.1103/PhysRevLett.106.165302
2 Sun J. , Martinez-Canales M. , D. Klug D. , J. Pickard C. , J. Needs R. . Stable all-nitrogen metallic salt at terapascal pressures. Phys. Rev. Lett., 2013, 111( 17): 175502
https://doi.org/10.1103/PhysRevLett.111.175502
3 Sun J. , Martinez-Canales M. , D. Klug D. , J. Pickard C. , J. Needs R. . Persistence and eventual demise of oxygen molecules at terapascal pressures. Phys. Rev. Lett., 2012, 108( 4): 045503
https://doi.org/10.1103/PhysRevLett.108.045503
4 Zhu L. , Wang Z. , Wang Y. , Zou G. , K. Mao H. , Ma Y. . Spiral chain O4 form of dense oxygen. Proc. Natl. Acad. Sci. USA, 2012, 109( 3): 751
https://doi.org/10.1073/pnas.1119375109
5 Duan D. , Liu Z. , Lin Z. , Song H. , Xie H. , Cui T. , J. Pickard C. , Miao M. . Multistep dissociation of fluorine molecules under extreme compression. Phys. Rev. Lett., 2021, 126( 22): 225704
https://doi.org/10.1103/PhysRevLett.126.225704
6 Wigner E. , B. Huntington H. . On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 1935, 3( 12): 764
https://doi.org/10.1063/1.1749590
7 W. Ashcroft N. . Metallic hydrogen: A high-temperature superconductor. Phys. Rev. Lett., 1968, 21( 26): 1748
https://doi.org/10.1103/PhysRevLett.21.1748
8 M. McMahon J. , M. Ceperley D. . High-temperature superconductivity in atomic metallic hydrogen. Phys. Rev. B, 2011, 84( 14): 144515
https://doi.org/10.1103/PhysRevB.84.144515
9 P. Dias R. , F. Silvera I. . Observation of the Wigner−Huntington transition to metallic hydrogen. Science, 2017, 355( 6326): 715
https://doi.org/10.1126/science.aal1579
10 M. McMahon J. , M. Ceperley D. . Ground-state structures of atomic metallic hydrogen. Phys. Rev. Lett., 2011, 106( 16): 165302
https://doi.org/10.1103/PhysRevLett.106.165302
11 W. Ashcroft N. . Hydrogen dominant metallic alloys: High temperature superconductors. Phys. Rev. Lett., 2004, 92( 18): 187002
https://doi.org/10.1103/PhysRevLett.92.187002
12 Zhang L. , Wang Y. , Lv J. , Ma Y. . Materials discovery at high pressures. Nat. Rev. Mater., 2017, 2( 4): 17005
https://doi.org/10.1038/natrevmats.2017.5
13 Du M. , Zhao W. , Cui T. , Duan D. . Compressed superhydrides: The road to room temperature superconductivity. J. Phys.: Condens. Matter, 2022, 34( 17): 173001
https://doi.org/10.1088/1361-648X/ac4eaf
14 Duan D. , Liu Y. , Ma Y. , Shao Z. , Liu B. , Cui T. . Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev., 2017, 4( 1): 121
https://doi.org/10.1093/nsr/nww029
15 H. Xiao X. , F. Duan D. , B. Ma Y. , Xie H. , Song H. , Li D. , B. Tian F. , B. Liu B. , Y. Yu H. , Cui T. . Ab initio studies of copper hydrides under high pressure. Front. Phys., 2019, 14( 4): 1
https://doi.org/10.1007/s11467-019-0894-3
16 P. Gor’kov L. , Z. Kresin V. . Colloquium: High pressure and road to room temperature superconductivity. Rev. Mod. Phys., 2018, 90( 1): 011001
https://doi.org/10.1103/RevModPhys.90.011001
17 Zurek E. . Hydrides of the alkali metals and alkaline earth metals under pressure. Comments Inorg. Chem., 2017, 37( 2): 78
https://doi.org/10.1080/02603594.2016.1196679
18 Zhang Z. , Cui T. , J. Hutcheon M. , M. Shipley A. , Song H. , Du M. , Z. Kresin V. , Duan D. , J. Pickard C. , Yao Y. . Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett., 2022, 128( 4): 047001
https://doi.org/10.1103/PhysRevLett.128.047001
19 Duan D. , Liu Y. , Tian F. , Li D. , Huang X. , Zhao Z. , Yu H. , Liu B. , Tian W. , Cui T. . Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 2015, 4( 1): 6968
https://doi.org/10.1038/srep06968
20 Duan D. , Huang X. , Tian F. , Li D. , Yu H. , Liu Y. , Ma Y. , Liu B. , Cui T. . Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B, 2015, 91( 18): 180502
https://doi.org/10.1103/PhysRevB.91.180502
21 Liu H. , I. Naumov I. , Hoffmann R. , W. Ashcroft N. , J. Hemley R. . Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA, 2017, 114( 27): 6990
https://doi.org/10.1073/pnas.1704505114
22 Peng F. , Sun Y. , J. Pickard C. , J. Needs R. , Wu Q. , Ma Y. . Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 2017, 119( 10): 107001
https://doi.org/10.1103/PhysRevLett.119.107001
23 P. Drozdov A. , I. Eremets M. , A. Troyan I. , Ksenofontov V. , I. Shylin S. . Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 2015, 525( 7567): 73
https://doi.org/10.1038/nature14964
24 Einaga M. , Sakata M. , Ishikawa T. , Shimizu K. , I. Eremets M. , P. Drozdov A. , A. Troyan I. , Hirao N. , Ohishi Y. . Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys., 2016, 12( 9): 835
https://doi.org/10.1038/nphys3760
25 P. Drozdov A. , P. Kong P. , S. Minkov V. , P. Besedin S. , A. Kuzovnikov M. , Mozaffari S. , Balicas L. , F. Balakirev F. , E. Graf D. , B. Prakapenka V. , Greenberg E. , A. Knyazev D. , Tkacz M. , I. Eremets M. . Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 2019, 569( 7757): 528
https://doi.org/10.1038/s41586-019-1201-8
26 Somayazulu M. , Ahart M. , K. Mishra A. , M. Geballe Z. , Baldini M. , Meng Y. , V. Struzhkin V. , J. Hemley R. . Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 2019, 122( 2): 027001
https://doi.org/10.1103/PhysRevLett.122.027001
27 Li Y. , Hao J. , Liu H. , Tse J. , Wang Y. , Ma Y. . Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 2015, 5( 1): 9948
https://doi.org/10.1038/srep09948
28 Song H. , Zhang Z. , Cui T. , J. Pickard C. , Z. Kresin V. , Duan D. . High Tc superconductivity in heavy rare earth hydrides. Chin. Phys. Lett., 2021, 38( 10): 107401
https://doi.org/10.1088/0256-307X/38/10/107401
29 Zhong X. Sun Y. Iitaka T. Xu M. Liu H. Chen C. Ma Y., Potential room temperature superconductivity in clathrate lanthanide/actinides octadechydrides at extreme pressures, doi: 10.21203/rs.3.rs-1148583/v1 ( 2021)
30 Xie H. , Yao Y. , Feng X. , Duan D. , Song H. , Zhang Z. , Jiang S. , A. T. Redfern S. , Z. Kresin V. , J. Pickard C. , Cui T. . Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor. Phys. Rev. Lett., 2020, 125( 21): 217001
https://doi.org/10.1103/PhysRevLett.125.217001
31 K. Mishra A. , Muramatsu T. , Liu H. , M. Geballe Z. , Somayazulu M. , Ahart M. , Baldini M. , Meng Y. , Zurek E. , J. Hemley R. . New calcium hydrides with mixed atomic and molecular hydrogen. J. Phys. Chem. C, 2018, 122( 34): 19370
https://doi.org/10.1021/acs.jpcc.8b05030
32 Wu G. , Huang X. , Xie H. , Li X. , Liu M. , Liang Y. , Huang Y. , Duan D. , Li F. , Liu B. , Cui T. . Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules. J. Chem. Phys., 2019, 150( 4): 044507
https://doi.org/10.1063/1.5053650
33 Wang H. , S. Tse J. , Tanaka K. , Iitaka T. , Ma Y. . Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. USA, 2012, 109( 17): 6463
https://doi.org/10.1073/pnas.1118168109
34 Ma L. Wang K. Xie Y. Yang X. Wang Y. Zhou M. Liu H. Liu G. Wang H. Ma Y., High- Tc superconductivity in clathrate calcium hydride CaH6, arXiv: 2103.16282 (2021)
35 Shao Z. , Duan D. , Ma Y. , Yu H. , Song H. , Xie H. , Li D. , Tian F. , Liu B. , Cui T. . Unique phase diagram and superconductivity of calcium hydrides at high pressures. Inorg. Chem., 2019, 58( 4): 2558
https://doi.org/10.1021/acs.inorgchem.8b03165
36 V. Semenok D. , Zhou D. , G. Kvashnin A. , Huang X. , Galasso M. , A. Kruglov I. , G. Ivanova A. , G. Gavriliuk A. , Chen W. , V. Tkachenko N. , I. Boldyrev A. , Troyan I. , R. Oganov A. , Cui T. . Novel strongly correlated europium superhydrides. J. Phys. Chem. Lett., 2021, 12( 1): 32
https://doi.org/10.1021/acs.jpclett.0c03331
37 Wang Y. , Wang H. , S. Tse J. , Iitaka T. , Ma Y. . Structural morphologies of high-pressure polymorphs of strontium hydrides. Phys. Chem. Chem. Phys., 2015, 17( 29): 19379
https://doi.org/10.1039/C5CP01510C
38 Chen W. , V. Semenok D. , G. Kvashnin A. , Huang X. , A. Kruglov I. , Galasso M. , Song H. , Duan D. , F. Goncharov A. , B. Prakapenka V. , R. Oganov A. , Cui T. . Synthesis of molecular metallic barium superhydride: Pseudocubic BaH12. Nat. Commun., 2021, 12( 1): 273
https://doi.org/10.1038/s41467-020-20103-5
39 J. Pickard C. J. Needs R., Ab initio random structure searching , J. Phys.: Condens. Matter 23(5), 053201 ( 2011)
40 J. Clark S. , D. Segall M. , J. Pickard C. , J. Hasnip P. , J. Probert M. , Refson K. , C. Payne M. . First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater., 2005, 220( 5−6): 567
https://doi.org/10.1524/zkri.220.5.567.65075
41 Kresse G. , Furthmuller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54( 16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
42 Giannozzi P. Baroni S. Bonini N. Calandra M. Car R. Cavazzoni C. Ceresoli D. L. Chiarotti G. Cococcioni M. Dabo I. Dal Corso A. de Gironcoli S. Fabris S. Fratesi G. Gebauer R. Gerstmann U. Gougoussis C. Kokalj A. Lazzeri M. Martin-Samos L. Marzari N. Mauri F. Mazzarello R. Paolini S. Pasquarello A. Paulatto L. Sbraccia C. Scandolo S. Sclauzero G. P. Seitsonen A. Smogunov A. Umari P. M. Wentzcovitch R., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 ( 2009)
43 L. McMillan W. . Transition temperature of strong-coupled superconductors. Phys. Rev., 1968, 167( 2): 331
https://doi.org/10.1103/PhysRev.167.331
44 M. Eliashberg G. . Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP, 1960, 11( 3): 696
45 J. Pickard C. , J. Needs R. . Structure of phase III of solid hydrogen. Nat. Phys., 2007, 3( 7): 473
https://doi.org/10.1038/nphys625
[1] fop-21182-OF-duandefang_suppl_1 Download
[1] Yu-Long Hai, He-Jin Yan, Yong-Qing Cai. Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa[J]. Front. Phys. , 2023, 18(2): 23303-.
[2] Lei Qiao, Ning-hua Wu, Tianhao Li, Siqi Wu, Zhuyi Zhang, Miaocong Li, Jiang Ma, Baijiang Lv, Yupeng Li, Chenchao Xu, Qian Tao, Chao Cao, Guang-Han Cao, Zhu-An Xu. Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure[J]. Front. Phys. , 2021, 16(6): 63501-.
[3] Tian-Zhong Yuan, Mu-Yuan Zou, Wen-Tao Jin, Xin-Yuan Wei, Xu-Guang Xu, Wei Li. Pairing symmetry in monolayer of orthorhombic CoSb[J]. Front. Phys. , 2021, 16(4): 43500-.
[4] Yuan-Qiao Li, Tao Zhou. Impurity effect as a probe for the pairing symmetry of graphene-based superconductors[J]. Front. Phys. , 2021, 16(4): 43502-.
[5] Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity[J]. Front. Phys. , 2020, 15(4): 43301-.
[6] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[7] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[8] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[9] Da Li (李达), Yan Liu (刘妍), Fu-Bo Tian (田夫波), Shu-Li Wei (魏书丽), Zhao Liu (刘召), De-Fang Duan (段德芳), Bing-Bing Liu (刘冰冰), Tian Cui (崔田). Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation[J]. Front. Phys. , 2018, 13(5): 137107-.
[10] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[11] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
[12] Ryszard Gonczarek, Mateusz Krzyzosiak, Adam Gonczarek, Lucjan Jacak. Analytical assessment of some characteristic ratios for s-wave superconductors[J]. Front. Phys. , 2018, 13(2): 137403-.
[13] Qian Chen,Xiaohui Yang,Xiaojun Yang,Jian Chen,Chenyi Shen,Pan Zhang,Yupeng Li,Qian Tao,Zhu-An Xu. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402-.
[14] R. Szcz¸eśniak, A. P. Durajski. Superconductivity well above room temperature in compressed MgH6[J]. Front. Phys. , 2016, 11(6): 117406-.
[15] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed