|
|
Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance |
Qiugang Liao1, Hao Liu1, Ziqiang Chen1, Yinggan Zhang2, Rui Xiong1, Zhou Cui1, Cuilian Wen1( ), Baisheng Sa1( ) |
1. Multiscale Computational Materials Facility, and Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China 2. College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China |
|
|
Abstract With the development of modern electronics, especially the next generation of wearable electromagnetic interference (EMI) shielding materials requires flexibility, ultrathin, lightweight and robustness to protect electronic devices from radiation pollution. In this work, the flexible and ultrathin dopamine modified MXene@cellulose nanofiber (DM@CNF) composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach. The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film. By adjusting the layer number, the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m−3 with a thickness about 19 μm. Interestingly that, the DM@CNF film with annealing treatment achieves significant improvement in conductivity (up to 17264 S·m−1) and EMI properties (SE of 41.90 dB and SSE/t of 10169 dB·cm2·g−1), which still maintains relatively high mechanical properties. It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based, carbon-based and MXene-based shielding materials reported in the literature. These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices.
|
Keywords
MXene
dopamine
cellulose nanofibers
electromagnetic interference shielding performance
mechanical properties
|
Corresponding Author(s):
Cuilian Wen,Baisheng Sa
|
Issue Date: 06 January 2023
|
|
1 |
Shahzad F.Iqbal A.Kim H.M. Koo C., 2D transition metal carbides (MXenes): Applications as an electrically conducting material, Adv. Mater. 32(51), 2002159 (2020)
|
2 |
W. Jiang D. , Murugadoss V. , Wang Y. , Lin J. , Ding T. , C. Wang Z. , Shao Q. , Wang C. , Liu H. , Lu N. , B. Wei R. , Subramania A. , H. Guo Z. . Electromagnetic interference shielding polymers and nanocomposites - A review. Polym. Rev. (Phila. Pa. ), 2019, 59(2): 280
https://doi.org/10.1080/15583724.2018.1546737
|
3 |
Xiang C. , H. Guo R. , J. Lin S. , X. Jiang S. , W. Lan J. , Wang C. , Cui C. , Y. Xiao H. , Zhang Y. . Lightweight and ultrathin TiO2-Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J., 2019, 360: 1158
https://doi.org/10.1016/j.cej.2018.10.174
|
4 |
T. Liu R. , Miao M. , H. Li Y. , F. Zhang J. , M. Cao S. , Feng X. . Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2018, 10(51): 44787
https://doi.org/10.1021/acsami.8b18347
|
5 |
Abbasi H. , Antunes M. , I. Velasco J. . Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci., 2019, 103: 319
https://doi.org/10.1016/j.pmatsci.2019.02.003
|
6 |
Hu M. , Zhang N. , Shan G. , Gao J. , Liu J. , K. Y. Li R. . Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13(4): 138113
https://doi.org/10.1007/s11467-018-0809-8
|
7 |
Li X. , C. Shan G. , G. Ma R. , H. Shek C. , B. Zhao H. , Ramakrishna S. . Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications. Front. Phys., 2022, 17(6): 63501
https://doi.org/10.1007/s11467-022-1181-2
|
8 |
Liu B.Y. Qian L.L. Zhao Y.W. Zhang Y.Liu F.Zhang Y.Q. Xie Y.Z. Shi W., A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects, Front. Phys. 17(5), 53501 (2022)
|
9 |
Wen B. , S. Cao M. , M. Lu M. , Q. Cao W. , L. Shi H. , Liu J. , X. Wang X. , B. Jin H. , Y. Fang X. , Z. Wang W. , Yuan J. . Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater., 2014, 26(21): 3484
https://doi.org/10.1002/adma.201400108
|
10 |
Shen B. , T. Zhai W. , G. Zheng W. . Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater., 2014, 24(28): 4542
https://doi.org/10.1002/adfm.201400079
|
11 |
Han Y. , Zhong H. , Liu N. , X. Liu Y. , Lin J. , Jin P. . In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding. Adv. Electron. Mater., 2018, 4(11): 1800156
https://doi.org/10.1002/aelm.201800156
|
12 |
Z. Feng Y. , Wang B. , W. Li X. , S. Ye Y. , M. Ma J. , T. Liu C. , P. Zhou X. , L. Xie X. . Enhancing thermal oxidation and fire resistance of reduced graphene oxide by phosphorus and nitrogen co-doping: Mechanism and kinetic analysis. Carbon, 2019, 146: 650
https://doi.org/10.1016/j.carbon.2019.01.099
|
13 |
Z. Feng Y. , J. Han G. , Wang B. , P. Zhou X. , M. Ma J. , S. Ye Y. , T. Liu C. , L. Xie X. . Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chem. Eng. J., 2020, 379: 122402
https://doi.org/10.1016/j.cej.2019.122402
|
14 |
F. Meng X. , H. Li D. , Q. Shen X. , Liu W. . Preparation and magnetic properties of nano-Ni coated cenosphere composites. Appl. Surf. Sci., 2010, 256(12): 3753
https://doi.org/10.1016/j.apsusc.2010.01.019
|
15 |
L. Song W. , T. Guan X. , Z. Fan L. , Q. Cao W. , Y. Wang C. , L. Zhao Q. , S. Cao M. . Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A, 2015, 3(5): 2097
https://doi.org/10.1039/C4TA05939E
|
16 |
S. Novoselov K. , V. Andreeva D. , C. Ren W. , C. Shan G. . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
https://doi.org/10.1007/s11467-018-0835-6
|
17 |
C. Wang Y. , H. Yao L. , Zheng Q. , S. Cao M. . Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res., 2022, 15(7): 6751
https://doi.org/10.1007/s12274-022-4428-x
|
18 |
S. Cao M. , L. Song W. , L. Hou Z. , Wen B. , Yuan J. . The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48(3): 788
https://doi.org/10.1016/j.carbon.2009.10.028
|
19 |
H. Yao L. , Q. Cao W. , G. Zhao J. , Zheng Q. , C. Wang Y. , Jiang S. , L. Pan Q. , Song J. , Q. Zhu Y. , S. Cao M. . Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J. Mater. Sci. Technol., 2022, 127: 48
https://doi.org/10.1016/j.jmst.2022.04.010
|
20 |
C. Jia L. , Q. Zhang G. , Xu L. , J. Sun W. , J. Zhong G. , Lei J. , X. Yan D. , M. Li Z. . Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2019, 11(1): 1680
https://doi.org/10.1021/acsami.8b18459
|
21 |
C. Jia L. , G. Zhou C. , J. Sun W. , Xu L. , X. Yan D. , M. Li Z. . Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem. Eng. J., 2020, 384: 123368
https://doi.org/10.1016/j.cej.2019.123368
|
22 |
C. Jia L. , Q. Ding K. , J. Ma R. , L. Wang H. , J. Sun W. , X. Yan D. , Li B. , M. Li Z. . Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol., 2019, 4(2): 1800503
https://doi.org/10.1002/admt.201800503
|
23 |
M. Weng G. , Y. Li J. , Alhabeb M. , Karpovich C. , Wang H. , Lipton J. , Maleski K. , Kong J. , Shaulsky E. , Elimelech M. , Gogotsi Y. , D. Taylor A. . Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater., 2018, 28(44): 1803360
https://doi.org/10.1002/adfm.201803360
|
24 |
Crespo M. , González M. , L. Elías A. , Pulickal Rajukumar L. , Baselga J. , Terrones M. , Pozuelo J. . Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi Rapid Res. Lett., 2014, 8(8): 698
https://doi.org/10.1002/pssr.201409151
|
25 |
Li Z. , Yu L. , Milligan C. , Ma T. , Zhou L. , R. Cui Y. , Y. Qi Z. , Libretto N. , Xu B. , W. Luo J. , Z. Shi E. , W. Wu Z. , L. Xin H. , N. Delgass W. , T. Miller J. , Wu Y. . Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun., 2018, 9(1): 5258
https://doi.org/10.1038/s41467-018-07502-5
|
26 |
R. Lukatskaya M. , Kota S. , F. Lin Z. , Q. Zhao M. , Shpigel N. , D. Levi M. , Halim J. , L. Taberna P. , Barsoum M. , Simon P. , Gogotsi Y. . Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy, 2017, 2(8): 17105
https://doi.org/10.1038/nenergy.2017.105
|
27 |
Anasori B.R. Lukatskaya M.Gogotsi Y., 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)
|
28 |
Lin H. , Chen Y. , L. Shi J. . Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. (Weinh.), 2018, 5(10): 1800518
https://doi.org/10.1002/advs.201800518
|
29 |
Carey M. , W. Barsoum M. . MXene polymer nanocomposites: A review. Mater. Today Adv., 2021, 9: 100120
https://doi.org/10.1016/j.mtadv.2020.100120
|
30 |
Z. Zhang J. , Kong N. , Uzun S. , Levitt A. , Seyedin S. , A. Lynch P. , Qin S. , K. Han M. , R. Yang W. , Q. Liu J. , G. Wang X. , Gogotsi Y. , M. Razal J. . Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater., 2020, 32(23): 2001093
https://doi.org/10.1002/adma.202001093
|
31 |
Naguib M. , Mashtalir O. , Carle J. , Presser V. , Lu J. , Hultman L. , Gogotsi Y. , W. Barsoum M. . Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322
https://doi.org/10.1021/nn204153h
|
32 |
Zhan C. , Naguib M. , Lukatskaya M. , R. C. Kent P. , Gogotsi Y. , E. Jiang D. . Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett., 2018, 9(6): 1223
https://doi.org/10.1021/acs.jpclett.8b00200
|
33 |
C. Lei J. , Zhang X. , Zhou Z. . Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10(3): 276
https://doi.org/10.1007/s11467-015-0493-x
|
34 |
Liu J. , B. Zhang H. , H. Sun R. , F. Liu Y. , S. Liu Z. , G. Zhou A. , Z. Yu Z. . Hydrophobic, flexible, and lightweight MXene Foams for high-performance electromagnetic-interference shielding. Adv. Mater., 2017, 29(38): 1702367
https://doi.org/10.1002/adma.201702367
|
35 |
L. Ma Z. , L. Kang S. , Z. Ma J. , Shao L. , L. Zhang Y. , Liu C. , J. Wei A. , L. Xiang X. , F. Wei L. , W. Gu J. . Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano, 2020, 14(7): 8368
https://doi.org/10.1021/acsnano.0c02401
|
36 |
Shahzad F. , Alhabeb M. , B. Hatter C. , Anasori B. , Man Hong S. , M. Koo C. , Gogotsi Y. . Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137
https://doi.org/10.1126/science.aag2421
|
37 |
Mashtalir O. , Naguib M. , N. Mochalin V. , Dall’Agnese Y. , Heon M. , W. Barsoum M. , Gogotsi Y. . Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun., 2013, 4(1): 1716
https://doi.org/10.1038/ncomms2664
|
38 |
Akuzum B. , Maleski K. , Anasori B. , Lelyukh P. , J. Alvarez N. , C. Kumbur E. , Gogotsi Y. . Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes. ACS Nano, 2018, 12(3): 2685
https://doi.org/10.1021/acsnano.7b08889
|
39 |
J. Wan Y. , M. Li X. , L. Zhu P. , Sun R. , P. Wong C. , H. Liao W. . Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf., 2020, 130: 105764
https://doi.org/10.1016/j.compositesa.2020.105764
|
40 |
Z. Huang H. , F. Sha X. , Cui Y. , Y. Sun S. , Y. Huang H. , Y. He Z. , Y. Liu M. , G. Zhou N. , Y. Zhang X. , Wei Y. . Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. J. Colloid Interface Sci., 2020, 567: 190
https://doi.org/10.1016/j.jcis.2020.02.015
|
41 |
Y. Yang L.Cui J.Zhang L.R. Xu X.Chen X.P. Sun D., A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film, Adv. Funct. Mater. 31(27), 2101378 (2021)
|
42 |
T. Cao W. , Ma C. , Tan S. , G. Ma M. , B. Wan P. , Chen F. . Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett., 2019, 11(1): 72
https://doi.org/10.1007/s40820-019-0304-y
|
43 |
H. Chen J. , K. Xu J. , Wang K. , R. Qian X. , C. Sun R. . Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces, 2015, 7(28): 15641
https://doi.org/10.1021/acsami.5b04462
|
44 |
Q. Zhang L. , G. Yang S. , Li L. , Yang B. , D. Huang H. , X. Yan D. , J. Zhong G. , Xu L. , M. Li Z. . Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2019, 11(2): 2559
https://doi.org/10.1021/acsami.8b21940
|
45 |
T. Cao W. , F. Chen F. , J. Zhu Y. , G. Zhang Y. , Y. Jiang Y. , G. Ma M. , Chen F. . Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583
https://doi.org/10.1021/acsnano.8b00997
|
46 |
L. Hart J. , Hantanasirisakul K. , C. Lang A. , Anasori B. , Pinto D. , Pivak Y. , T. van Omme J. , J. May S. , Gogotsi Y. , L. Taheri M. . Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun., 2019, 10(1): 522
https://doi.org/10.1038/s41467-018-08169-8
|
47 |
S. Lee G. , Yun T. , Kim H. , H. Kim I. , Choi J. , H. Lee S. , J. Lee H. , S. Hwang H. , G. Kim J. , W. Kim D. , M. Lee H. , M. Koo C. , O. Kim S. . Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722
https://doi.org/10.1021/acsnano.0c04411
|
48 |
Alhabeb M. , Maleski K. , Anasori B. , Lelyukh P. , Clark L. , Sin S. , Gogotsi Y. . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29(18): 7633
https://doi.org/10.1021/acs.chemmater.7b02847
|
49 |
Zhou B. , Zhang Z. , L. Li Y. , J. Han G. , Z. Feng Y. , Wang B. , B. Zhang D. , M. Ma J. , T. Liu C. . Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces, 2020, 12(4): 4895
https://doi.org/10.1021/acsami.9b19768
|
50 |
Z. Bao W. , Tang X. , Guo X. , Choi S. , Y. Wang C. , Gogotsi Y. , X. Wang G. . Porous cryo-dried MXene for efficient capacitive deionization. Joule, 2018, 2(4): 778
https://doi.org/10.1016/j.joule.2018.02.018
|
51 |
W. Fu J. , H. Chen Z. , H. Wang M. , J. Liu S. , H. Zhang J. , N. Zhang J. , P. Han R. , Xu Q. . Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J., 2015, 259: 53
https://doi.org/10.1016/j.cej.2014.07.101
|
52 |
Zhang Y. , H. Cheng W. , X. Tian W. , Y. Lu J. , Song L. , M. Liew K. , B. Wang B. , Hu Y. . Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces, 2020, 12(5): 6371
https://doi.org/10.1021/acsami.9b18750
|
53 |
H. Zhou Z. , C. Song Q. , X. Huang B. , Y. Feng S. , H. Lu C. . Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano, 2021, 15(7): 12405
https://doi.org/10.1021/acsnano.1c04526
|
54 |
F. Zhao X. , E. Holta D. , Y. Tan Z. , H. Oh J. , J. Echols I. , Anas M. , X. Cao H. , L. Lutkenhaus J. , Radovic M. , J. Green M. . Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings. ACS Appl. Nano Mater., 2020, 3(11): 10578
https://doi.org/10.1021/acsanm.0c02473
|
55 |
J. Wan Y. , L. Zhu P. , H. Yu S. , Sun R. , P. Wong C. , H. Liao W. . Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small, 2018, 14(27): 1800534
https://doi.org/10.1002/smll.201800534
|
56 |
H. Ryu S. , K. Han Y. , J. Kwon S. , Kim T. , M. Jung B. , B. Lee S. , Park B. . Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J., 2022, 428: 131167
https://doi.org/10.1016/j.cej.2021.131167
|
57 |
Feng L. , Zuo Y. , He X. , J. Hou X. , G. Fu Q. , J. Li H. , Song Q. . Development of light cellular carbon nanotube@graphene/carbon nanocomposites with effective mechanical and EMI shielding performance. Carbon, 2020, 168: 719
https://doi.org/10.1016/j.carbon.2020.07.032
|
58 |
T. Liu R. , Miao M. , H. Li Y. , F. Zhang J. , M. Cao S. , Feng X. . Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2018, 10(51): 44787
https://doi.org/10.1021/acsami.8b18347
|
59 |
S. Li R. , Ding L. , Gao Q. , M. Zhang H. , Zeng D. , A. Zhao B. , B. Fan B. , Zhang R. . Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J., 2021, 415: 128930
https://doi.org/10.1016/j.cej.2021.128930
|
60 |
S. Liu Z. , Zhang Y. , B. Zhang H. , Dai Y. , Liu J. , F. Li X. , Z. Yu Z. . Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C, 2020, 8(5): 1673
https://doi.org/10.1039/C9TC06304H
|
[1] |
fop-21234-OF-sabaisheng_suppl_1
|
Download
|
[2] |
fop-21234-OF-sabaisheng_suppl_2
|
Video
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|