|
|
High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures |
Yue Chen1, Zhengtao Liu1, Ziyue Lin1, Qiwen Jiang1, Mingyang Du1, Zihan Zhang1, Hao Song1, Hui Xie1, Tian Cui2,1, Defang Duan1( ) |
1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China 2. Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract The theoretical predictions and experimental synthesis of H3S and LaH10 superconductors with record high superconducting transition temperatures (Tc) have promoted the hydrogen-based superconducors to be a research hotspot in the field of solid-state physics. Here, we predict an unprecedented layered structure CaH15, with high Tc of 189 K at 200 GPa using ab initio calculations. As concerns the novel structure, one layer is made of a hydrogen nonagon, the other layer consists of a Ca atom and six H2 molecular units surrounding the Ca atom. This layered structure was also found in SrH15, YH15, and LaH15 at high pressures, each materials exhibit high Tc especially YH15 can reach above 200 K at 220 GPa. It represents the second class of layered superhydrides with high value of Tc after pentagraphene like HfH10.
|
Keywords
high pressure
hydrides
superconductivity
ab initio calculation
|
Corresponding Author(s):
Defang Duan
|
Issue Date: 08 July 2022
|
|
1 |
M. McMahon J. , M. Ceperley D. . Ground-state structures of atomic metallic hydrogen. Phys. Rev. Lett., 2011, 106( 16): 165302
https://doi.org/10.1103/PhysRevLett.106.165302
|
2 |
Sun J. , Martinez-Canales M. , D. Klug D. , J. Pickard C. , J. Needs R. . Stable all-nitrogen metallic salt at terapascal pressures. Phys. Rev. Lett., 2013, 111( 17): 175502
https://doi.org/10.1103/PhysRevLett.111.175502
|
3 |
Sun J. , Martinez-Canales M. , D. Klug D. , J. Pickard C. , J. Needs R. . Persistence and eventual demise of oxygen molecules at terapascal pressures. Phys. Rev. Lett., 2012, 108( 4): 045503
https://doi.org/10.1103/PhysRevLett.108.045503
|
4 |
Zhu L. , Wang Z. , Wang Y. , Zou G. , K. Mao H. , Ma Y. . Spiral chain O4 form of dense oxygen. Proc. Natl. Acad. Sci. USA, 2012, 109( 3): 751
https://doi.org/10.1073/pnas.1119375109
|
5 |
Duan D. , Liu Z. , Lin Z. , Song H. , Xie H. , Cui T. , J. Pickard C. , Miao M. . Multistep dissociation of fluorine molecules under extreme compression. Phys. Rev. Lett., 2021, 126( 22): 225704
https://doi.org/10.1103/PhysRevLett.126.225704
|
6 |
Wigner E. , B. Huntington H. . On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 1935, 3( 12): 764
https://doi.org/10.1063/1.1749590
|
7 |
W. Ashcroft N. . Metallic hydrogen: A high-temperature superconductor. Phys. Rev. Lett., 1968, 21( 26): 1748
https://doi.org/10.1103/PhysRevLett.21.1748
|
8 |
M. McMahon J. , M. Ceperley D. . High-temperature superconductivity in atomic metallic hydrogen. Phys. Rev. B, 2011, 84( 14): 144515
https://doi.org/10.1103/PhysRevB.84.144515
|
9 |
P. Dias R. , F. Silvera I. . Observation of the Wigner−Huntington transition to metallic hydrogen. Science, 2017, 355( 6326): 715
https://doi.org/10.1126/science.aal1579
|
10 |
M. McMahon J. , M. Ceperley D. . Ground-state structures of atomic metallic hydrogen. Phys. Rev. Lett., 2011, 106( 16): 165302
https://doi.org/10.1103/PhysRevLett.106.165302
|
11 |
W. Ashcroft N. . Hydrogen dominant metallic alloys: High temperature superconductors. Phys. Rev. Lett., 2004, 92( 18): 187002
https://doi.org/10.1103/PhysRevLett.92.187002
|
12 |
Zhang L. , Wang Y. , Lv J. , Ma Y. . Materials discovery at high pressures. Nat. Rev. Mater., 2017, 2( 4): 17005
https://doi.org/10.1038/natrevmats.2017.5
|
13 |
Du M. , Zhao W. , Cui T. , Duan D. . Compressed superhydrides: The road to room temperature superconductivity. J. Phys.: Condens. Matter, 2022, 34( 17): 173001
https://doi.org/10.1088/1361-648X/ac4eaf
|
14 |
Duan D. , Liu Y. , Ma Y. , Shao Z. , Liu B. , Cui T. . Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev., 2017, 4( 1): 121
https://doi.org/10.1093/nsr/nww029
|
15 |
H. Xiao X. , F. Duan D. , B. Ma Y. , Xie H. , Song H. , Li D. , B. Tian F. , B. Liu B. , Y. Yu H. , Cui T. . Ab initio studies of copper hydrides under high pressure. Front. Phys., 2019, 14( 4): 1
https://doi.org/10.1007/s11467-019-0894-3
|
16 |
P. Gor’kov L. , Z. Kresin V. . Colloquium: High pressure and road to room temperature superconductivity. Rev. Mod. Phys., 2018, 90( 1): 011001
https://doi.org/10.1103/RevModPhys.90.011001
|
17 |
Zurek E. . Hydrides of the alkali metals and alkaline earth metals under pressure. Comments Inorg. Chem., 2017, 37( 2): 78
https://doi.org/10.1080/02603594.2016.1196679
|
18 |
Zhang Z. , Cui T. , J. Hutcheon M. , M. Shipley A. , Song H. , Du M. , Z. Kresin V. , Duan D. , J. Pickard C. , Yao Y. . Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett., 2022, 128( 4): 047001
https://doi.org/10.1103/PhysRevLett.128.047001
|
19 |
Duan D. , Liu Y. , Tian F. , Li D. , Huang X. , Zhao Z. , Yu H. , Liu B. , Tian W. , Cui T. . Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 2015, 4( 1): 6968
https://doi.org/10.1038/srep06968
|
20 |
Duan D. , Huang X. , Tian F. , Li D. , Yu H. , Liu Y. , Ma Y. , Liu B. , Cui T. . Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B, 2015, 91( 18): 180502
https://doi.org/10.1103/PhysRevB.91.180502
|
21 |
Liu H. , I. Naumov I. , Hoffmann R. , W. Ashcroft N. , J. Hemley R. . Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA, 2017, 114( 27): 6990
https://doi.org/10.1073/pnas.1704505114
|
22 |
Peng F. , Sun Y. , J. Pickard C. , J. Needs R. , Wu Q. , Ma Y. . Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 2017, 119( 10): 107001
https://doi.org/10.1103/PhysRevLett.119.107001
|
23 |
P. Drozdov A. , I. Eremets M. , A. Troyan I. , Ksenofontov V. , I. Shylin S. . Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 2015, 525( 7567): 73
https://doi.org/10.1038/nature14964
|
24 |
Einaga M. , Sakata M. , Ishikawa T. , Shimizu K. , I. Eremets M. , P. Drozdov A. , A. Troyan I. , Hirao N. , Ohishi Y. . Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys., 2016, 12( 9): 835
https://doi.org/10.1038/nphys3760
|
25 |
P. Drozdov A. , P. Kong P. , S. Minkov V. , P. Besedin S. , A. Kuzovnikov M. , Mozaffari S. , Balicas L. , F. Balakirev F. , E. Graf D. , B. Prakapenka V. , Greenberg E. , A. Knyazev D. , Tkacz M. , I. Eremets M. . Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 2019, 569( 7757): 528
https://doi.org/10.1038/s41586-019-1201-8
|
26 |
Somayazulu M. , Ahart M. , K. Mishra A. , M. Geballe Z. , Baldini M. , Meng Y. , V. Struzhkin V. , J. Hemley R. . Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 2019, 122( 2): 027001
https://doi.org/10.1103/PhysRevLett.122.027001
|
27 |
Li Y. , Hao J. , Liu H. , Tse J. , Wang Y. , Ma Y. . Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 2015, 5( 1): 9948
https://doi.org/10.1038/srep09948
|
28 |
Song H. , Zhang Z. , Cui T. , J. Pickard C. , Z. Kresin V. , Duan D. . High Tc superconductivity in heavy rare earth hydrides. Chin. Phys. Lett., 2021, 38( 10): 107401
https://doi.org/10.1088/0256-307X/38/10/107401
|
29 |
Zhong X. Sun Y. Iitaka T. Xu M. Liu H. Chen C. Ma Y., Potential room temperature superconductivity in clathrate lanthanide/actinides octadechydrides at extreme pressures, doi: 10.21203/rs.3.rs-1148583/v1 ( 2021)
|
30 |
Xie H. , Yao Y. , Feng X. , Duan D. , Song H. , Zhang Z. , Jiang S. , A. T. Redfern S. , Z. Kresin V. , J. Pickard C. , Cui T. . Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor. Phys. Rev. Lett., 2020, 125( 21): 217001
https://doi.org/10.1103/PhysRevLett.125.217001
|
31 |
K. Mishra A. , Muramatsu T. , Liu H. , M. Geballe Z. , Somayazulu M. , Ahart M. , Baldini M. , Meng Y. , Zurek E. , J. Hemley R. . New calcium hydrides with mixed atomic and molecular hydrogen. J. Phys. Chem. C, 2018, 122( 34): 19370
https://doi.org/10.1021/acs.jpcc.8b05030
|
32 |
Wu G. , Huang X. , Xie H. , Li X. , Liu M. , Liang Y. , Huang Y. , Duan D. , Li F. , Liu B. , Cui T. . Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules. J. Chem. Phys., 2019, 150( 4): 044507
https://doi.org/10.1063/1.5053650
|
33 |
Wang H. , S. Tse J. , Tanaka K. , Iitaka T. , Ma Y. . Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. USA, 2012, 109( 17): 6463
https://doi.org/10.1073/pnas.1118168109
|
34 |
Ma L. Wang K. Xie Y. Yang X. Wang Y. Zhou M. Liu H. Liu G. Wang H. Ma Y., High- Tc superconductivity in clathrate calcium hydride CaH6, arXiv: 2103.16282 (2021)
|
35 |
Shao Z. , Duan D. , Ma Y. , Yu H. , Song H. , Xie H. , Li D. , Tian F. , Liu B. , Cui T. . Unique phase diagram and superconductivity of calcium hydrides at high pressures. Inorg. Chem., 2019, 58( 4): 2558
https://doi.org/10.1021/acs.inorgchem.8b03165
|
36 |
V. Semenok D. , Zhou D. , G. Kvashnin A. , Huang X. , Galasso M. , A. Kruglov I. , G. Ivanova A. , G. Gavriliuk A. , Chen W. , V. Tkachenko N. , I. Boldyrev A. , Troyan I. , R. Oganov A. , Cui T. . Novel strongly correlated europium superhydrides. J. Phys. Chem. Lett., 2021, 12( 1): 32
https://doi.org/10.1021/acs.jpclett.0c03331
|
37 |
Wang Y. , Wang H. , S. Tse J. , Iitaka T. , Ma Y. . Structural morphologies of high-pressure polymorphs of strontium hydrides. Phys. Chem. Chem. Phys., 2015, 17( 29): 19379
https://doi.org/10.1039/C5CP01510C
|
38 |
Chen W. , V. Semenok D. , G. Kvashnin A. , Huang X. , A. Kruglov I. , Galasso M. , Song H. , Duan D. , F. Goncharov A. , B. Prakapenka V. , R. Oganov A. , Cui T. . Synthesis of molecular metallic barium superhydride: Pseudocubic BaH12. Nat. Commun., 2021, 12( 1): 273
https://doi.org/10.1038/s41467-020-20103-5
|
39 |
J. Pickard C. J. Needs R., Ab initio random structure searching , J. Phys.: Condens. Matter 23(5), 053201 ( 2011)
|
40 |
J. Clark S. , D. Segall M. , J. Pickard C. , J. Hasnip P. , J. Probert M. , Refson K. , C. Payne M. . First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater., 2005, 220( 5−6): 567
https://doi.org/10.1524/zkri.220.5.567.65075
|
41 |
Kresse G. , Furthmuller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54( 16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
|
42 |
Giannozzi P. Baroni S. Bonini N. Calandra M. Car R. Cavazzoni C. Ceresoli D. L. Chiarotti G. Cococcioni M. Dabo I. Dal Corso A. de Gironcoli S. Fabris S. Fratesi G. Gebauer R. Gerstmann U. Gougoussis C. Kokalj A. Lazzeri M. Martin-Samos L. Marzari N. Mauri F. Mazzarello R. Paolini S. Pasquarello A. Paulatto L. Sbraccia C. Scandolo S. Sclauzero G. P. Seitsonen A. Smogunov A. Umari P. M. Wentzcovitch R., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 ( 2009)
|
43 |
L. McMillan W. . Transition temperature of strong-coupled superconductors. Phys. Rev., 1968, 167( 2): 331
https://doi.org/10.1103/PhysRev.167.331
|
44 |
M. Eliashberg G. . Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP, 1960, 11( 3): 696
|
45 |
J. Pickard C. , J. Needs R. . Structure of phase III of solid hydrogen. Nat. Phys., 2007, 3( 7): 473
https://doi.org/10.1038/nphys625
|
[1] |
fop-21182-OF-duandefang_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|