|
|
Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications |
Xin Li1,2, Guangcun Shan1,2( ), Ruguang Ma2,4, Chan-Hung Shek2, Hongbin Zhao3( ), Seeram Ramakrishna5 |
1. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China 2. Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China 3. State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing 100088, China 4. Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China 5. Department of Mechanical Engineering & Circular Economy Taskforce, National University of Singapore, Singapore 119077, Singapore |
|
|
Abstract MXene-based hydrogels have drawn considerable attention as flexible and wearable sensors. However, the application of MXene-based hydrogels after sensing failure has rarely been investigated, which is of great significance for expanding their engineering application. In this work, multifunctional mineral MXene hydrogels (MMHs) were synthesized via a simple method inspired by biomineralization. The prepared MMHs were stretchable, self-healable and conductive, and can be used to fabricate wearable tensile strain sensors showing a super-wide sensing range with excellent sensitivity. MMHs-based strain sensors were designed to be directly attached to the skin surface to detect tiny and large human motions. In addition, with the advantages of a large specific area, excellent hydrophilicity and abundant active adsorption sites for MXene nanosheets and hydrogels, dehydrated MMHs were used as highly efficient adsorbents for the removal of strontium ions from aqueous solutions. This work shows the great potential of MXene in promoting the development of next-generation functional materials.
|
Keywords
MXene
hydrogel
flexible sensor
adsorption
|
Corresponding Author(s):
Guangcun Shan,Hongbin Zhao
|
Issue Date: 15 July 2022
|
|
1 |
Nudelman F. , A. J. M. Sommerdijk N. . Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed., 2012, 51( 27): 6582
https://doi.org/10.1002/anie.201106715
|
2 |
A. Meyers M. , McKittrick J. , Y. Chen P. . Structural biological materials: Critical mechanics-materials connections. Science, 2013, 339( 6121): 773
https://doi.org/10.1126/science.1220854
|
3 |
Addadi L. , Raz S. , Weiner S. . Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater., 2003, 15( 12): 959
https://doi.org/10.1002/adma.200300381
|
4 |
Weiner S. , Mahamid J. , Politi Y. , Ma Y. , Addadi L. . Overview of the amorphous precursor phase strategy in biomineralization. Front. Mater. Sci. China, 2009, 3( 2): 104
https://doi.org/10.1007/s11706-009-0036-x
|
5 |
Sun S. , B. Mao L. , Lei Z. , H. Yu S. , Cölfen H. . Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for “mineral plastics”. Angew. Chem. Int. Ed., 2016, 55( 39): 11765
https://doi.org/10.1002/anie.201602849
|
6 |
Y. Lee K. , J. Mooney D. . Hydrogels for tissue engineering. Chem. Rev., 2001, 101( 7): 1869
https://doi.org/10.1021/cr000108x
|
7 |
Buenger D. , Topuz F. , Groll J. . Hydrogels in sensing applications. Prog. Polym. Sci., 2012, 37( 12): 1678
https://doi.org/10.1016/j.progpolymsci.2012.09.001
|
8 |
S. Zhang Y. , Khademhosseini A. . Advances in engineering hydrogels. Science, 2017, 356( 6337): eaaf3627
https://doi.org/10.1126/science.aaf3627
|
9 |
Tai Y. Mulle M. Aguilar Ventura I. Lubineau G., A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres, Nanoscale 7(35), 14766 ( 2015)
|
10 |
Lei Z. Wang Q. Sun S. Zhu W. Wu P., A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing, Adv. Mater. 29(22), 1700321 ( 2017)
|
11 |
Lin S. , Zhong Y. , Zhao X. , Sawada T. , Li X. , Lei W. , Wang M. , Serizawa T. , Zhu H. . Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization-inspired process. Adv. Mater., 2018, 30( 34): 1803004
https://doi.org/10.1002/adma.201803004
|
12 |
Zhang H. , Guo J. , Wang Y. , Sun L. , Zhao Y. . Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv. Sci. (Weinh. ), 2021, 8( 20): 2102156
https://doi.org/10.1002/advs.202102156
|
13 |
Li C. . Towards conductive hydrogels in E-skins: A review on rational design and recent developments. RSC Advances, 2021, 11( 54): 33835
https://doi.org/10.1039/D1RA04573C
|
14 |
Li W. , Gao F. , Wang X. , Zhang N. , Ma M. . Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem., 2016, 128( 32): 9342
https://doi.org/10.1002/ange.201603417
|
15 |
Zeng J. , Dong L. , Sha W. , Wei L. , Guo X. . Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem. Eng. J., 2020, 383 : 123098
https://doi.org/10.1016/j.cej.2019.123098
|
16 |
Chang C. , Chen W. , Chen Y. , Chen Y. , Chen Y. . et al.. Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin., 2021, 37( 12): 2108017
https://doi.org/10.3866/PKU.WHXB202108017
|
17 |
Jin-Cheng L. , Xu Z. , Zhen Z. . Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10 : 3
|
18 |
Qin R. , Li X. , Hu M. , Shan G. , Seeram R. , Yin M. . Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens. Actuators A Phys., 2022, 338 : 113458
https://doi.org/10.1016/j.sna.2022.113458
|
19 |
Qin R. , Shan G. , Hu M. , Huang W. . Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys., 2021, 21 : 100527
https://doi.org/10.1016/j.mtphys.2021.100527
|
20 |
Zhao Q. Jiang Y. Duan Z. Yuan Z. Zha J. Wu Z. Huang Q. Zhou Z. Li H. He F. Su Y. Tan C. Tai H., A Nb2CT x/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing , Chem. Eng. J. 438, 135588 ( 2022)
|
21 |
R. Lukatskaya M. , Kota S. , Lin Z. , Q. Zhao M. , Shpigel N. , D. Levi M. , Halim J. , L. Taberna P. , W. Barsoum M. , Simon P. , Gogotsi Y. . Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy, 2017, 2( 8): 17105
https://doi.org/10.1038/nenergy.2017.105
|
22 |
Hu M. , Zhang N. , Shan G. , Gao J. , Liu J. , K. Y. Li R. . Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13( 4): 138113
https://doi.org/10.1007/s11467-018-0809-8
|
23 |
Naguib M. , Kurtoglu M. , Presser V. , Lu J. , Niu J. , Heon M. , Hultman L. , Gogotsi Y. , W. Barsoum M. . Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23( 37): 4248
https://doi.org/10.1002/adma.201102306
|
24 |
Zhang Y.-Z. , K. El-Demellawi J. , Jiang Q. , Ge G. , Liang H. , Lee K. , Dong X. , N. Alshareef H. . MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev., 2020, 49 : 7229
https://doi.org/10.1039/D0CS00022A
|
25 |
H. Lee K. , Z. Zhang Y. , Kim H. , Lei Y. , Hong S. , Wustoni S. , Hama A. , Inal S. , N. Alshareef H. . Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods, 2021, 5( 12): 2100819
https://doi.org/10.1002/smtd.202100819
|
26 |
Zhang Y. , Chen K. , Li Y. , Lan J. , Yan B. , Shi L. , Ran R. . MXene-containing composite hydrogel as a smart compression sensor. ACS Appl. Mater. Interfaces, 2019, 11( 50): 47350
https://doi.org/10.1021/acsami.9b16078
|
27 |
Cai Y. , Shen J. , W. Yang C. , Wan Y. , L. Tang H. , A. Aljarb A. , Chen C. , H. Fu J. , Wei X. , W. Huang K. , Han Y. , J. Jonas S. , Dong X. , Tung V. . Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv., 2020, 6( 48): eabb5367
https://doi.org/10.1126/sciadv.abb5367
|
28 |
Z. Zhang Y. , H. Lee K. , H. Anjum D. , Sougrat R. , Jiang Q. , Kim H. , N. Alshareef H. . MXenes stretch hydrogel sensor performance to new limits. Sci. Adv., 2018, 4( 6): eaat0098
https://doi.org/10.1126/sciadv.aat0098
|
29 |
Huang J. , Huang X. , Wu P. . One stone for three birds: One-step engineering highly elastic and conductive hydrogel electronics with multilayer MXene as initiator, crosslinker and conductive filler simultaneously. Chem. Eng. J., 2022, 428 : 132515
https://doi.org/10.1016/j.cej.2021.132515
|
30 |
K. Hwang S. , M. Kang S. , Rethinasabapathy M. , Roh C. , S. Huh Y. . MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J., 2020, 397 : 125428
https://doi.org/10.1016/j.cej.2020.125428
|
31 |
Wang L. , Tao W. , Yuan L. , Liu Z. , Huang Q. , Chai Z. , K. Gibson J. , Shi W. . Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. (Camb. ), 2017, 53( 89): 12084
https://doi.org/10.1039/C7CC06740B
|
32 |
M. Jun B. , M. Park C. , Heo J. , Yoon Y. . Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater. J. Environ. Manage., 2020, 256 : 109940
https://doi.org/10.1016/j.jenvman.2019.109940
|
33 |
Li S. , Wang L. , Peng J. , Zhai M. , Shi W. . Efficient thorium (IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chem. Eng. J., 2019, 366 : 192
https://doi.org/10.1016/j.cej.2019.02.056
|
34 |
Khan M. M. C. Lo I., A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives, Water Res. 106, 259 ( 2016)
|
35 |
Zhao C. , Hu L. , Zhang C. , Wang S. , Wang X. , Huo Z. . Preparation of biochar-interpenetrated iron-alginate hydrogel as a PH-independent sorbent for removal of Cr(VI) and Pb(II). Environ. Pollut., 2021, 287 : 117303
https://doi.org/10.1016/j.envpol.2021.117303
|
36 |
Wang Z. , T. Li T. , K. Peng H. , T. Ren H. , W. Lou C. , H. Lin J. . Low-cost hydrogel adsorbent enhanced by trihydroxy melamine and β-cyclodextrin for the removal of Pb(II) and Ni(II) in water. J. Hazard. Mater., 2021, 411 : 125029
https://doi.org/10.1016/j.jhazmat.2020.125029
|
37 |
Mittal H. , Al Alili A. , M. Alhassan S. . Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites. Microporous Mesoporous Mater., 2020, 299 : 110106
https://doi.org/10.1016/j.micromeso.2020.110106
|
38 |
Van Tran V. , Park D. , C. Lee Y. . Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. Int., 2018, 25( 25): 24569
https://doi.org/10.1007/s11356-018-2605-y
|
39 |
Le Flem M. , Liu X. , Doriot S. , Cozzika T. , Monnet I. . Irradiation damage in Ti3(Si, Al)C2: A TEM investigation. Int. J. Appl. Ceram. Technol., 2010, 7( 6): 766
https://doi.org/10.1111/j.1744-7402.2010.02523.x
|
40 |
Wang C. , Yang T. , Kong S. , Xiao J. , Xue J. , Wang Q. , Hu C. , Huang Q. , Wang Y. . Effects of He irradiation on Ti3AlC2: Damage evolution and behavior of He bubbles. J. Nucl. Mater., 2013, 440( 1-3): 606
https://doi.org/10.1016/j.jnucmat.2013.04.070
|
41 |
Liu H. , Chen X. , Zheng Y. , Zhang D. , Zhao Y. , Wang C. , Pan C. , Liu C. , Shen C. . Lightweight, superelastic, and hydrophobic polyimide nanofiber/ MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater., 2021, 31( 13): 2008006
https://doi.org/10.1002/adfm.202008006
|
42 |
Tian M. Chen X. Sun S. Yang D. Wu P., A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery, Nano Res. 12(5), 1121 ( 2019)
|
43 |
Yan J. , Zhu J. , Cui M. , Zhang J. , Ma F. , Su Y. , Han X. . Multifunctional mineral hydrogels: Potential in artificially intelligent skins and drug delivery. ACS Omega, 2019, 4( 21): 19145
https://doi.org/10.1021/acsomega.9b02435
|
44 |
Gebauer D. , N. Gunawidjaja P. , Y. P. Ko J. , Bacsik Z. , Aziz B. , Liu L. , Hu Y. , Bergström L. , W. Tai C. , K. Sham T. , Edén M. , Hedin N. . Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew. Chem. Int. Ed., 2010, 49( 47): 8889
https://doi.org/10.1002/anie.201003220
|
45 |
Li J. , Qin R. , Yan L. , Chi Z. , Yu Z. , Li N. , Hu M. , Chen H. , Shan G. . Plasmonic light illumination creates a channel to achieve fast degradation of Ti3C2Tx nanosheets. Inorg. Chem., 2019, 58( 11): 7285
https://doi.org/10.1021/acs.inorgchem.9b00329
|
46 |
Cai G. , Wang J. , Qian K. , Chen J. , Li S. , S. Lee P. . Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. (Weinh.), 2017, 4( 2): 1600190
https://doi.org/10.1002/advs.201600190
|
47 |
Lin S. , Zhao X. , Jiang X. , Wu A. , Ding H. , Zhong Y. , Li J. , Pan J. , Liu B. , Zhu H. . Highly stretchable, adaptable, and durable strain sensing based on a bioinspired dynamically cross-linked graphene/polymer composite. Small, 2019, 15( 19): 1900848
https://doi.org/10.1002/smll.201900848
|
48 |
J. Liu Y. , T. Cao W. , G. Ma M. , Wan P. . Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl. Mater. Interfaces, 2017, 9( 30): 25559
https://doi.org/10.1021/acsami.7b07639
|
49 |
Lee S. , Kim J. , Yun I. , Y. Bae G. , Kim D. , Park S. , M. Yi I. , Moon W. , Chung Y. , Cho K. . An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun., 2019, 10( 1): 2468
https://doi.org/10.1038/s41467-019-10465-w
|
50 |
H. Jung Y. , K. Hong S. , S. Wang H. , H. Han J. , X. Pham T. , Park H. , Kim J. , Kang S. , D. Yoo C. , J. Lee K. . Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater., 2020, 32( 35): 1904020
https://doi.org/10.1002/adma.201904020
|
51 |
Qin R. Hu M. Li X. Liang T. Tan H. Liu J. Shan G., A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor, Microsyst. Nanoeng. 7(1), 100 ( 2021)
|
52 |
P. Simonin J. . On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J., 2016, 300 : 254
https://doi.org/10.1016/j.cej.2016.04.079
|
53 |
Liang J. , Li J. , Li X. , Liu K. , Wu L. , Shan G. . The sorption behavior of CHA-type zeolite for removing radioactive strontium from aqueous solutions. Separ. Purif. Tech., 2020, 230 : 115874
https://doi.org/10.1016/j.seppur.2019.115874
|
54 |
J. Coleman N. , S. Brassington D. , Raza A. , P. Mendham A. . Sorption of Co2+ and Sr2+ by waste-derived 11 Å tobermorite. Waste Manag., 2006, 26( 3): 260
https://doi.org/10.1016/j.wasman.2005.01.019
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|