Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13303    https://doi.org/10.1007/s11467-022-1211-0
RESEARCH ARTICLE
Electronic properties of monolayer copper selenide with one-dimensional moiré patterns
Gefei Niu1, Jianchen Lu1(), Jianqun Geng1, Shicheng Li1, Hui Zhang1, Wei Xiong1, Zilin Ruan1, Yong Zhang1, Boyu Fu1, Lei Gao2(), Jinming Cai1()
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
 Download: PDF(3637 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Strain engineering is a vital way to manipulate the electronic properties of two-dimensional (2D) materials. As a typical representative of transition metal mono-chalcogenides (TMMs), a honeycomb CuSe monolayer features with one-dimensional (1D) moiré patterns owing to the uniaxial strain along one of three equivalent orientations of Cu(111) substrates. Here, by combining low-temperature scanning tunneling microscopy/spectroscopy (STM/S) experiments and density functional theory (DFT) calculations, we systematically investigate the electronic properties of the strained CuSe monolayer on the Cu(111) substrate. Our results show the semiconducting feature of CuSe monolayer with a band gap of 1.28 eV and the 1D periodical modulation of electronic properties by the 1D moiré patterns. Except for the uniaxially strained CuSe monolayer, we observed domain boundary and line defects in the CuSe monolayer, where the biaxial-strain and strain-free conditions can be investigated respectively. STS measurements for the three different strain regions show that the first peak in conduction band will move downward with the increasing strain. DFT calculations based on the three CuSe atomic models with different strain inside reproduced the peak movement. The present findings not only enrich the fundamental comprehension toward the influence of strain on electronic properties at 2D limit, but also offer the benchmark for the development of 2D semiconductor materials.

Keywords CuSe monolayer      scanning tunneling microscopy      strain      electronic bandgap      electronic property     
Corresponding Author(s): Jianchen Lu,Lei Gao,Jinming Cai   
Issue Date: 23 November 2022
 Cite this article:   
Gefei Niu,Jianchen Lu,Jianqun Geng, et al. Electronic properties of monolayer copper selenide with one-dimensional moiré patterns[J]. Front. Phys. , 2023, 18(1): 13303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1211-0
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13303
Fig.1  Electronic properties of CuSe monolayer with 1D moiré patterns. (a) An atomically resolved STM image of 1D moiré patterns CuSe monolayer with hexagonal honeycomb lattice. (b) Three dI/dV curves collected at different positions which are marked by blue, green and red dots in (a). (c) A corresponding dI/dV map obtained at the energy of ?0.66 V. Red, blue and green dashed lines in (a) and (c) indicate three different regions in 1D moiré patterns. (d) Zoom-in dI/dV curves from a gray square in (b). Two black triangles represent a peak at ?0.66 V. Scanning parameters: (a) Vs = ?0.42 V, It = 300 pA; (b) Vs = 1.5 V, It = 400 pA, Vrms = 10 mV; (c) Vs = ?0.66 V, It = 300 pA.
Fig.2  Atomic structures and electronic properties of domain boundary of CuSe monolayer on Cu(111) substrate. (a) A high resolution STM image of the domain boundary. (b) dI/dV curves collected at three positions, as indicated by colored dots in (a). Black dashed lines indicate the positions of C1 peak in the conduction band. (c, f) STM image and corresponding dI/dV map at the energy of 0.92 V. (d) Three line-profiles at the domain boundary across the red, green, and yellow lines in (a). (e) Waterfall plots of dI/dV curves along a blue arrow in (a). A black curved dashed line indicates the C1 peak movement. Scanning parameters: (a) Vs = 50 mV, It = 1.3 nA; (b) Vs = 2 V, It = 300 pA, Vrms = 10 mV; (c) Vs = 0.92 V, It = 300 pA; (e) Vs = 2 V, It = 300 pA, Vrms = 10 mV; (f) Vs = 0.92 mV, It = 300 pA, Vrms = 10 mV.
Fig.3  Line defects in the CuSe monolayer on the Cu(111) substrate. (a, b) A large-scale STM image and corresponding high-resolution STM image of the folding line-defect. (c, d) A large-scale STM image and corresponding high-resolution STM image of the straight line-defect. Atomic models are covered into (b) and (d) to shed light on the edge termations. (e) Schematic description of straight line-defect in CuSe atomic model, where blue and yellwo triangles indicate that the left and right modles are two mirror-symmetric domains. (f) dI/dV curves taken at three positions, as marked by black, red and blue stars in (a). Scanning parameters: (a) Vs = 0.4 V, It = 200 pA; (b) Vs = 2 V, It = 300 pA; (c) Vs = 0.2 V, It = 100 pA; (d) Vs = 0.2 V, It = 100 pA; (f) Vs = 2 V, It = 400 pA, Vrms = 10 mV.
Fig.4  Atomic configurations and calculated electronic structures of CuSe monolayer. (a?c) Atomic configurations of CuSe monolayer under strain-free, 7.3% uniaxial-strain and 7.3% biaxial-strain, respectively. The primitive cell of CuSe monolayer is denoted by the black dotted line. (d?f) DOSs of CuSe monolayer under strain-free, 7.3% uniaxial-strain and 7.3% biaxial-strain, respectively. (g) CBM, VBM and Fermi level variations under uniaxial-strain and biaxial-strain of CuSe monolayer. (h?j) Cross sections of differential charge density (e/Bohr3) of CuSe monolayer under strain-free, 7.3% uniaxial-strain and 7.3% biaxial-strain, respectively.
1 F. Mak K. , L. McGill K. , Park J. , L. McEuen P. . The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489
https://doi.org/10.1126/science.1250140
2 Mounet N. , Gibertini M. , Schwaller P. , Campi D. , Merkys A. , Marrazzo A. , Sohier T. , E. Castelli I. , Cepellotti A. , Pizzi G. , Marzari N. . Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol., 2018, 13(3): 246
https://doi.org/10.1038/s41565-017-0035-5
3 Y. Zhu S. , Shao Y. , Wang E. , Cao L. , Y. Li X. , L. Liu Z. , Liu C. , W. Liu L. , O. Wang J. , Ibrahim K. , T. Sun J. , L. Wang Y. , Du S. , J. Gao H. . Evidence of topological edge states in buckled antimonene monolayers. Nano Lett., 2019, 19(9): 6323
https://doi.org/10.1021/acs.nanolett.9b02444
4 Zhou Z. , Yang F. , Wang S. , Wang L. , Wang X. , Wang C. , Xie Y. , Liu Q. . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
https://doi.org/10.1007/s11467-021-1114-5
5 H. Mao Y. , Shan H. , R. Wu J. , J. Li Z. , Z. Wu C. , F. Zhai X. , D. Zhao A. , Wang B. . Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501
https://doi.org/10.1007/s11467-020-0977-1
6 X. Lin J. , H. Zhang Y. , Morissette E. , Wang Z. , Liu S. , Rhodes D. , Watanabe K. , Taniguchi T. , Hone J. , Li J. . Spin−orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science, 2022, 375(6579): 437
https://doi.org/10.1126/science.abh2889
7 Y. Wang X. , Zhang H. , L. Ruan Z. , L. Hao Z. , T. Yang X. , M. Cai J. , C. Lu J. . Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions. Acta. Phys. Sin., 2020, 69(11): 118101
https://doi.org/10.7498/aps.69.20200174
8 Liu B. , Liu J. , Miao G. , Xue S. , Zhang S. , Liu L. , Huang X. , Zhu X. , Meng S. , Guo J. , Liu M. , Wang W. . Flat AgTe honeycomb monolayer on Ag(111). J. Phys. Chem. Lett., 2019, 10(8): 1866
https://doi.org/10.1021/acs.jpclett.9b00339
9 Shah J. , M. Sohail H. , I. G. Uhrberg R. , Wang W. . Two-dimensional binary honeycomb layer formed by Ag and Te on Ag(111). J. Phys. Chem. Lett., 2020, 11(5): 1609
https://doi.org/10.1021/acs.jpclett.0c00123
10 Ünzelmann M. , Bentmann H. , Eck P. , Kißlinger T. , Geldiyev B. , Rieger J. , Moser S. , C. Vidal R. , Kißner K. , Hammer L. , A. Schneider M. , Fauster T. , Sangiovanni G. , Di Sante D. , Reinert F. . Orbital-driven Rashba effect in a binary honeycomb monolayer AgTe. Phys. Rev. Lett., 2020, 124(17): 176401
https://doi.org/10.1103/PhysRevLett.124.176401
11 Lin X. , C. Lu J. , Shao Y. , Y. Zhang Y. , Wu X. , B. Pan J. , Gao L. , Y. Zhu S. , Qian K. , F. Zhang Y. , L. Bao D. , F. Li L. , Q. Wang Y. , L. Liu Z. , T. Sun J. , Lei T. , Liu C. , O. Wang J. , Ibrahim K. , N. Leonard D. , Zhou W. , M. Guo H. , L. Wang Y. , X. Du S. , T. Pantelides S. , J. Gao H. . Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater., 2017, 16(7): 717
https://doi.org/10.1038/nmat4915
12 Gao L. , T. Sun J. , C. Lu J. , Li H. , Qian K. , Zhang S. , Y. Zhang Y. , Qian T. , Ding H. , Lin X. , Du S. , J. Gao H. . Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions. Adv. Mater., 2018, 30(16): 1707055
https://doi.org/10.1002/adma.201707055
13 Lu J. , Gao L. , Song S. , Li H. , Niu G. , Chen H. , Qian T. , Ding H. , Lin X. , Du S. , J. Gao H. . Honeycomb AgSe monolayer nanosheets for studying two-dimensional Dirac nodal line fermions. ACS Appl. Nano Mater., 2021, 4(9): 8845
https://doi.org/10.1021/acsanm.1c01517
14 Wang X. , Ruan Z. , Du R. , Zhang H. , Yang X. , Niu G. , Cai J. , Lu J. . Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores. J. Mater. Sci., 2021, 56(17): 10406
https://doi.org/10.1007/s10853-021-05959-2
15 Gao L. , F. Zhang Y. , T. Sun J. , Du S. . Band engineering of honeycomb monolayer CuSe via atomic modification. Chin. Phys. B, 2021, 30(10): 106807
https://doi.org/10.1088/1674-1056/abee6f
16 Niu G. , Lu J. , Wang X. , Ruan Z , Zhang H. , Gao L. , Cai J. , Lin X. . Se-concentration dependent superstructure transformations of CuSe monolayer on Cu(111) substrate. 2D Mater., 2022, 9(1): 015017
https://doi.org/10.1088/2053-1583/ac3888
17 Song Z. , Huang J. , Zhang S. , Cao Y. , Liu C. , Zhang R. , Zheng Q. , Cao L. , Huang L. , Wang J. , Qian T. , Ding H. , Zhou W. , Y. Zhang Y. , Lu H. , Shen C. , Lin X. , Du S. , J. Gao H. . Observation of an incommensurate charge density wave in monolayer TiSe2/CuSe/Cu(111) heterostructure. Phys. Rev. Lett., 2022, 128(2): 026401
https://doi.org/10.1103/PhysRevLett.128.026401
18 Tang K. , Qi W. . Moiré-pattern-tuned electronic structures of van Der Waals heterostructures. Adv. Funct. Mater., 2020, 30(32): 2002672
https://doi.org/10.1002/adfm.202002672
19 Kang J. , Li J. , S. Li S. , B. Xia J. , W. Wang L. . Electronic structural moire pattern effects on MoS2/MoSe2 2d heterostructures. Nano Lett., 2013, 13(11): 5485
https://doi.org/10.1021/nl4030648
20 L. Seyler K. , Rivera P. , Yu H. , P. Wilson N. , L. Ray E. , G. Mandrus D. , Yan J. , Yao W. , Xu X. . Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66
https://doi.org/10.1038/s41586-019-0957-1
21 Zhang C. , Y. Li M. , Tersoff J. , Han Y. , Su Y. , J. Li L. , A. Muller D. , K. Shih C. . Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol., 2018, 13(2): 152
https://doi.org/10.1038/s41565-017-0022-x
22 Pan Y. , Zhang H. , Shi D. , Sun J. , Du S. , Liu F. , Gao H. . Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater., 2009, 21(27): 2777
https://doi.org/10.1002/adma.200800761
23 S. Bai Y. , Zhou L. , Wang J. , J. Wu W. , J. McGilly L. , Halbertal D. , F. B. Lo C. , Liu F. , Ardelean J. , Rivera P. , R. Finney N. , C. Yang X. , N. Basov D. , Yao W. , Xu X. , Hone J. , N. Pasupathy A. , Y. Zhu X. . Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater., 2020, 19(10): 1068
https://doi.org/10.1038/s41563-020-0730-8
24 J. Tong Q. , Y. Yu H. , Z. Zhu Q. , Wang Y. , D. Xu X. , Yao A. . Topological mosaics in moire superlattices of van Der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
https://doi.org/10.1038/nphys3968
25 Horcas I. , Fernandez R. , M. Gomez-Rodriguez J. , Colchero J. , Gomez-Herrero J. , M. Baro A. . WSxM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum., 2007, 78(1): 013705
https://doi.org/10.1063/1.2432410
[1] fop-21211-OF-lujianchen_suppl_1 Download
[1] Si-Yu Li, Lin He. Recent progresses of quantum confinement in graphene quantum dots[J]. Front. Phys. , 2022, 17(3): 33201-.
[2] Guoyu Luo, Xinyu Lv, Lu Wen, Zhiqiang Li, Zhenbing Dai. Strain induced topological transitions in twisted double bilayer graphene[J]. Front. Phys. , 2022, 17(2): 23502-.
[3] Jia-Jing Li, Yang Dai, Jin-Cheng Zheng. Strain engineering of ion migration in LiCoO2[J]. Front. Phys. , 2022, 17(1): 13503-.
[4] Haoyu Dong, Le Lei, Shuya Xing, Jianfeng Guo, Feiyue Cao, Shangzhi Gu, Yanyan Geng, Shuo Mi, Hanxiang Wu, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng. Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film[J]. Front. Phys. , 2021, 16(6): 63502-.
[5] Chong Xu, Qian-Jun Wang, Bin Xu, Jun Hu. Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3[J]. Front. Phys. , 2021, 16(5): 53502-.
[6] Hao Cheng, Jin-Cheng Zheng. Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding[J]. Front. Phys. , 2021, 16(4): 43505-.
[7] Ya-Hui Mao, Huan Shan, Jin-Rong Wu, Ze-Jun Li, Chang-Zheng Wu, Xiao-Fang Zhai, Ai-Di Zhao, Bing Wang. Observation of pseudogap in SnSe2 atomic layers grown on graphite[J]. Front. Phys. , 2020, 15(4): 43501-.
[8] Peifeng Fan, Hong Qin, Jian Liu, Nong Xiang, Zhi Yu. Geometric field theory and weak Euler–Lagrange equation for classical relativistic particle-field systems[J]. Front. Phys. , 2018, 13(4): 135203-.
[9] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[10] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[11] Xiang Liu, Wen-Bo Mi. Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study[J]. Front. Phys. , 2018, 13(2): 134204-.
[12] Long-Jing Yin (殷隆晶),Ke-Ke Bai (白珂珂),Wen-Xiao Wang (王文晓),Si-Yu Li (李思宇),Yu Zhang (张钰),Lin He (何林). Landau quantization of Dirac fermions in graphene and its multilayers[J]. Front. Phys. , 2017, 12(4): 127208-.
[13] Cong Wang,Sheng-Xue Yang,Hao-Ran Zhang,Le-Na Du,Lei Wang,Feng-You Yang,Xin-Zheng Zhang,Qian Liu. Synthesis of atomically thin GaSe wrinkles for strain sensors[J]. Front. Phys. , 2016, 11(2): 116802-.
[14] Hui-Min Zhang,Ming An,Xiao-Yan Yao,Shuai Dong. Orientation-dependent ferroelectricity of strained PbTiO3 films[J]. Front. Phys. , 2015, 10(6): 107701-.
[15] Jia-Jia Geng,Rui-Yun Guo,Dong-Ze He,Jing-Fei Zhang,Xin Zhang. Redshift drift constraints on f(T) gravity[J]. Front. Phys. , 2015, 10(5): 109501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed