Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 63501    https://doi.org/10.1007/s11467-022-1181-2
RESEARCH ARTICLE
Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications
Xin Li1,2, Guangcun Shan1,2(), Ruguang Ma2,4, Chan-Hung Shek2, Hongbin Zhao3(), Seeram Ramakrishna5
1. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
2. Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
3. State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing 100088, China
4. Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
5. Department of Mechanical Engineering & Circular Economy Taskforce, National University of Singapore, Singapore 119077, Singapore
 Download: PDF(4421 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MXene-based hydrogels have drawn considerable attention as flexible and wearable sensors. However, the application of MXene-based hydrogels after sensing failure has rarely been investigated, which is of great significance for expanding their engineering application. In this work, multifunctional mineral MXene hydrogels (MMHs) were synthesized via a simple method inspired by biomineralization. The prepared MMHs were stretchable, self-healable and conductive, and can be used to fabricate wearable tensile strain sensors showing a super-wide sensing range with excellent sensitivity. MMHs-based strain sensors were designed to be directly attached to the skin surface to detect tiny and large human motions. In addition, with the advantages of a large specific area, excellent hydrophilicity and abundant active adsorption sites for MXene nanosheets and hydrogels, dehydrated MMHs were used as highly efficient adsorbents for the removal of strontium ions from aqueous solutions. This work shows the great potential of MXene in promoting the development of next-generation functional materials.

Keywords MXene      hydrogel      flexible sensor      adsorption     
Corresponding Author(s): Guangcun Shan,Hongbin Zhao   
Issue Date: 15 July 2022
 Cite this article:   
Xin Li,Guangcun Shan,Ruguang Ma, et al. Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications[J]. Front. Phys. , 2022, 17(6): 63501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1181-2
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/63501
Fig.1  (a) Schematic illustration of the microstructure of MMHs. (b) SEM image of freeze-dried MMHs sample. (c) FT-IR spectra of PAA, ACC-PAA and MMHs. (d) XPS survey spectra of MMHs. (e) MMHs were manipulated into different kinds of shapes.
Fig.2  MMHs-based tensile strain sensors and their performance. (a) Illustration of the sandwich structure of the MMHs-based strain sensor. The inset is an optical image of the sandwich strain sensor with two silver wires as electrodes. (b, c) Real-time relative resistance variation response of the sandwich strain sensor under different strain magnitude with a constant frequency of 0.05 Hz. The insets show the relative response versus strain. (d) The relative resistance variation response of the sandwich strain sensor under different strain frequencies with a constant strain magnitude of 50%. (e) Schematic of the fabrication method of the fiber strain sensor. The inset is an optical image of the fiber strain sensor with two silver wires as electrodes. (f) The relative resistance variation responses of the fiber strain sensor under strain with a magnitude of 50% and a frequency of 0.05 Hz.
Fig.3  Using flexible and wearable MMHs-based sandwich strain sensor to monitor various human motions. (a?c) Real-time relative resistance variation waveform corresponding to elbow bending with different angles, finger and knee joint bending, respectively. The insets show where the strain sensor was attached. (d) Real-time relative resistance variation waveform in response to swallowing.
Fig.4  Batch adsorption of Sr2+ ions onto the MMHs dried naturally. (a) Effects of contact time on the removal efficiency. (b) The time-dependent sorption pseudo-first-order kinetic plots.
Pseudo-first-order model Pseudo-second-order model
k1 (min?1) qe (mg/g) R2 k2 (g·mg?1·min?1) qe (mg/g) R2
0.0477 8.3782 0.9976 0.0147 8.7032 0.9969
Tab.1  Kinetic parameters for Sr2+ adsorption onto MMHs described by the pseudo-first-order and pseudo-second-order models.
1 Nudelman F. , A. J. M. Sommerdijk N. . Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed., 2012, 51( 27): 6582
https://doi.org/10.1002/anie.201106715
2 A. Meyers M. , McKittrick J. , Y. Chen P. . Structural biological materials: Critical mechanics-materials connections. Science, 2013, 339( 6121): 773
https://doi.org/10.1126/science.1220854
3 Addadi L. , Raz S. , Weiner S. . Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater., 2003, 15( 12): 959
https://doi.org/10.1002/adma.200300381
4 Weiner S. , Mahamid J. , Politi Y. , Ma Y. , Addadi L. . Overview of the amorphous precursor phase strategy in biomineralization. Front. Mater. Sci. China, 2009, 3( 2): 104
https://doi.org/10.1007/s11706-009-0036-x
5 Sun S. , B. Mao L. , Lei Z. , H. Yu S. , Cölfen H. . Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for “mineral plastics”. Angew. Chem. Int. Ed., 2016, 55( 39): 11765
https://doi.org/10.1002/anie.201602849
6 Y. Lee K. , J. Mooney D. . Hydrogels for tissue engineering. Chem. Rev., 2001, 101( 7): 1869
https://doi.org/10.1021/cr000108x
7 Buenger D. , Topuz F. , Groll J. . Hydrogels in sensing applications. Prog. Polym. Sci., 2012, 37( 12): 1678
https://doi.org/10.1016/j.progpolymsci.2012.09.001
8 S. Zhang Y. , Khademhosseini A. . Advances in engineering hydrogels. Science, 2017, 356( 6337): eaaf3627
https://doi.org/10.1126/science.aaf3627
9 Tai Y. Mulle M. Aguilar Ventura I. Lubineau G., A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres, Nanoscale 7(35), 14766 ( 2015)
10 Lei Z. Wang Q. Sun S. Zhu W. Wu P., A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing, Adv. Mater. 29(22), 1700321 ( 2017)
11 Lin S. , Zhong Y. , Zhao X. , Sawada T. , Li X. , Lei W. , Wang M. , Serizawa T. , Zhu H. . Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization-inspired process. Adv. Mater., 2018, 30( 34): 1803004
https://doi.org/10.1002/adma.201803004
12 Zhang H. , Guo J. , Wang Y. , Sun L. , Zhao Y. . Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv. Sci. (Weinh. ), 2021, 8( 20): 2102156
https://doi.org/10.1002/advs.202102156
13 Li C. . Towards conductive hydrogels in E-skins: A review on rational design and recent developments. RSC Advances, 2021, 11( 54): 33835
https://doi.org/10.1039/D1RA04573C
14 Li W. , Gao F. , Wang X. , Zhang N. , Ma M. . Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem., 2016, 128( 32): 9342
https://doi.org/10.1002/ange.201603417
15 Zeng J. , Dong L. , Sha W. , Wei L. , Guo X. . Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem. Eng. J., 2020, 383 : 123098
https://doi.org/10.1016/j.cej.2019.123098
16 Chang C. , Chen W. , Chen Y. , Chen Y. , Chen Y. . et al.. Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin., 2021, 37( 12): 2108017
https://doi.org/10.3866/PKU.WHXB202108017
17 Jin-Cheng L. , Xu Z. , Zhen Z. . Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10 : 3
18 Qin R. , Li X. , Hu M. , Shan G. , Seeram R. , Yin M. . Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens. Actuators A Phys., 2022, 338 : 113458
https://doi.org/10.1016/j.sna.2022.113458
19 Qin R. , Shan G. , Hu M. , Huang W. . Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys., 2021, 21 : 100527
https://doi.org/10.1016/j.mtphys.2021.100527
20 Zhao Q. Jiang Y. Duan Z. Yuan Z. Zha J. Wu Z. Huang Q. Zhou Z. Li H. He F. Su Y. Tan C. Tai H., A Nb2CT x/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing , Chem. Eng. J. 438, 135588 ( 2022)
21 R. Lukatskaya M. , Kota S. , Lin Z. , Q. Zhao M. , Shpigel N. , D. Levi M. , Halim J. , L. Taberna P. , W. Barsoum M. , Simon P. , Gogotsi Y. . Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy, 2017, 2( 8): 17105
https://doi.org/10.1038/nenergy.2017.105
22 Hu M. , Zhang N. , Shan G. , Gao J. , Liu J. , K. Y. Li R. . Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13( 4): 138113
https://doi.org/10.1007/s11467-018-0809-8
23 Naguib M. , Kurtoglu M. , Presser V. , Lu J. , Niu J. , Heon M. , Hultman L. , Gogotsi Y. , W. Barsoum M. . Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23( 37): 4248
https://doi.org/10.1002/adma.201102306
24 Zhang Y.-Z. , K. El-Demellawi J. , Jiang Q. , Ge G. , Liang H. , Lee K. , Dong X. , N. Alshareef H. . MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev., 2020, 49 : 7229
https://doi.org/10.1039/D0CS00022A
25 H. Lee K. , Z. Zhang Y. , Kim H. , Lei Y. , Hong S. , Wustoni S. , Hama A. , Inal S. , N. Alshareef H. . Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods, 2021, 5( 12): 2100819
https://doi.org/10.1002/smtd.202100819
26 Zhang Y. , Chen K. , Li Y. , Lan J. , Yan B. , Shi L. , Ran R. . MXene-containing composite hydrogel as a smart compression sensor. ACS Appl. Mater. Interfaces, 2019, 11( 50): 47350
https://doi.org/10.1021/acsami.9b16078
27 Cai Y. , Shen J. , W. Yang C. , Wan Y. , L. Tang H. , A. Aljarb A. , Chen C. , H. Fu J. , Wei X. , W. Huang K. , Han Y. , J. Jonas S. , Dong X. , Tung V. . Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv., 2020, 6( 48): eabb5367
https://doi.org/10.1126/sciadv.abb5367
28 Z. Zhang Y. , H. Lee K. , H. Anjum D. , Sougrat R. , Jiang Q. , Kim H. , N. Alshareef H. . MXenes stretch hydrogel sensor performance to new limits. Sci. Adv., 2018, 4( 6): eaat0098
https://doi.org/10.1126/sciadv.aat0098
29 Huang J. , Huang X. , Wu P. . One stone for three birds: One-step engineering highly elastic and conductive hydrogel electronics with multilayer MXene as initiator, crosslinker and conductive filler simultaneously. Chem. Eng. J., 2022, 428 : 132515
https://doi.org/10.1016/j.cej.2021.132515
30 K. Hwang S. , M. Kang S. , Rethinasabapathy M. , Roh C. , S. Huh Y. . MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J., 2020, 397 : 125428
https://doi.org/10.1016/j.cej.2020.125428
31 Wang L. , Tao W. , Yuan L. , Liu Z. , Huang Q. , Chai Z. , K. Gibson J. , Shi W. . Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. (Camb. ), 2017, 53( 89): 12084
https://doi.org/10.1039/C7CC06740B
32 M. Jun B. , M. Park C. , Heo J. , Yoon Y. . Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater. J. Environ. Manage., 2020, 256 : 109940
https://doi.org/10.1016/j.jenvman.2019.109940
33 Li S. , Wang L. , Peng J. , Zhai M. , Shi W. . Efficient thorium (IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chem. Eng. J., 2019, 366 : 192
https://doi.org/10.1016/j.cej.2019.02.056
34 Khan M. M. C. Lo I., A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives, Water Res. 106, 259 ( 2016)
35 Zhao C. , Hu L. , Zhang C. , Wang S. , Wang X. , Huo Z. . Preparation of biochar-interpenetrated iron-alginate hydrogel as a PH-independent sorbent for removal of Cr(VI) and Pb(II). Environ. Pollut., 2021, 287 : 117303
https://doi.org/10.1016/j.envpol.2021.117303
36 Wang Z. , T. Li T. , K. Peng H. , T. Ren H. , W. Lou C. , H. Lin J. . Low-cost hydrogel adsorbent enhanced by trihydroxy melamine and β-cyclodextrin for the removal of Pb(II) and Ni(II) in water. J. Hazard. Mater., 2021, 411 : 125029
https://doi.org/10.1016/j.jhazmat.2020.125029
37 Mittal H. , Al Alili A. , M. Alhassan S. . Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites. Microporous Mesoporous Mater., 2020, 299 : 110106
https://doi.org/10.1016/j.micromeso.2020.110106
38 Van Tran V. , Park D. , C. Lee Y. . Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. Int., 2018, 25( 25): 24569
https://doi.org/10.1007/s11356-018-2605-y
39 Le Flem M. , Liu X. , Doriot S. , Cozzika T. , Monnet I. . Irradiation damage in Ti3(Si, Al)C2: A TEM investigation. Int. J. Appl. Ceram. Technol., 2010, 7( 6): 766
https://doi.org/10.1111/j.1744-7402.2010.02523.x
40 Wang C. , Yang T. , Kong S. , Xiao J. , Xue J. , Wang Q. , Hu C. , Huang Q. , Wang Y. . Effects of He irradiation on Ti3AlC2: Damage evolution and behavior of He bubbles. J. Nucl. Mater., 2013, 440( 1-3): 606
https://doi.org/10.1016/j.jnucmat.2013.04.070
41 Liu H. , Chen X. , Zheng Y. , Zhang D. , Zhao Y. , Wang C. , Pan C. , Liu C. , Shen C. . Lightweight, superelastic, and hydrophobic polyimide nanofiber/ MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater., 2021, 31( 13): 2008006
https://doi.org/10.1002/adfm.202008006
42 Tian M. Chen X. Sun S. Yang D. Wu P., A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery, Nano Res. 12(5), 1121 ( 2019)
43 Yan J. , Zhu J. , Cui M. , Zhang J. , Ma F. , Su Y. , Han X. . Multifunctional mineral hydrogels: Potential in artificially intelligent skins and drug delivery. ACS Omega, 2019, 4( 21): 19145
https://doi.org/10.1021/acsomega.9b02435
44 Gebauer D. , N. Gunawidjaja P. , Y. P. Ko J. , Bacsik Z. , Aziz B. , Liu L. , Hu Y. , Bergström L. , W. Tai C. , K. Sham T. , Edén M. , Hedin N. . Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew. Chem. Int. Ed., 2010, 49( 47): 8889
https://doi.org/10.1002/anie.201003220
45 Li J. , Qin R. , Yan L. , Chi Z. , Yu Z. , Li N. , Hu M. , Chen H. , Shan G. . Plasmonic light illumination creates a channel to achieve fast degradation of Ti3C2Tx nanosheets. Inorg. Chem., 2019, 58( 11): 7285
https://doi.org/10.1021/acs.inorgchem.9b00329
46 Cai G. , Wang J. , Qian K. , Chen J. , Li S. , S. Lee P. . Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. (Weinh.), 2017, 4( 2): 1600190
https://doi.org/10.1002/advs.201600190
47 Lin S. , Zhao X. , Jiang X. , Wu A. , Ding H. , Zhong Y. , Li J. , Pan J. , Liu B. , Zhu H. . Highly stretchable, adaptable, and durable strain sensing based on a bioinspired dynamically cross-linked graphene/polymer composite. Small, 2019, 15( 19): 1900848
https://doi.org/10.1002/smll.201900848
48 J. Liu Y. , T. Cao W. , G. Ma M. , Wan P. . Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl. Mater. Interfaces, 2017, 9( 30): 25559
https://doi.org/10.1021/acsami.7b07639
49 Lee S. , Kim J. , Yun I. , Y. Bae G. , Kim D. , Park S. , M. Yi I. , Moon W. , Chung Y. , Cho K. . An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun., 2019, 10( 1): 2468
https://doi.org/10.1038/s41467-019-10465-w
50 H. Jung Y. , K. Hong S. , S. Wang H. , H. Han J. , X. Pham T. , Park H. , Kim J. , Kang S. , D. Yoo C. , J. Lee K. . Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater., 2020, 32( 35): 1904020
https://doi.org/10.1002/adma.201904020
51 Qin R. Hu M. Li X. Liang T. Tan H. Liu J. Shan G., A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor, Microsyst. Nanoeng. 7(1), 100 ( 2021)
52 P. Simonin J. . On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J., 2016, 300 : 254
https://doi.org/10.1016/j.cej.2016.04.079
53 Liang J. , Li J. , Li X. , Liu K. , Wu L. , Shan G. . The sorption behavior of CHA-type zeolite for removing radioactive strontium from aqueous solutions. Separ. Purif. Tech., 2020, 230 : 115874
https://doi.org/10.1016/j.seppur.2019.115874
54 J. Coleman N. , S. Brassington D. , Raza A. , P. Mendham A. . Sorption of Co2+ and Sr2+ by waste-derived 11 Å tobermorite. Waste Manag., 2006, 26( 3): 260
https://doi.org/10.1016/j.wasman.2005.01.019
[1] Yule Zhang, Feng Zhang, Bowen Du, Hualong Chen, S. Wageh, Omar A. Al-Hartomy, Abdullah G. Al-Sehemi, Bin Zhang, Han Zhang. Au/MXene based ultrafast all-optical switching[J]. Front. Phys. , 2023, 18(3): 33301-.
[2] Qiugang Liao, Hao Liu, Ziqiang Chen, Yinggan Zhang, Rui Xiong, Zhou Cui, Cuilian Wen, Baisheng Sa. Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance[J]. Front. Phys. , 2023, 18(3): 33300-.
[3] Jing Zhang, Zixiang Cui, Jie Liu, Chunjie Li, Haoyi Tan, Guangcun Shan, Ruguang Ma. Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond[J]. Front. Phys. , 2023, 18(1): 13603-.
[4] Bo Liu, Liyu Qian, Yanliang Zhao, Yiwen Zhang, Feng Liu, Yi Zhang, Yiqun Xie, Wangzhou Shi. A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects[J]. Front. Phys. , 2022, 17(5): 53501-.
[5] Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu. Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products[J]. Front. Phys. , 2021, 16(6): 63500-.
[6] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[7] Chen Yang, Ying Chen, Dan Liu, Jinfeng Wang, Cheng Chen, Jiemin Wang, Ye Fan, Shaoming Huang, Weiwei Lei. Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption[J]. Front. Phys. , 2018, 13(4): 138101-.
[8] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[9] Hao Yuan, Zhenyu Li. Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures[J]. Front. Phys. , 2018, 13(3): 138103-.
[10] Feng-Bin Liu (刘峰斌), Jing-Lin Li (李景林), Wen-Bin Chen (陈文彬), Yan Cui (崔岩), Zhi-Wei Jiao (焦志伟), Hong-Juan Yan (阎红娟), Min Qu (屈敏), Jie-Jian Di (狄杰建). Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study[J]. Front. Phys. , 2016, 11(1): 116804-.
[11] Lei Jin-Cheng(雷进程), Zhang Xu(张旭), Zhou Zhen(周震). Recent advances in MXene: Preparation, properties, and applications[J]. Front. Phys. , 2015, 10(3): 107303-.
[12] Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces[J]. Front. Phys. , 2011, 6(3): 294-308.
[13] Hong ZHANG, Xiao-dong LI, Yong-jian TANG. DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2)[J]. Front. Phys. , 2011, 6(2): 231-235.
[14] Hai-yan HE (何海燕), Bi-cai PAN (潘必才). Studies on structural defects in carbon nanotubes[J]. Front. Phys. , 2009, 4(3): 297-306.
[15] Liang CHEN (陈亮), Cheng-gang ZHOU (周成冈), Jin-ping WU (吴金平), Han-song CHENG (程寒松). Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review[J]. Front. Phys. , 2009, 4(3): 356-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed