Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (3) : 33300    https://doi.org/10.1007/s11467-022-1234-6
RESEARCH ARTICLE
Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance
Qiugang Liao1, Hao Liu1, Ziqiang Chen1, Yinggan Zhang2, Rui Xiong1, Zhou Cui1, Cuilian Wen1(), Baisheng Sa1()
1. Multiscale Computational Materials Facility, and Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
2. College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
 Download: PDF(5495 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the development of modern electronics, especially the next generation of wearable electromagnetic interference (EMI) shielding materials requires flexibility, ultrathin, lightweight and robustness to protect electronic devices from radiation pollution. In this work, the flexible and ultrathin dopamine modified MXene@cellulose nanofiber (DM@CNF) composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach. The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film. By adjusting the layer number, the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m−3 with a thickness about 19 μm. Interestingly that, the DM@CNF film with annealing treatment achieves significant improvement in conductivity (up to 17264 S·m−1) and EMI properties (SE of 41.90 dB and SSE/t of 10169 dB·cm2·g−1), which still maintains relatively high mechanical properties. It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based, carbon-based and MXene-based shielding materials reported in the literature. These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices.

Keywords MXene      dopamine      cellulose nanofibers      electromagnetic interference shielding performance      mechanical properties     
Corresponding Author(s): Cuilian Wen,Baisheng Sa   
Issue Date: 06 January 2023
 Cite this article:   
Qiugang Liao,Hao Liu,Ziqiang Chen, et al. Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance[J]. Front. Phys. , 2023, 18(3): 33300.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1234-6
https://academic.hep.com.cn/fop/EN/Y2023/V18/I3/33300
Fig.1  Schematic illustration of the preparation process of Ti3C2Tx nanosheets and multilayered DM@CNF composite films.
Fig.2  The SEM images of (a) Ti3AlC2 and (b) d-Ti3C2Tx nanosheets, (c) XRD patterns of Ti3AlC2 and d-Ti3C2Tx nanosheet. (d) TEM, (e) HRTEM and (f) SAED images of d-Ti3C2Tx nanosheets. (g) XPS survey spectra and the corresponding (h) Ti 2p and (i) C 1s spectra of d-Ti3C2Tx nanosheets.
Fig.3  (a) XRD patterns of the d-Ti3C2Tx MXene, DM composite, DM/CNF, DM2@CNF1 and DM3@CNF2 composite films before and after annealing. (b) FTIR spectra of the CNF, d-Ti3C2Tx MXene, DM/CNF and DM2@CNF1 composite films. (c) TG curves of the CNF, d-Ti3C2Tx MXene, DM, DM/CNF, DM2@CNF1 and DM3@CNF2 composite films.
Fig.4  The cross-sectional SEM images of (a) DM/CNF, (b) DM2@CNF1, (c) aDM2@CNF1 composite films, and (d) the cross-sectional SEM morphology and elemental mapping images of DM3@CNF2 composite film.
Fig.5  (a) The tensile stress-strain curves and (b) tensile strength and toughness of the Ti3C2Tx MXene, CNF films, DM composite, DM/CNF, DM2@CNF1 and DM3@CNF2 composite films before and after annealing, the cross-sectional SEM micrographs of the fracture surfaces of the (c) DM/CNF and (d) DM3@CNF2 films, and (e) the schematic illustration of the fracture mechanism of the multilayered DM3@CNF2 film.
Fig.6  (a) The electrical conductivity and (b) the digital images of LED light of Ti3C2Tx MXene, DM, DM/CNF, DM2@CNF1 and DM3@CNF2 films before and after annealing, and (c) the electrical resistance variation of aDM3@CNF2 composite film with a bending test.
Fig.7  (a) The EMI shielding performance, (b) the average EMI shielding effectiveness (SET), microwave absorption (SEA) and microwave reflection (SER) values, and (c) the R?A coefficients of DM/CNF, DM2@CNF1 and DM3@CNF2 composite films before and after annealing. (d) The SSE/t as a function of thickness compared with previous reports, and (e) schematic illustration of the electromagnetic wave transfer across the multilayered DM@CNF composite films.
1 Shahzad F.Iqbal A.Kim H.M. Koo C., 2D transition metal carbides (MXenes): Applications as an electrically conducting material, Adv. Mater. 32(51), 2002159 (2020)
2 W. Jiang D. , Murugadoss V. , Wang Y. , Lin J. , Ding T. , C. Wang Z. , Shao Q. , Wang C. , Liu H. , Lu N. , B. Wei R. , Subramania A. , H. Guo Z. . Electromagnetic interference shielding polymers and nanocomposites - A review. Polym. Rev. (Phila. Pa. ), 2019, 59(2): 280
https://doi.org/10.1080/15583724.2018.1546737
3 Xiang C. , H. Guo R. , J. Lin S. , X. Jiang S. , W. Lan J. , Wang C. , Cui C. , Y. Xiao H. , Zhang Y. . Lightweight and ultrathin TiO2-Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J., 2019, 360: 1158
https://doi.org/10.1016/j.cej.2018.10.174
4 T. Liu R. , Miao M. , H. Li Y. , F. Zhang J. , M. Cao S. , Feng X. . Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2018, 10(51): 44787
https://doi.org/10.1021/acsami.8b18347
5 Abbasi H. , Antunes M. , I. Velasco J. . Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci., 2019, 103: 319
https://doi.org/10.1016/j.pmatsci.2019.02.003
6 Hu M. , Zhang N. , Shan G. , Gao J. , Liu J. , K. Y. Li R. . Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13(4): 138113
https://doi.org/10.1007/s11467-018-0809-8
7 Li X. , C. Shan G. , G. Ma R. , H. Shek C. , B. Zhao H. , Ramakrishna S. . Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications. Front. Phys., 2022, 17(6): 63501
https://doi.org/10.1007/s11467-022-1181-2
8 Liu B.Y. Qian L.L. Zhao Y.W. Zhang Y.Liu F.Zhang Y.Q. Xie Y.Z. Shi W., A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects, Front. Phys. 17(5), 53501 (2022)
9 Wen B. , S. Cao M. , M. Lu M. , Q. Cao W. , L. Shi H. , Liu J. , X. Wang X. , B. Jin H. , Y. Fang X. , Z. Wang W. , Yuan J. . Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater., 2014, 26(21): 3484
https://doi.org/10.1002/adma.201400108
10 Shen B. , T. Zhai W. , G. Zheng W. . Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater., 2014, 24(28): 4542
https://doi.org/10.1002/adfm.201400079
11 Han Y. , Zhong H. , Liu N. , X. Liu Y. , Lin J. , Jin P. . In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding. Adv. Electron. Mater., 2018, 4(11): 1800156
https://doi.org/10.1002/aelm.201800156
12 Z. Feng Y. , Wang B. , W. Li X. , S. Ye Y. , M. Ma J. , T. Liu C. , P. Zhou X. , L. Xie X. . Enhancing thermal oxidation and fire resistance of reduced graphene oxide by phosphorus and nitrogen co-doping: Mechanism and kinetic analysis. Carbon, 2019, 146: 650
https://doi.org/10.1016/j.carbon.2019.01.099
13 Z. Feng Y. , J. Han G. , Wang B. , P. Zhou X. , M. Ma J. , S. Ye Y. , T. Liu C. , L. Xie X. . Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chem. Eng. J., 2020, 379: 122402
https://doi.org/10.1016/j.cej.2019.122402
14 F. Meng X. , H. Li D. , Q. Shen X. , Liu W. . Preparation and magnetic properties of nano-Ni coated cenosphere composites. Appl. Surf. Sci., 2010, 256(12): 3753
https://doi.org/10.1016/j.apsusc.2010.01.019
15 L. Song W. , T. Guan X. , Z. Fan L. , Q. Cao W. , Y. Wang C. , L. Zhao Q. , S. Cao M. . Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A, 2015, 3(5): 2097
https://doi.org/10.1039/C4TA05939E
16 S. Novoselov K. , V. Andreeva D. , C. Ren W. , C. Shan G. . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
https://doi.org/10.1007/s11467-018-0835-6
17 C. Wang Y. , H. Yao L. , Zheng Q. , S. Cao M. . Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res., 2022, 15(7): 6751
https://doi.org/10.1007/s12274-022-4428-x
18 S. Cao M. , L. Song W. , L. Hou Z. , Wen B. , Yuan J. . The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48(3): 788
https://doi.org/10.1016/j.carbon.2009.10.028
19 H. Yao L. , Q. Cao W. , G. Zhao J. , Zheng Q. , C. Wang Y. , Jiang S. , L. Pan Q. , Song J. , Q. Zhu Y. , S. Cao M. . Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J. Mater. Sci. Technol., 2022, 127: 48
https://doi.org/10.1016/j.jmst.2022.04.010
20 C. Jia L. , Q. Zhang G. , Xu L. , J. Sun W. , J. Zhong G. , Lei J. , X. Yan D. , M. Li Z. . Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2019, 11(1): 1680
https://doi.org/10.1021/acsami.8b18459
21 C. Jia L. , G. Zhou C. , J. Sun W. , Xu L. , X. Yan D. , M. Li Z. . Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem. Eng. J., 2020, 384: 123368
https://doi.org/10.1016/j.cej.2019.123368
22 C. Jia L. , Q. Ding K. , J. Ma R. , L. Wang H. , J. Sun W. , X. Yan D. , Li B. , M. Li Z. . Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol., 2019, 4(2): 1800503
https://doi.org/10.1002/admt.201800503
23 M. Weng G. , Y. Li J. , Alhabeb M. , Karpovich C. , Wang H. , Lipton J. , Maleski K. , Kong J. , Shaulsky E. , Elimelech M. , Gogotsi Y. , D. Taylor A. . Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater., 2018, 28(44): 1803360
https://doi.org/10.1002/adfm.201803360
24 Crespo M. , González M. , L. Elías A. , Pulickal Rajukumar L. , Baselga J. , Terrones M. , Pozuelo J. . Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi Rapid Res. Lett., 2014, 8(8): 698
https://doi.org/10.1002/pssr.201409151
25 Li Z. , Yu L. , Milligan C. , Ma T. , Zhou L. , R. Cui Y. , Y. Qi Z. , Libretto N. , Xu B. , W. Luo J. , Z. Shi E. , W. Wu Z. , L. Xin H. , N. Delgass W. , T. Miller J. , Wu Y. . Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun., 2018, 9(1): 5258
https://doi.org/10.1038/s41467-018-07502-5
26 R. Lukatskaya M. , Kota S. , F. Lin Z. , Q. Zhao M. , Shpigel N. , D. Levi M. , Halim J. , L. Taberna P. , Barsoum M. , Simon P. , Gogotsi Y. . Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy, 2017, 2(8): 17105
https://doi.org/10.1038/nenergy.2017.105
27 Anasori B.R. Lukatskaya M.Gogotsi Y., 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)
28 Lin H. , Chen Y. , L. Shi J. . Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. (Weinh.), 2018, 5(10): 1800518
https://doi.org/10.1002/advs.201800518
29 Carey M. , W. Barsoum M. . MXene polymer nanocomposites: A review. Mater. Today Adv., 2021, 9: 100120
https://doi.org/10.1016/j.mtadv.2020.100120
30 Z. Zhang J. , Kong N. , Uzun S. , Levitt A. , Seyedin S. , A. Lynch P. , Qin S. , K. Han M. , R. Yang W. , Q. Liu J. , G. Wang X. , Gogotsi Y. , M. Razal J. . Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater., 2020, 32(23): 2001093
https://doi.org/10.1002/adma.202001093
31 Naguib M. , Mashtalir O. , Carle J. , Presser V. , Lu J. , Hultman L. , Gogotsi Y. , W. Barsoum M. . Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322
https://doi.org/10.1021/nn204153h
32 Zhan C. , Naguib M. , Lukatskaya M. , R. C. Kent P. , Gogotsi Y. , E. Jiang D. . Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett., 2018, 9(6): 1223
https://doi.org/10.1021/acs.jpclett.8b00200
33 C. Lei J. , Zhang X. , Zhou Z. . Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10(3): 276
https://doi.org/10.1007/s11467-015-0493-x
34 Liu J. , B. Zhang H. , H. Sun R. , F. Liu Y. , S. Liu Z. , G. Zhou A. , Z. Yu Z. . Hydrophobic, flexible, and lightweight MXene Foams for high-performance electromagnetic-interference shielding. Adv. Mater., 2017, 29(38): 1702367
https://doi.org/10.1002/adma.201702367
35 L. Ma Z. , L. Kang S. , Z. Ma J. , Shao L. , L. Zhang Y. , Liu C. , J. Wei A. , L. Xiang X. , F. Wei L. , W. Gu J. . Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano, 2020, 14(7): 8368
https://doi.org/10.1021/acsnano.0c02401
36 Shahzad F. , Alhabeb M. , B. Hatter C. , Anasori B. , Man Hong S. , M. Koo C. , Gogotsi Y. . Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137
https://doi.org/10.1126/science.aag2421
37 Mashtalir O. , Naguib M. , N. Mochalin V. , Dall’Agnese Y. , Heon M. , W. Barsoum M. , Gogotsi Y. . Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun., 2013, 4(1): 1716
https://doi.org/10.1038/ncomms2664
38 Akuzum B. , Maleski K. , Anasori B. , Lelyukh P. , J. Alvarez N. , C. Kumbur E. , Gogotsi Y. . Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes. ACS Nano, 2018, 12(3): 2685
https://doi.org/10.1021/acsnano.7b08889
39 J. Wan Y. , M. Li X. , L. Zhu P. , Sun R. , P. Wong C. , H. Liao W. . Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf., 2020, 130: 105764
https://doi.org/10.1016/j.compositesa.2020.105764
40 Z. Huang H. , F. Sha X. , Cui Y. , Y. Sun S. , Y. Huang H. , Y. He Z. , Y. Liu M. , G. Zhou N. , Y. Zhang X. , Wei Y. . Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. J. Colloid Interface Sci., 2020, 567: 190
https://doi.org/10.1016/j.jcis.2020.02.015
41 Y. Yang L.Cui J.Zhang L.R. Xu X.Chen X.P. Sun D., A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film, Adv. Funct. Mater. 31(27), 2101378 (2021)
42 T. Cao W. , Ma C. , Tan S. , G. Ma M. , B. Wan P. , Chen F. . Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett., 2019, 11(1): 72
https://doi.org/10.1007/s40820-019-0304-y
43 H. Chen J. , K. Xu J. , Wang K. , R. Qian X. , C. Sun R. . Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces, 2015, 7(28): 15641
https://doi.org/10.1021/acsami.5b04462
44 Q. Zhang L. , G. Yang S. , Li L. , Yang B. , D. Huang H. , X. Yan D. , J. Zhong G. , Xu L. , M. Li Z. . Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2019, 11(2): 2559
https://doi.org/10.1021/acsami.8b21940
45 T. Cao W. , F. Chen F. , J. Zhu Y. , G. Zhang Y. , Y. Jiang Y. , G. Ma M. , Chen F. . Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583
https://doi.org/10.1021/acsnano.8b00997
46 L. Hart J. , Hantanasirisakul K. , C. Lang A. , Anasori B. , Pinto D. , Pivak Y. , T. van Omme J. , J. May S. , Gogotsi Y. , L. Taheri M. . Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun., 2019, 10(1): 522
https://doi.org/10.1038/s41467-018-08169-8
47 S. Lee G. , Yun T. , Kim H. , H. Kim I. , Choi J. , H. Lee S. , J. Lee H. , S. Hwang H. , G. Kim J. , W. Kim D. , M. Lee H. , M. Koo C. , O. Kim S. . Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722
https://doi.org/10.1021/acsnano.0c04411
48 Alhabeb M. , Maleski K. , Anasori B. , Lelyukh P. , Clark L. , Sin S. , Gogotsi Y. . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29(18): 7633
https://doi.org/10.1021/acs.chemmater.7b02847
49 Zhou B. , Zhang Z. , L. Li Y. , J. Han G. , Z. Feng Y. , Wang B. , B. Zhang D. , M. Ma J. , T. Liu C. . Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces, 2020, 12(4): 4895
https://doi.org/10.1021/acsami.9b19768
50 Z. Bao W. , Tang X. , Guo X. , Choi S. , Y. Wang C. , Gogotsi Y. , X. Wang G. . Porous cryo-dried MXene for efficient capacitive deionization. Joule, 2018, 2(4): 778
https://doi.org/10.1016/j.joule.2018.02.018
51 W. Fu J. , H. Chen Z. , H. Wang M. , J. Liu S. , H. Zhang J. , N. Zhang J. , P. Han R. , Xu Q. . Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J., 2015, 259: 53
https://doi.org/10.1016/j.cej.2014.07.101
52 Zhang Y. , H. Cheng W. , X. Tian W. , Y. Lu J. , Song L. , M. Liew K. , B. Wang B. , Hu Y. . Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces, 2020, 12(5): 6371
https://doi.org/10.1021/acsami.9b18750
53 H. Zhou Z. , C. Song Q. , X. Huang B. , Y. Feng S. , H. Lu C. . Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano, 2021, 15(7): 12405
https://doi.org/10.1021/acsnano.1c04526
54 F. Zhao X. , E. Holta D. , Y. Tan Z. , H. Oh J. , J. Echols I. , Anas M. , X. Cao H. , L. Lutkenhaus J. , Radovic M. , J. Green M. . Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings. ACS Appl. Nano Mater., 2020, 3(11): 10578
https://doi.org/10.1021/acsanm.0c02473
55 J. Wan Y. , L. Zhu P. , H. Yu S. , Sun R. , P. Wong C. , H. Liao W. . Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small, 2018, 14(27): 1800534
https://doi.org/10.1002/smll.201800534
56 H. Ryu S. , K. Han Y. , J. Kwon S. , Kim T. , M. Jung B. , B. Lee S. , Park B. . Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J., 2022, 428: 131167
https://doi.org/10.1016/j.cej.2021.131167
57 Feng L. , Zuo Y. , He X. , J. Hou X. , G. Fu Q. , J. Li H. , Song Q. . Development of light cellular carbon nanotube@graphene/carbon nanocomposites with effective mechanical and EMI shielding performance. Carbon, 2020, 168: 719
https://doi.org/10.1016/j.carbon.2020.07.032
58 T. Liu R. , Miao M. , H. Li Y. , F. Zhang J. , M. Cao S. , Feng X. . Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2018, 10(51): 44787
https://doi.org/10.1021/acsami.8b18347
59 S. Li R. , Ding L. , Gao Q. , M. Zhang H. , Zeng D. , A. Zhao B. , B. Fan B. , Zhang R. . Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J., 2021, 415: 128930
https://doi.org/10.1016/j.cej.2021.128930
60 S. Liu Z. , Zhang Y. , B. Zhang H. , Dai Y. , Liu J. , F. Li X. , Z. Yu Z. . Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C, 2020, 8(5): 1673
https://doi.org/10.1039/C9TC06304H
[1] fop-21234-OF-sabaisheng_suppl_1 Download
[2] fop-21234-OF-sabaisheng_suppl_2 Video  
[1] Yule Zhang, Feng Zhang, Bowen Du, Hualong Chen, S. Wageh, Omar A. Al-Hartomy, Abdullah G. Al-Sehemi, Bin Zhang, Han Zhang. Au/MXene based ultrafast all-optical switching[J]. Front. Phys. , 2023, 18(3): 33301-.
[2] Jing Zhang, Zixiang Cui, Jie Liu, Chunjie Li, Haoyi Tan, Guangcun Shan, Ruguang Ma. Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond[J]. Front. Phys. , 2023, 18(1): 13603-.
[3] Xin Li, Guangcun Shan, Ruguang Ma, Chan-Hung Shek, Hongbin Zhao, Seeram Ramakrishna. Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications[J]. Front. Phys. , 2022, 17(6): 63501-.
[4] Bo Liu, Liyu Qian, Yanliang Zhao, Yiwen Zhang, Feng Liu, Yi Zhang, Yiqun Xie, Wangzhou Shi. A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects[J]. Front. Phys. , 2022, 17(5): 53501-.
[5] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[6] Yue Xin, Qiao Shi, Ke Xu, Zhi-Sen Zhang, Jian-Yang Wu. Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability[J]. Front. Phys. , 2021, 16(3): 33504-.
[7] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[8] Run-Sen Zhang, Jin-Wu Jiang. The art of designing carbon allotropes[J]. Front. Phys. , 2019, 14(1): 13401-.
[9] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[10] Hao Yuan, Zhenyu Li. Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures[J]. Front. Phys. , 2018, 13(3): 138103-.
[11] Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang. First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb[J]. Front. Phys. , 2015, 10(4): 107101-.
[12] Lei Jin-Cheng(雷进程), Zhang Xu(张旭), Zhou Zhen(周震). Recent advances in MXene: Preparation, properties, and applications[J]. Front. Phys. , 2015, 10(3): 107303-.
[13] Xiao-qing Li (李晓庆), Ji-jun Zhao (赵纪军), Jing-cheng Xu (徐京城). Mechanical properties of bcc Fe–Cr alloys by first-principles simulations[J]. Front. Phys. , 2012, 7(3): 360-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed