Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 24303    https://doi.org/10.1007/s11467-023-1356-5
VIEW & PERSPECTIVE
Simple collective model for nuclear chiral mode
R. V. Jolos1,2(), E. A. Kolganova1,2, D. R. Khamitova1,2
1. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
2. Dubna State University, 141982 Dubna, Moscow Region, Russia
 Download: PDF(3527 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simple semi-analytical collective model that takes into account the limitations of the variation interval of the collective variable is suggested to describe the chiral dynamics in triaxial odd−odd nuclei with a fixed particle−hole configuration. The collective Hamiltonian is constructed with the potential energy obtained using the postulated ansatz for the wave function symmetric with respect to chiral transformation. By diagonalizing the collective Hamiltonian the wave functions of the lowest states are obtained and the evolution of the energy splitting of the chiral doublets in transition from chiral vibration to chiral rotation regime is demonstrated.

Keywords collective      model      nuclear      chiral     
Corresponding Author(s): R. V. Jolos   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 17 November 2023
 Cite this article:   
R. V. Jolos,E. A. Kolganova,D. R. Khamitova. Simple collective model for nuclear chiral mode[J]. Front. Phys. , 2024, 19(2): 24303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1356-5
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/24303
Fig.1  Energy splitting of the doublet consisting in the first excited and the lowest states ΔE01 (solid black line), and the doublet consisting in the third and the second excited states ΔE23 (dashed red line) of the chiral Hamiltonian. Energy is given in arbitrary units. Calculations are performed with xm=0.6 and c = 2.2.
ξ 0.7 0.9 1.1 1.3 1.5 1.6 1.7 1.8 1.9 2.0
ΔE01 1.307 0.701 0.371 0.166 0.064 0.038 0.022 0.013 0.008 0.004
ΔE23 0.490 0.365 0.259 0.175 0.112 0.069
Tab.1  Energy splitting of the doublets consisting in the first excited and lowest states ΔE01, and of the third and second excited states ΔE23 of the chiral Hamiltonian. Energies are given in arbitrary units. Calculations are performed with xm = 0.6 and c = 2.2.
Fig.2  Collective potential (5) for xm=0.6 and different values of ξ: (a) ξ=1.1, (b) ξ=1.3, (c) ξ=1.5, (d) ξ=2.0. Several low lying eigenstates are indicated by horizontal lines.
Fig.3  Wave functions of the four lowest states at xm = 0.6, c = 1.2 and ξ=1.9: solid line (black) ? ground state, dashed line (red) ? first excited state, dotted line (blue) ? second excited state and dash-dotted line (green) ? third excited state.
1 Frauendorf S. , Meng J. . Tilted rotation of triaxial nuclei. Nucl. Phys. A, 1997, 617(2): 131
https://doi.org/10.1016/S0375-9474(97)00004-3
2 W. Xiong B. , Y. Wang Y. . Nuclear chiral doublet bands data tables. At. Data Nucl. Data Tables, 2019, 125: 193
https://doi.org/10.1016/j.adt.2018.05.002
3 Meng J. , Q. Zhang S. . Open problems in understanding the nuclear chirality. J. Phys. G, 2010, 37(6): 064025
https://doi.org/10.1088/0954-3899/37/6/064025
4 Starosta K. , Koike T. . Nuclear chirality, a model and the data. Phys. Scr., 2017, 92(9): 093002
https://doi.org/10.1088/1402-4896/aa800e
5 B. Chen Q. , Kaiser N. , G. Meißner U. , Meng J. . Behavior of the collective rotor in nuclear chiral motion. Phys. Rev. C, 2019, 99(6): 064326
https://doi.org/10.1103/PhysRevC.99.064326
6 B. Chen Q. , Kaiser N. , G. Meißner U. , Meng J. . Static quadrupole moments of nuclear chiral doublet bands. Phys. Lett. B, 2020, 807: 135568
https://doi.org/10.1016/j.physletb.2020.135568
7 B. Chen Q. , Q. Zhang S. , W. Zhao P. , V. Jolos R. , Meng J. . Collective Hamiltonian for chiral modes. Phys. Rev. C, 2013, 87(2): 024314
https://doi.org/10.1103/PhysRevC.87.024314
8 Starosta K. , Koike T. , J. Chiara C. , B. Fossan D. , R. LaFosse D. . Chirality in odd–odd triaxial nuclei. Nucl. Phys. A, 2001, 682(1‒4): 375
https://doi.org/10.1016/S0375-9474(00)00663-1
9 I. Dimitrov V. , Frauendorf S. , Dönau F. . Chirality of nuclear rotation. Phys. Rev. Lett., 2000, 84(25): 5732
https://doi.org/10.1103/PhysRevLett.84.5732
10 Almehed D. , Dönau F. , Frauendorf S. . Chiral vibrations in the A = 135 region. Phys. Rev. C, 2011, 83(5): 054308
https://doi.org/10.1103/PhysRevC.83.054308
11 V. Mardyban E. , M. Shneidman T. , A. Kolganova E. , V. Jolos R. , G. Zhou S. . Analytical description of shape transition in nuclear alternating parity bands. Chin. Phys. C, 2018, 42(12): 124104
https://doi.org/10.1088/1674-1137/42/12/124104
12 Kalka H.Soff G., Supersymmetrie, Teubner Studienbücher, Stuttgart, 1997
13 Cooper F.Khare A.Sukhatme U., Supersymmetry in Quantum Mechanics, World Scientific, 2004
14 Starosta K. , Koike T. , J. Chiara C. , B. Fossan D. , R. LaFosse D. , A. Hecht A. , W. Beausang C. , A. Caprio M. , R. Cooper J. , Krücken R. , R. Novak J. , V. Zamfir N. , E. Zyromski K. , J. Hartley D. , L. Balabanski D. , Zhang J. , Frauendorf S. , I. Dimitrov V. . Chiral doublet structures in odd‒odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971
https://doi.org/10.1103/PhysRevLett.86.971
15 Frauendorf S. , Dönau F. . Transverse wobbling: A collective mode in odd-A triaxial nuclei. Phys. Rev. C, 2014, 89(1): 014322
https://doi.org/10.1103/PhysRevC.89.014322
16 B. Chen Q. , Q. Zhang S. , W. Zhao P. , V. Jolos R. , Meng J. . Two-dimensional collective Hamiltonian for chiral and wobbling modes. Phys. Rev. C, 2016, 94(4): 044301
https://doi.org/10.1103/PhysRevC.94.044301
[1] B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng. Generalized time-dependent generator coordinate method for induced fission dynamics[J]. Front. Phys. , 2024, 19(4): 44201-.
[2] Si-Ping Zhang, Jia-Qi Dong, Hui-Yu Zhang, Yi-Xuan Lü, Jue Wang, Zi-Gang Huang. Self organizing optimization and phase transition in reinforcement learning minority game system[J]. Front. Phys. , 2024, 19(4): 40201-.
[3] P. M. Marychev, A. A. Shanenko, A. V. Vagov. Intertype superconductivity evoked by the interplay of disorder and multiple bands[J]. Front. Phys. , 2024, 19(4): 43205-.
[4] Ernest Grodner, Michał Kowalczyk, Julian Srebrny, Leszek Próchniak, Chrystian Droste, Jan Kownacki, Maciej Kisieliński, Krzysztof Starosta, Takeshi Koike. The g-factor measurement as an ultimate test for nuclear chirality[J]. Front. Phys. , 2024, 19(3): 34202-.
[5] R. A. Bark, E. A. Lawrie, C. Liu, S. Y. Wang. Investigations of nuclear chirality at iThemba LABS[J]. Front. Phys. , 2024, 19(2): 24302-.
[6] Radu Budaca. A semiclassical perspective on nuclear chirality[J]. Front. Phys. , 2024, 19(2): 24301-.
[7] Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye. Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors[J]. Front. Phys. , 2024, 19(2): 23201-.
[8] Xiao-Feng Shi. Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields[J]. Front. Phys. , 2024, 19(2): 22203-.
[9] Shouyu Wang, Chen Liu, Bin Qi, Wenzheng Xu, Hui Zhang. Experimental studies for nuclear chirality in China[J]. Front. Phys. , 2023, 18(6): 64601-.
[10] Yongjia Wang, Qingfeng Li. Machine learning transforms the inference of the nuclear equation of state[J]. Front. Phys. , 2023, 18(6): 64402-.
[11] Cheuk-Yin Wong. On the question of quark confinement in the Abelian U(1) QED gauge interaction[J]. Front. Phys. , 2023, 18(6): 64401-.
[12] Shuo-Ying Yu, Xian-Wei Kang, V. O. Galkin. Two-body nonleptonic decays of the heavy mesons in the factorization approach[J]. Front. Phys. , 2023, 18(6): 64301-.
[13] Shuang-Shuang Kong, Wei-Kai Liu, Xiao-Xia Yu, Ya-Lin Li, Liu-Zhu Yang, Yun Ma, Xiao-Yong Fang. Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs[J]. Front. Phys. , 2023, 18(4): 43302-.
[14] Shuhui Yang, Tao Ying. Optimal charge inhomogeneity for the d+id-wave superconductivity in the intercalated graphite CaC6[J]. Front. Phys. , 2023, 18(3): 33305-.
[15] Lu Bo, Xiao-Fei Liu, Chuan Wang, Tie-Jun Wang. Spinning microresonator-induced chiral optical transmission[J]. Front. Phys. , 2023, 18(1): 12305-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed