Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (3) : 31304    https://doi.org/10.1007/s11467-023-1278-2
RESEARCH ARTICLE
Criticality-based quantum metrology in the presence of decoherence
Wan-Ting He, Cong-Wei Lu, Yi-Xuan Yao, Hai-Yuan Zhu, Qing Ai()
Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
 Download: PDF(4531 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Because quantum critical systems are very sensitive to the variation of parameters around the quantum phase transition (QPT), quantum criticality has been presented as an efficient resource for metrology. In this paper, we address the issue whether the divergent feature of the inverted variance is realizable in the presence of noise when approaching the QPT. Taking the quantum Rabi model (QRM) as an example, we obtain the analytical result for the inverted variance with single-photon relaxation. We show that the inverted variance may be convergent in time due to the noise. Since the precision of the metrology is very sensitive to the noise, as a remedy, we propose squeezing the initial state to improve the precision under decoherence. In addition, we also investigate the criticality-based metrology under the influence of the two-photon relaxation. Strikingly, although the maximum inverted variance still manifests a power-law dependence on the energy gap, the exponent is positive and depends on the dimensionless coupling strength. This observation implies that the criticality may not enhance but weaken the precision in the presence of two-photon relaxation, due to the non-linearity introduced by the two-photon relaxation.

Keywords criticality      quantum      metrology      decoherence     
Corresponding Author(s): Qing Ai   
Issue Date: 07 April 2023
 Cite this article:   
Wan-Ting He,Cong-Wei Lu,Yi-Xuan Yao, et al. Criticality-based quantum metrology in the presence of decoherence[J]. Front. Phys. , 2023, 18(3): 31304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1278-2
https://academic.hep.com.cn/fop/EN/Y2023/V18/I3/31304
Fig.1  The effect of the noise strength κ on the precision of the criticality-enhanced metrology. (a) The inverted variance of the QRM in the vicinity of the critical point, e.g., g=0.96, when coupling with a thermal reservoir at zero temperature, for 100κ/ω=1,2,3,4,5. They correspond to the blue solid, orange dashed, green dash-dotted, red dotted, purple solid line, respectively. (b) The maximum of the inverted variance as a function of the noise parameter κ. From the bottom to the top, the five curves correspond to g=0.94,0.95,0.96,0.97,0.98, respectively. The dots are obtained from the master equation, while the curves are calculated by the numerical fitting.
Fig.2  The effect of the energy gap Δg on the precision of the criticality-enhanced metrology. (a) The inverted variance Fg of the QRM when approaching the critical point, e.g. g=0.94,0.95,0.96,0.97,0.98, with the noise parameter κ=0.05ω. It is plotted against the rescaled time Δgωt/(2π) to highlight the behavior that in the representation of the rescaled time Fg’s oscillate with the same frequency for different g’s. (b) The maximum of Fg vs. Δg for 100κ/ω=1,2,3,4,5, which correspond to the curves from the top to the bottom. The dots are obtained from the master equation, while the curves are calculated by the numerical fitting.
Fig.3  The effect of the temperature T on the precision of the criticality-enhanced metrology. (a) The inverted variance of the QRM close to the critical point, at g=0.96, with nˉ=1,2,3,4,5 and κ/ω=0.05. (b) The maximum inverted variance vs. the temperature T. The balck dotted line is numerically fitted by a(kBT/ω)b with a=2648 and b=?0.953.
Fig.4  Improving the precision by performing a squeezing operation on the initial state. (a) Fg(t) versus time t, with different squeezing parameter ξ, when g=0.96 and κ/ω=0.05. (b) The maximum of Fg at different ξ’s with 100κ/ω= 1,2,3,4,5.
Fig.5  The effects of the squeezing parameter ξ. (a) At zero temperature, the maxima of Fg vs. κ when g=0.96 and ξ=0,0.4,0.8,1.2,1.6,2, which correspond to the curves from the bottom to the top. (b) The maximum of Fg at different ξ's for kBT/ω=0,1,2,3,4,5, which correspond to the curves from the top to the bottom. The dots are obtained from the master equation, while the curves are calculated by the numerical fitting.
Fig.6  The effects of the two-photon relaxation. (a) The inverted variance Fg of the QRM when approaching the critical point, e.g., g=0.94,0.95,0.96,0.97,0.98, with the noise parameter κ=0.05ω. It is plotted against the rescaled time 1?g2ωt/π. (b) The maximum of Fg at different g’s with 100κ/ω= 1,2,3,4,5. The dots are obtained from the master equation, while the curves are calculated by the numerical fitting.
1 L. Heugel T. , Biondi M. , Zilberberg O. , Chitra R. . Quantum transducer using a parametric driven-dissipative phase transition. Phys. Rev. Lett., 2019, 123(17): 173601
https://doi.org/10.1103/PhysRevLett.123.173601
2 Chu Y. , Zhang S. , Yu B. , Cai J. . Dynamic framework for criticality-enhanced quantum sensing. Phys. Rev. Lett., 2021, 126(1): 010502
https://doi.org/10.1103/PhysRevLett.126.010502
3 M. Rams M. , Sierant P. , Dutta O. , Horodecki P. , Zakrzewski J. . At the limits of criticality-based quantum metrology: Apparent super-Heisenberg scaling revisited. Phys. Rev. X, 2018, 8(2): 021022
https://doi.org/10.1103/PhysRevX.8.021022
4 Garbe L. , Bina M. , Keller A. , G. A. Paris M. , Felicetti S. . Critical quantum metrology with a finite-component quantum phase transition. Phys. Rev. Lett., 2020, 124(12): 120504
https://doi.org/10.1103/PhysRevLett.124.120504
5 Felicetti S. , Le Boité A. . Universal spectral features of ultrastrongly coupled systems. Phys. Rev. Lett., 2020, 124(4): 040404
https://doi.org/10.1103/PhysRevLett.124.040404
6 Ilias T. , Yang D. , F. Huelga S. , B. Plenio M. . Criticality-enhanced quantum sensing via continuous measurement. PRX Quantum, 2022, 3(1): 010354
https://doi.org/10.1103/PRXQuantum.3.010354
7 Zanardi P. , G. A. Paris M. , C. Venuti L. . Quantum criticality as a resource for quantum estimation. Phys. Rev. A, 2008, 78(4): 042105
https://doi.org/10.1103/PhysRevA.78.042105
8 Tsang M. . Quantum transition-edge detectors. Phys. Rev. A, 2013, 88(2): 021801
https://doi.org/10.1103/PhysRevA.88.021801
9 Fernández-Lorenzo S. , Porras D. . Quantum sensing close to a dissipative phase transition: Symmetry breaking and criticality as metrological resources. Phys. Rev. A, 2017, 96(1): 013817
https://doi.org/10.1103/PhysRevA.96.013817
10 Gietka K. , Metz F. , Keller T. , Li J. . Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied. Quantum, 2021, 5: 489
https://doi.org/10.22331/q-2021-07-01-489
11 Y. Lü X. , M. Zhang W. , Ashhab S. , Wu Y. , Nori F. . Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep., 2013, 3(1): 2943
https://doi.org/10.1038/srep02943
12 Sachdev S., Quantum Phase Transitions, Cambridge University Press, UK, 2011
13 T. Quan H. , Song Z. , F. Liu X. , Zanardi P. , P. Sun C. . Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett., 2006, 96(14): 140604
https://doi.org/10.1103/PhysRevLett.96.140604
14 Ai Q. , D. Wang Y. , L. Long G. , P. Sun C. . Two mode photon bunching effect as witness of quantum criticality in circuit QED. Sci. China Ser. G, 2009, 52(12): 1898
https://doi.org/10.1007/s11433-009-0274-z
15 S. Pang S. , N. Jordan A. . Optimal adaptive control for quantum metrology with time-dependent Hamiltonians. Nat. Commun., 2017, 8(1): 14695
https://doi.org/10.1038/ncomms14695
16 Pang S. , A. Brun T. . Quantum metrology for a general Hamiltonian parameter. Phys. Rev. A, 2014, 90(2): 022117
https://doi.org/10.1103/PhysRevA.90.022117
17 O. Scully M.S. Zubairy M., Quantum Optics, Cambridge University Press, UK, 1997
18 J. Hwang M. , Puebla R. , B. Plenio M. . Quantum phase transition and universal dynamics in the Rabi model. Phys. Rev. Lett., 2015, 115(18): 180404
https://doi.org/10.1103/PhysRevLett.115.180404
19 Puebla R. , J. Hwang M. , Casanova J. , B. Plenio M. . Probing the dynamics of a superradiant quantum phase transition with a single trapped ion. Phys. Rev. Lett., 2017, 118(7): 073001
https://doi.org/10.1103/PhysRevLett.118.073001
20 S. Pedernales J. , Lizuain I. , Felicetti S. , Romero G. , Lamata L. , Solano E. . Quantum Rabi model with trapped ions. Sci. Rep., 2015, 5(1): 15472
https://doi.org/10.1038/srep15472
21 Lv D. , An S. , Liu Z. , N. Zhang J. , S. Pedernales J. , Lamata L. , Solano E. , Kim K. . Quantum simulation of the quantum Rabi model in a trapped ion. Phys. Rev. X, 2018, 8(2): 021027
https://doi.org/10.1103/PhysRevX.8.021027
22 Frisk Kockum A. , Miranowicz A. , De Liberato S. , Savasta S. , Nori F. . Ultrastrong coupling between light and matter. Nat. Rev. Phys., 2019, 1(1): 19
https://doi.org/10.1038/s42254-018-0006-2
23 Salmon W. , Gustin C. , Settineri A. , Di Stefano O. , Zueco D. , Savasta S. , Nori F. , Hughes S. . Gauge-independent emission spectra and quantum correlations in the ultrastrong coupling regime of open system cavity-QED. Nanophotonics, 2022, 11(8): 1573
https://doi.org/10.1515/nanoph-2021-0718
24 Hughes S. , Settineri A. , Savasta S. , Nori F. . Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons. Phys. Rev. B, 2021, 104(4): 045431
https://doi.org/10.1103/PhysRevB.104.045431
25 Mercurio A. , Macrì V. , Gustin C. , Hughes S. , Savasta S. , Nori F. . Regimes of cavity QED under incoherent excitation: From weak to deep strong coupling. Phys. Rev. Res., 2022, 4(2): 023048
https://doi.org/10.1103/PhysRevResearch.4.023048
26 H. Chen Y. , Miranowicz A. , Chen X. , Xia Y. , Nori F. . Enhanced-fidelity ultrafast geometric quantum computation using strong classical drives. Phys. Rev. Appl., 2022, 18(6): 064059
https://doi.org/10.1103/PhysRevApplied.18.064059
27 Macrì V. , Mercurio A. , Nori F. , Savasta S. , Sánchez Muñoz C. . Spontaneous scattering of Raman photons from cavity-QED systems in the ultrastrong coupling regime. Phys. Rev. Lett., 2022, 129(27): 273602
https://doi.org/10.1103/PhysRevLett.129.273602
28 J. Zhang D. , M. Tong D. . Approaching Heisenberg scalable thermometry with built-in robustness against noise. npj Quantum Inf., 2022, 8: 81
https://doi.org/10.1038/s41534-022-00588-2
29 F. Huelga S. , Macchiavello C. , Pellizzari T. , K. Ekert A. , B. Plenio M. , I. Cirac J. . Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett., 1997, 79(20): 3865
https://doi.org/10.1103/PhysRevLett.79.3865
30 W. Chin A. , F. Huelga S. , B. Plenio M. . Quantum metrology in non-Markovian environments. Phys. Rev. Lett., 2012, 109(23): 233601
https://doi.org/10.1103/PhysRevLett.109.233601
31 Ma J. , Wang X. , P. Sun C. , Nori F. . Quantum spin squeezing. Phys. Rep., 2011, 509(2-3): 89
https://doi.org/10.1016/j.physrep.2011.08.003
32 P. Liu Z. , Zhang J. , K. Özdemir Ş. , Peng B. , Jing H. , Y. Lü X. , W. Li C. , Yang L. , Nori F. , Liu Y. . Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117(11): 110802
https://doi.org/10.1103/PhysRevLett.117.110802
33 Xu K. , R. Zhang Y. , H. Sun Z. , Li H. , Song P. , Xiang Z. , Huang K. , Li H. , H. Shi Y. , T. Chen C. , Song X. , Zheng D. , Nori F. , Wang H. , Fan H. . Metrological characterization of non-Gaussian entangled states of superconducting qubits. Phys. Rev. Lett., 2022, 128(15): 150501
https://doi.org/10.1103/PhysRevLett.128.150501
34 G. Kofman A. , Ashhab S. , Nori F. . Nonperturbative theory of weak pre- and post-selected measurements. Phys. Rep., 2012, 520(2): 43
https://doi.org/10.1016/j.physrep.2012.07.001
35 Matsuzaki Y. , C. Benjamin S. , Fitzsimons J. . Magnetic field sensing beyond the standard quantum limit under the effect of decoherence. Phys. Rev. A, 2011, 84(1): 012103
https://doi.org/10.1103/PhysRevA.84.012103
36 Ai Q. , Li Y. , Zheng H. , P. Sun C. . Quantum anti-Zeno effect without rotating wave approximation. Phys. Rev. A, 2010, 81(4): 042116
https://doi.org/10.1103/PhysRevA.81.042116
37 Ai Q. , Xu D. , Yi S. , G. Kofman A. , P. Sun C. , Nori F. . Quantum anti-zeno effect without wave function reduction. Sci. Rep., 2013, 3(1): 1752
https://doi.org/10.1038/srep01752
38 M. Harrington P. , T. Monroe J. , W. Murch K. . Quantum Zeno effects from measurement controlled qubit-bath interactions. Phys. Rev. Lett., 2017, 118(24): 240401
https://doi.org/10.1103/PhysRevLett.118.240401
39 Y. Long X. , T. He W. , N. Zhang N. , Tang K. , D. Lin Z. , F. Liu H. , F. Nie X. , R. Feng G. , Li J. , Xin T. , Ai Q. , W. Lu D. . Entanglement-enhanced quantum metrology in colored noise by quantum Zeno effect. Phys. Rev. Lett., 2022, 129(7): 070502
https://doi.org/10.1103/PhysRevLett.129.070502
40 Buluta I. , Nori F. . Quantum simulators. Science, 2009, 326(5949): 108
https://doi.org/10.1126/science.1177838
41 M. Georgescu I. , Ashhab S. , Nori F. . Quantum simulation. Rev. Mod. Phys., 2014, 86(1): 153
https://doi.org/10.1103/RevModPhys.86.153
42 N. Zhang N. , J. Tao M. , T. He W. , Y. Chen X. , Y. Kong X. , G. Deng F. , Lambert N. , Ai Q. . Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities. Front. Phys., 2021, 16(5): 51501
https://doi.org/10.1007/s11467-021-1064-y
43 X. Wang B. , J. Tao M. , Ai Q. , Xin T. , Lambert N. , Ruan D. , C. Cheng Y. , Nori F. , G. Deng F. , L. Long G. . Efficient quantum simulation of photosynthetic light harvesting. npj Quantum Inf., 2018, 4: 52
https://doi.org/10.1038/s41534-018-0102-2
44 Y. Chen X. , N. Zhang N. , T. He W. , Y. Kong X. , J. Tao M. , G. Deng F. , Ai Q. , L. Long G. . Global correlation and local information flows in controllable non-Markovian open quantum dynamics. npj Quantum Inf., 2022, 8: 22
https://doi.org/10.1038/s41534-022-00537-z
45 N. Lu Y. , R. Zhang Y. , Q. Liu G. , Nori F. , Fan H. , Y. Pan X. . Observing information backflow from controllable non-Markovian multichannels in diamond. Phys. Rev. Lett., 2020, 124(21): 210502
https://doi.org/10.1103/PhysRevLett.124.210502
46 Leghtas Z. , Touzard S. , M. Pop I. , Kou A. , Vlastakis B. , Petrenko A. , M. Sliwa K. , Narla A. , Shankar S. , J. Hatridge M. , Reagor M. , Frunzio L. , J. Schoelkopf R. , Mirrahimi M. , H. Devoret M. . Confining the state of light to a quantum manifold by engineered two-photon loss. Science, 2015, 347(6224): 853
https://doi.org/10.1126/science.aaa2085
47 Malekakhlagh M. , W. Rodriguez A. . Quantum Rabi model with two-photon relaxation. Phys. Rev. Lett., 2019, 122(4): 043601
https://doi.org/10.1103/PhysRevLett.122.043601
48 H. Dicke R. . Coherence in spontaneous radiation processes. Phys. Rev., 1954, 93(1): 99
https://doi.org/10.1103/PhysRev.93.99
49 R. Schrieffer J. , A. Wolff P. . Relation between the Anderson and Kondo Hamiltonians. Phys. Rev., 1966, 149(2): 491
https://doi.org/10.1103/PhysRev.149.491
50 P. Breuer H.Petruccione F., The Theory of Open Quantum Systems, New York: Oxford University Press, 2002
51 R. Johansson J. , D. Nation P. , Nori F. . QuTiP: An open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
https://doi.org/10.1016/j.cpc.2012.02.021
52 J. Carmichael H., An Open Systems Approach to Quantum Optics, Berlin: Spring, 1993
53 W. Gardiner C.Zoller P., Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Berlin: Springer, 2004
54 J. Hwang M. , Rabl P. , B. Plenio M. . Dissipative phase transition in the open quantum Rabi model. Phys. Rev. A, 2018, 97(1): 013825
https://doi.org/10.1103/PhysRevA.97.013825
55 Ai Q. , B. Li P. , Qin W. , X. Zhao J. , P. Sun C. , Nori F. . The NV netamaterial: Tunable quantum hyper-bolic metamaterial using nitrogen vacancy centers in diamond. Phys. Rev. B, 2021, 104(1): 014109
https://doi.org/10.1103/PhysRevB.104.014109
56 Dong H. , Z. Xu D. , F. Huang J. , P. Sun C. . Coherent excitation transfer via the dark-state channel in a bionic system. Light Sci. Appl., 2012, 1(3): e2
https://doi.org/10.1038/lsa.2012.2
[1] Wen-Wei Wang, Han Zhang, Chang Qiao, Ming-Cheng Liang, Rui Wu, Xibo Zhang. Realization of highly isolated stable few-spin systems based on alkaline-earth fermions[J]. Front. Phys. , 2023, 18(6): 62303-.
[2] Cheng-Yun Ding, Li Chen, Li-Hua Zhang, Zheng-Yuan Xue. Dynamical-corrected nonadiabatic geometric quantum computation[J]. Front. Phys. , 2023, 18(6): 61304-.
[3] Wei Feng, Dexi Shao, Guo-Qiang Zhang, Qi-Ping Su, Jun-Xiang Zhang, Chui-Ping Yang. Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices[J]. Front. Phys. , 2023, 18(6): 61302-.
[4] Xue-Jing Feng, Jin-Xin Li, Lu Qin, Ying-Ying Zhang, ShiQiang Xia, Lu Zhou, ChunJie Yang, ZunLue Zhu, Wu-Ming Liu, Xing-Dong Zhao. Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas[J]. Front. Phys. , 2023, 18(5): 52303-.
[5] Muhammad Waseem Hafiz, Seong Oun Hwang. A probabilistic model of quantum states for classical data security[J]. Front. Phys. , 2023, 18(5): 51304-.
[6] Jia-Ning Zhang, Jin-Xuan Han, Jin-Lei Wu, Jie Song, Yong-Yuan Jiang. Robust beam splitter with fast quantum state transfer through a topological interface[J]. Front. Phys. , 2023, 18(5): 51303-.
[7] Ling-Yu Yao, Li-Juan Li, Xue-Ke Song, Liu Ye, Dong Wang. Manipulating the measured uncertainty under Lee−Yang dephasing channels through local PT-symmetric operations[J]. Front. Phys. , 2023, 18(5): 51302-.
[8] Kexin Liang, Zhengwen Cao, Xinlei Chen, Lei Wang, Geng Chai, Jinye Peng. A quantum secure direct communication scheme based on intermediate-basis[J]. Front. Phys. , 2023, 18(5): 51301-.
[9] Jian-Sheng Wang, Jiebin Peng, Zu-Quan Zhang, Yong-Mei Zhang, Tao Zhu. Transport in electron−photon systems[J]. Front. Phys. , 2023, 18(4): 43602-.
[10] Huan Zhang, Wei Ye, Shoukang Chang, Ying Xia, Liyun Hu, Zeyang Liao. Quantum multiparameter estimation with multi-mode photon catalysis entangled squeezed state[J]. Front. Phys. , 2023, 18(4): 42304-.
[11] Fan Li, Xiaoli Zhang, Jianbo Li, Jiawei Wang, Shaoping Shi, Long Tian, Yajun Wang, Lirong Chen, Yaohui Zheng. Demonstration of fully-connected quantum communication network exploiting entangled sideband modes[J]. Front. Phys. , 2023, 18(4): 42303-.
[12] Jiu-Ming Li, Shao-Ming Fei. Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit[J]. Front. Phys. , 2023, 18(4): 41301-.
[13] Yuwen Bai, Zijiang Yang, Bayaer Buren, Ye Mao, Maodu Chen. Quantum dynamics studies on the non-adiabatic effects of H + LiD reaction[J]. Front. Phys. , 2023, 18(3): 31303-.
[14] Tinggui Zhang, Naihuan Jing, Shao-Ming Fei. Sharing quantum nonlocality in star network scenarios[J]. Front. Phys. , 2023, 18(3): 31302-.
[15] Kai Xu, Han-Jie Zhu, Hao Zhu, Guo-Feng Zhang, Wu-Ming Liu. Charging and self-discharging process of a quantum battery in composite environments[J]. Front. Phys. , 2023, 18(3): 31301-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed