|
|
Criticality-based quantum metrology in the presence of decoherence |
Wan-Ting He, Cong-Wei Lu, Yi-Xuan Yao, Hai-Yuan Zhu, Qing Ai( ) |
Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China |
|
|
Abstract Because quantum critical systems are very sensitive to the variation of parameters around the quantum phase transition (QPT), quantum criticality has been presented as an efficient resource for metrology. In this paper, we address the issue whether the divergent feature of the inverted variance is realizable in the presence of noise when approaching the QPT. Taking the quantum Rabi model (QRM) as an example, we obtain the analytical result for the inverted variance with single-photon relaxation. We show that the inverted variance may be convergent in time due to the noise. Since the precision of the metrology is very sensitive to the noise, as a remedy, we propose squeezing the initial state to improve the precision under decoherence. In addition, we also investigate the criticality-based metrology under the influence of the two-photon relaxation. Strikingly, although the maximum inverted variance still manifests a power-law dependence on the energy gap, the exponent is positive and depends on the dimensionless coupling strength. This observation implies that the criticality may not enhance but weaken the precision in the presence of two-photon relaxation, due to the non-linearity introduced by the two-photon relaxation.
|
Keywords
criticality
quantum
metrology
decoherence
|
Corresponding Author(s):
Qing Ai
|
Issue Date: 07 April 2023
|
|
1 |
L. Heugel T. , Biondi M. , Zilberberg O. , Chitra R. . Quantum transducer using a parametric driven-dissipative phase transition. Phys. Rev. Lett., 2019, 123(17): 173601
https://doi.org/10.1103/PhysRevLett.123.173601
|
2 |
Chu Y. , Zhang S. , Yu B. , Cai J. . Dynamic framework for criticality-enhanced quantum sensing. Phys. Rev. Lett., 2021, 126(1): 010502
https://doi.org/10.1103/PhysRevLett.126.010502
|
3 |
M. Rams M. , Sierant P. , Dutta O. , Horodecki P. , Zakrzewski J. . At the limits of criticality-based quantum metrology: Apparent super-Heisenberg scaling revisited. Phys. Rev. X, 2018, 8(2): 021022
https://doi.org/10.1103/PhysRevX.8.021022
|
4 |
Garbe L. , Bina M. , Keller A. , G. A. Paris M. , Felicetti S. . Critical quantum metrology with a finite-component quantum phase transition. Phys. Rev. Lett., 2020, 124(12): 120504
https://doi.org/10.1103/PhysRevLett.124.120504
|
5 |
Felicetti S. , Le Boité A. . Universal spectral features of ultrastrongly coupled systems. Phys. Rev. Lett., 2020, 124(4): 040404
https://doi.org/10.1103/PhysRevLett.124.040404
|
6 |
Ilias T. , Yang D. , F. Huelga S. , B. Plenio M. . Criticality-enhanced quantum sensing via continuous measurement. PRX Quantum, 2022, 3(1): 010354
https://doi.org/10.1103/PRXQuantum.3.010354
|
7 |
Zanardi P. , G. A. Paris M. , C. Venuti L. . Quantum criticality as a resource for quantum estimation. Phys. Rev. A, 2008, 78(4): 042105
https://doi.org/10.1103/PhysRevA.78.042105
|
8 |
Tsang M. . Quantum transition-edge detectors. Phys. Rev. A, 2013, 88(2): 021801
https://doi.org/10.1103/PhysRevA.88.021801
|
9 |
Fernández-Lorenzo S. , Porras D. . Quantum sensing close to a dissipative phase transition: Symmetry breaking and criticality as metrological resources. Phys. Rev. A, 2017, 96(1): 013817
https://doi.org/10.1103/PhysRevA.96.013817
|
10 |
Gietka K. , Metz F. , Keller T. , Li J. . Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied. Quantum, 2021, 5: 489
https://doi.org/10.22331/q-2021-07-01-489
|
11 |
Y. Lü X. , M. Zhang W. , Ashhab S. , Wu Y. , Nori F. . Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep., 2013, 3(1): 2943
https://doi.org/10.1038/srep02943
|
12 |
Sachdev S., Quantum Phase Transitions, Cambridge University Press, UK, 2011
|
13 |
T. Quan H. , Song Z. , F. Liu X. , Zanardi P. , P. Sun C. . Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett., 2006, 96(14): 140604
https://doi.org/10.1103/PhysRevLett.96.140604
|
14 |
Ai Q. , D. Wang Y. , L. Long G. , P. Sun C. . Two mode photon bunching effect as witness of quantum criticality in circuit QED. Sci. China Ser. G, 2009, 52(12): 1898
https://doi.org/10.1007/s11433-009-0274-z
|
15 |
S. Pang S. , N. Jordan A. . Optimal adaptive control for quantum metrology with time-dependent Hamiltonians. Nat. Commun., 2017, 8(1): 14695
https://doi.org/10.1038/ncomms14695
|
16 |
Pang S. , A. Brun T. . Quantum metrology for a general Hamiltonian parameter. Phys. Rev. A, 2014, 90(2): 022117
https://doi.org/10.1103/PhysRevA.90.022117
|
17 |
O. Scully M.S. Zubairy M., Quantum Optics, Cambridge University Press, UK, 1997
|
18 |
J. Hwang M. , Puebla R. , B. Plenio M. . Quantum phase transition and universal dynamics in the Rabi model. Phys. Rev. Lett., 2015, 115(18): 180404
https://doi.org/10.1103/PhysRevLett.115.180404
|
19 |
Puebla R. , J. Hwang M. , Casanova J. , B. Plenio M. . Probing the dynamics of a superradiant quantum phase transition with a single trapped ion. Phys. Rev. Lett., 2017, 118(7): 073001
https://doi.org/10.1103/PhysRevLett.118.073001
|
20 |
S. Pedernales J. , Lizuain I. , Felicetti S. , Romero G. , Lamata L. , Solano E. . Quantum Rabi model with trapped ions. Sci. Rep., 2015, 5(1): 15472
https://doi.org/10.1038/srep15472
|
21 |
Lv D. , An S. , Liu Z. , N. Zhang J. , S. Pedernales J. , Lamata L. , Solano E. , Kim K. . Quantum simulation of the quantum Rabi model in a trapped ion. Phys. Rev. X, 2018, 8(2): 021027
https://doi.org/10.1103/PhysRevX.8.021027
|
22 |
Frisk Kockum A. , Miranowicz A. , De Liberato S. , Savasta S. , Nori F. . Ultrastrong coupling between light and matter. Nat. Rev. Phys., 2019, 1(1): 19
https://doi.org/10.1038/s42254-018-0006-2
|
23 |
Salmon W. , Gustin C. , Settineri A. , Di Stefano O. , Zueco D. , Savasta S. , Nori F. , Hughes S. . Gauge-independent emission spectra and quantum correlations in the ultrastrong coupling regime of open system cavity-QED. Nanophotonics, 2022, 11(8): 1573
https://doi.org/10.1515/nanoph-2021-0718
|
24 |
Hughes S. , Settineri A. , Savasta S. , Nori F. . Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons. Phys. Rev. B, 2021, 104(4): 045431
https://doi.org/10.1103/PhysRevB.104.045431
|
25 |
Mercurio A. , Macrì V. , Gustin C. , Hughes S. , Savasta S. , Nori F. . Regimes of cavity QED under incoherent excitation: From weak to deep strong coupling. Phys. Rev. Res., 2022, 4(2): 023048
https://doi.org/10.1103/PhysRevResearch.4.023048
|
26 |
H. Chen Y. , Miranowicz A. , Chen X. , Xia Y. , Nori F. . Enhanced-fidelity ultrafast geometric quantum computation using strong classical drives. Phys. Rev. Appl., 2022, 18(6): 064059
https://doi.org/10.1103/PhysRevApplied.18.064059
|
27 |
Macrì V. , Mercurio A. , Nori F. , Savasta S. , Sánchez Muñoz C. . Spontaneous scattering of Raman photons from cavity-QED systems in the ultrastrong coupling regime. Phys. Rev. Lett., 2022, 129(27): 273602
https://doi.org/10.1103/PhysRevLett.129.273602
|
28 |
J. Zhang D. , M. Tong D. . Approaching Heisenberg scalable thermometry with built-in robustness against noise. npj Quantum Inf., 2022, 8: 81
https://doi.org/10.1038/s41534-022-00588-2
|
29 |
F. Huelga S. , Macchiavello C. , Pellizzari T. , K. Ekert A. , B. Plenio M. , I. Cirac J. . Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett., 1997, 79(20): 3865
https://doi.org/10.1103/PhysRevLett.79.3865
|
30 |
W. Chin A. , F. Huelga S. , B. Plenio M. . Quantum metrology in non-Markovian environments. Phys. Rev. Lett., 2012, 109(23): 233601
https://doi.org/10.1103/PhysRevLett.109.233601
|
31 |
Ma J. , Wang X. , P. Sun C. , Nori F. . Quantum spin squeezing. Phys. Rep., 2011, 509(2-3): 89
https://doi.org/10.1016/j.physrep.2011.08.003
|
32 |
P. Liu Z. , Zhang J. , K. Özdemir Ş. , Peng B. , Jing H. , Y. Lü X. , W. Li C. , Yang L. , Nori F. , Liu Y. . Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117(11): 110802
https://doi.org/10.1103/PhysRevLett.117.110802
|
33 |
Xu K. , R. Zhang Y. , H. Sun Z. , Li H. , Song P. , Xiang Z. , Huang K. , Li H. , H. Shi Y. , T. Chen C. , Song X. , Zheng D. , Nori F. , Wang H. , Fan H. . Metrological characterization of non-Gaussian entangled states of superconducting qubits. Phys. Rev. Lett., 2022, 128(15): 150501
https://doi.org/10.1103/PhysRevLett.128.150501
|
34 |
G. Kofman A. , Ashhab S. , Nori F. . Nonperturbative theory of weak pre- and post-selected measurements. Phys. Rep., 2012, 520(2): 43
https://doi.org/10.1016/j.physrep.2012.07.001
|
35 |
Matsuzaki Y. , C. Benjamin S. , Fitzsimons J. . Magnetic field sensing beyond the standard quantum limit under the effect of decoherence. Phys. Rev. A, 2011, 84(1): 012103
https://doi.org/10.1103/PhysRevA.84.012103
|
36 |
Ai Q. , Li Y. , Zheng H. , P. Sun C. . Quantum anti-Zeno effect without rotating wave approximation. Phys. Rev. A, 2010, 81(4): 042116
https://doi.org/10.1103/PhysRevA.81.042116
|
37 |
Ai Q. , Xu D. , Yi S. , G. Kofman A. , P. Sun C. , Nori F. . Quantum anti-zeno effect without wave function reduction. Sci. Rep., 2013, 3(1): 1752
https://doi.org/10.1038/srep01752
|
38 |
M. Harrington P. , T. Monroe J. , W. Murch K. . Quantum Zeno effects from measurement controlled qubit-bath interactions. Phys. Rev. Lett., 2017, 118(24): 240401
https://doi.org/10.1103/PhysRevLett.118.240401
|
39 |
Y. Long X. , T. He W. , N. Zhang N. , Tang K. , D. Lin Z. , F. Liu H. , F. Nie X. , R. Feng G. , Li J. , Xin T. , Ai Q. , W. Lu D. . Entanglement-enhanced quantum metrology in colored noise by quantum Zeno effect. Phys. Rev. Lett., 2022, 129(7): 070502
https://doi.org/10.1103/PhysRevLett.129.070502
|
40 |
Buluta I. , Nori F. . Quantum simulators. Science, 2009, 326(5949): 108
https://doi.org/10.1126/science.1177838
|
41 |
M. Georgescu I. , Ashhab S. , Nori F. . Quantum simulation. Rev. Mod. Phys., 2014, 86(1): 153
https://doi.org/10.1103/RevModPhys.86.153
|
42 |
N. Zhang N. , J. Tao M. , T. He W. , Y. Chen X. , Y. Kong X. , G. Deng F. , Lambert N. , Ai Q. . Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities. Front. Phys., 2021, 16(5): 51501
https://doi.org/10.1007/s11467-021-1064-y
|
43 |
X. Wang B. , J. Tao M. , Ai Q. , Xin T. , Lambert N. , Ruan D. , C. Cheng Y. , Nori F. , G. Deng F. , L. Long G. . Efficient quantum simulation of photosynthetic light harvesting. npj Quantum Inf., 2018, 4: 52
https://doi.org/10.1038/s41534-018-0102-2
|
44 |
Y. Chen X. , N. Zhang N. , T. He W. , Y. Kong X. , J. Tao M. , G. Deng F. , Ai Q. , L. Long G. . Global correlation and local information flows in controllable non-Markovian open quantum dynamics. npj Quantum Inf., 2022, 8: 22
https://doi.org/10.1038/s41534-022-00537-z
|
45 |
N. Lu Y. , R. Zhang Y. , Q. Liu G. , Nori F. , Fan H. , Y. Pan X. . Observing information backflow from controllable non-Markovian multichannels in diamond. Phys. Rev. Lett., 2020, 124(21): 210502
https://doi.org/10.1103/PhysRevLett.124.210502
|
46 |
Leghtas Z. , Touzard S. , M. Pop I. , Kou A. , Vlastakis B. , Petrenko A. , M. Sliwa K. , Narla A. , Shankar S. , J. Hatridge M. , Reagor M. , Frunzio L. , J. Schoelkopf R. , Mirrahimi M. , H. Devoret M. . Confining the state of light to a quantum manifold by engineered two-photon loss. Science, 2015, 347(6224): 853
https://doi.org/10.1126/science.aaa2085
|
47 |
Malekakhlagh M. , W. Rodriguez A. . Quantum Rabi model with two-photon relaxation. Phys. Rev. Lett., 2019, 122(4): 043601
https://doi.org/10.1103/PhysRevLett.122.043601
|
48 |
H. Dicke R. . Coherence in spontaneous radiation processes. Phys. Rev., 1954, 93(1): 99
https://doi.org/10.1103/PhysRev.93.99
|
49 |
R. Schrieffer J. , A. Wolff P. . Relation between the Anderson and Kondo Hamiltonians. Phys. Rev., 1966, 149(2): 491
https://doi.org/10.1103/PhysRev.149.491
|
50 |
P. Breuer H.Petruccione F., The Theory of Open Quantum Systems, New York: Oxford University Press, 2002
|
51 |
R. Johansson J. , D. Nation P. , Nori F. . QuTiP: An open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
https://doi.org/10.1016/j.cpc.2012.02.021
|
52 |
J. Carmichael H., An Open Systems Approach to Quantum Optics, Berlin: Spring, 1993
|
53 |
W. Gardiner C.Zoller P., Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Berlin: Springer, 2004
|
54 |
J. Hwang M. , Rabl P. , B. Plenio M. . Dissipative phase transition in the open quantum Rabi model. Phys. Rev. A, 2018, 97(1): 013825
https://doi.org/10.1103/PhysRevA.97.013825
|
55 |
Ai Q. , B. Li P. , Qin W. , X. Zhao J. , P. Sun C. , Nori F. . The NV netamaterial: Tunable quantum hyper-bolic metamaterial using nitrogen vacancy centers in diamond. Phys. Rev. B, 2021, 104(1): 014109
https://doi.org/10.1103/PhysRevB.104.014109
|
56 |
Dong H. , Z. Xu D. , F. Huang J. , P. Sun C. . Coherent excitation transfer via the dark-state channel in a bionic system. Light Sci. Appl., 2012, 1(3): e2
https://doi.org/10.1038/lsa.2012.2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|