|
|
Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors |
Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye( ) |
School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, and Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena, which can be fundamentally traced back to non-unitarity. In this paper, we introduce an interesting quantity (denoted as ) as a new variant of the Petermann factor to directly and efficiently measure non-unitarity and the associated non-Hermitian physics. By tuning the model parameters of underlying non-Hermitian systems, we find that the discontinuity of both and its first-order derivative (denoted as ) pronouncedly captures rich physics that is fundamentally caused by non-unitarity. More concretely, in the 1D non-Hermitian topological systems, two mutually orthogonal edge states that are respectively localized on two boundaries become non-orthogonal in the vicinity of discontinuity of as a function of the model parameter, which is dubbed “edge state transition”. Through theoretical analysis, we identify that the appearance of edge state transition indicates the existence of exceptional points (EPs) in topological edge states. Regarding the discontinuity of , we investigate a two-level non-Hermitian model and establish a connection between the points of discontinuity of and EPs of bulk states. By studying this connection in more general lattice models, we find that some models have discontinuity of , implying the existence of EPs in bulk states.
|
Keywords
non-Hermitian
Su−Schrieffer−Heeger (SSH) model
exceptional point
|
Corresponding Author(s):
Peng Ye
|
Issue Date: 07 October 2023
|
|
1 |
M. Bender C.. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
https://doi.org/10.1088/0034-4885/70/6/R03
|
2 |
Cao H., Wiersig J.. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 2015, 87(1): 61
https://doi.org/10.1103/RevModPhys.87.61
|
3 |
Rotter I.. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor., 2009, 42(15): 153001
https://doi.org/10.1088/1751-8113/42/15/153001
|
4 |
Ashida Y., Gong Z., Ueda M.. Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
https://doi.org/10.1080/00018732.2021.1876991
|
5 |
J. Bergholtz E., C. Budich J., K. Kunst F.. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
https://doi.org/10.1103/RevModPhys.93.015005
|
6 |
Lin R., Tai T., Li L., H. Lee C.. Topological non-Hermitian skin effect. Front. Phys., 2023, 18(5): 53605
https://doi.org/10.1007/s11467-023-1309-z
|
7 |
Yao S., Wang Z.. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
https://doi.org/10.1103/PhysRevLett.121.086803
|
8 |
Yokomizo K., Murakami S.. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
https://doi.org/10.1103/PhysRevLett.123.066404
|
9 |
Yang Z., Zhang K., Fang C., Hu J.. Non-Hermitian bulk−boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett., 2020, 125(22): 226402
https://doi.org/10.1103/PhysRevLett.125.226402
|
10 |
D. Heiss W.. The physics of exceptional points. J. Phys. A, 2012, 45(44): 444016
https://doi.org/10.1088/1751-8113/45/44/444016
|
11 |
Gao T., Estrecho E., Y. Bliokh K., C. H. Liew T., D. Fraser M., Brodbeck S., Kamp M., Schneider C., Höfling S., Yamamoto Y., Nori F., S. Kivshar Y., G. Truscott A., G. Dall R., A. Ostrovskaya E.. Observation of non-Hermitian degeneracies in a chaotic exciton‒polariton billiard. Nature, 2015, 526(7574): 554
https://doi.org/10.1038/nature15522
|
12 |
Zhen B., W. Hsu C., Igarashi Y., Lu L., Kaminer I., Pick A., L. Chua S., D. Joannopoulos J., Soljačić M.. Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354
https://doi.org/10.1038/nature14889
|
13 |
Hahn C., Choi Y., W. Yoon J., H. Song S., H. Oh C., Berini P.. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices. Nat. Commun., 2016, 7(1): 12201
https://doi.org/10.1038/ncomms12201
|
14 |
Zhang D., Q. Luo X., P. Wang Y., F. Li T., Q. You J.. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 2017, 8(1): 1368
https://doi.org/10.1038/s41467-017-01634-w
|
15 |
A. Miri M., Alù A.. Exceptional points in optics and photonics. Science, 2019, 363(6422): eaar7709
https://doi.org/10.1126/science.aar7709
|
16 |
Wang S., Hou B., Lu W., Chen Y., Q. Zhang Z., T. Chan C.. Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nat. Commun., 2019, 10(1): 832
https://doi.org/10.1038/s41467-019-08826-6
|
17 |
Xiao L., Deng T., Wang K., Wang Z., Yi W., Xue P.. Observation of non-Bloch parity‒time symmetry and exceptional points. Phys. Rev. Lett., 2021, 126(23): 230402
https://doi.org/10.1103/PhysRevLett.126.230402
|
18 |
Hu H., Sun S., Chen S.. Knot topology of exceptional point and non-Hermitian no−go theorem. Phys. Rev. Res., 2022, 4(2): L022064
https://doi.org/10.1103/PhysRevResearch.4.L022064
|
19 |
K. Kunst F., Edvardsson E., C. Budich J., J. Bergholtz E.. Biorthogonal bulk‒boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
https://doi.org/10.1103/PhysRevLett.121.026808
|
20 |
H. Lee C., Thomale R.. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
https://doi.org/10.1103/PhysRevB.99.201103
|
21 |
Okuma N., Kawabata K., Shiozaki K., Sato M.. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
https://doi.org/10.1103/PhysRevLett.124.086801
|
22 |
Okuma N., Sato M.. Non-Hermitian skin effects in Hermitian correlated or disordered systems: Quantities sensitive or insensitive to boundary effects and pseudo-quantum-number. Phys. Rev. Lett., 2021, 126(17): 176601
https://doi.org/10.1103/PhysRevLett.126.176601
|
23 |
Zhang K., Yang Z., Fang C.. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
https://doi.org/10.1038/s41467-022-30161-6
|
24 |
Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., N. Christodoulides D.. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
https://doi.org/10.1103/PhysRevLett.106.213901
|
25 |
Yao S., Song F., Wang Z.. Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
https://doi.org/10.1103/PhysRevLett.121.136802
|
26 |
S. Deng T., Yi W.. Non-Bloch topological invariants in a non-Hermitian domain wall system. Phys. Rev. B, 2019, 100(3): 035102
https://doi.org/10.1103/PhysRevB.100.035102
|
27 |
Liu T., R. Zhang Y., Ai Q., Gong Z., Kawabata K., Ueda M., Nori F.. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett., 2019, 122(7): 076801
https://doi.org/10.1103/PhysRevLett.122.076801
|
28 |
Longhi S.. Non-Bloch-band collapse and chiral Zener tunneling. Phys. Rev. Lett., 2020, 124(6): 066602
https://doi.org/10.1103/PhysRevLett.124.066602
|
29 |
Zhang K., Yang Z., Fang C.. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
https://doi.org/10.1103/PhysRevLett.125.126402
|
30 |
Kawabata K., Okuma N., Sato M.. Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class. Phys. Rev. B, 2020, 101(19): 195147
https://doi.org/10.1103/PhysRevB.101.195147
|
31 |
Shen H., Zhen B., Fu L.. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 2018, 120(14): 146402
https://doi.org/10.1103/PhysRevLett.120.146402
|
32 |
Gong Z., Ashida Y., Kawabata K., Takasan K., Higashikawa S., Ueda M.. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
https://doi.org/10.1103/PhysRevX.8.031079
|
33 |
Kawabata K., Bessho T., Sato M.. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 2019, 123(6): 066405
https://doi.org/10.1103/PhysRevLett.123.066405
|
34 |
Kawabata K., Shiozaki K., Ueda M., Sato M.. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
https://doi.org/10.1103/PhysRevX.9.041015
|
35 |
Zhou H., Y. Lee J.. Periodic table for topological bands with non-Hermitian symmetries. Phys. Rev. B, 2019, 99(23): 235112
https://doi.org/10.1103/PhysRevB.99.235112
|
36 |
Herviou L., Regnault N., H. Bardarson J.. Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models. SciPost Phys., 2019, 7: 069
https://doi.org/10.21468/SciPostPhys.7.5.069
|
37 |
C. Wojcik C., Q. Sun X., Bzdušek T., Fan S.. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B, 2020, 101(20): 205417
https://doi.org/10.1103/PhysRevB.101.205417
|
38 |
Y. Chang P., S. You J., Wen X., Ryu S.. Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res., 2020, 2(3): 033069
https://doi.org/10.1103/PhysRevResearch.2.033069
|
39 |
M Chen L., A. Chen S., Ye P.. Entanglement, non-hermiticity, and duality. SciPost Phys., 2021, 11: 003
https://doi.org/10.21468/SciPostPhys.11.1.003
|
40 |
Sayyad S., Yu J., G. Grushin A., M. Sieberer L.. Entanglement spectrum crossings reveal non-Hermitian dynamical topology. Phys. Rev. Res., 2021, 3(3): 033022
https://doi.org/10.1103/PhysRevResearch.3.033022
|
41 |
B. Guo Y., C. Yu Y., Z. Huang R., P. Yang L., Z. Chi R., J. Liao H., Xiang T.. Entanglement entropy of non-Hermitian free fermions. J. Phys.: Condens. Matter, 2021, 33(47): 475502
https://doi.org/10.1088/1361-648X/ac216e
|
42 |
M. Chen L., Zhou Y., A. Chen S., Ye P.. Quantum entanglement of non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(12): L121115
https://doi.org/10.1103/PhysRevB.105.L121115
|
43 |
Longhi S.. Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
https://doi.org/10.1103/PhysRevLett.122.237601
|
44 |
B. Zeng Q., Xu Y.. Winding numbers and generalized mobility edges in non-Hermitian systems. Phys. Rev. Res., 2020, 2(3): 033052
https://doi.org/10.1103/PhysRevResearch.2.033052
|
45 |
Liu Y., P. Jiang X., Cao J., Chen S.. Non-Hermitian mobility edges in one-dimensional quasicrystals with parity‒time symmetry. Phys. Rev. B, 2020, 101(17): 174205
https://doi.org/10.1103/PhysRevB.101.174205
|
46 |
Liu Y., Zhou Q., Chen S.. Localization transition, spectrum structure, and winding numbers for one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 104(2): 024201
https://doi.org/10.1103/PhysRevB.104.024201
|
47 |
Hatano N., R. Nelson D.. Localization transitions in Non-Hermitian quantum mechanics. Phys. Rev. Lett., 1996, 77(3): 570
https://doi.org/10.1103/PhysRevLett.77.570
|
48 |
Hatano N., R. Nelson D.. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B, 1997, 56(14): 8651
https://doi.org/10.1103/PhysRevB.56.8651
|
49 |
Hatano N., R. Nelson D.. Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B, 1998, 58(13): 8384
https://doi.org/10.1103/PhysRevB.58.8384
|
50 |
Lin Q., Li T., Xiao L., Wang K., Yi W., Xue P.. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
https://doi.org/10.1038/s41467-022-30938-9
|
51 |
M. Bender C.. Introduction to PT-symmetric quantum theory. Contemp. Phys., 2005, 46(4): 277
https://doi.org/10.1080/00107500072632
|
52 |
Wiersig J.. Nonorthogonality constraints in open quantum and wave systems. Phys. Rev. Res., 2019, 1(3): 033182
https://doi.org/10.1103/PhysRevResearch.1.033182
|
53 |
Petermann K.. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron., 1979, 15(7): 566
https://doi.org/10.1109/JQE.1979.1070064
|
54 |
G. Makris K., El-Ganainy R., N. Christodoulides D., H. Musslimani Z.. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 2008, 100(10): 103904
https://doi.org/10.1103/PhysRevLett.100.103904
|
55 |
Schomerus H.. Excess quantum noise due to mode nonorthogonality in dielectric microresonators. Phys. Rev. A, 2009, 79(6): 061801
https://doi.org/10.1103/PhysRevA.79.061801
|
56 |
Wiersig J., Eberspächer A., B. Shim J., W. Ryu J., Shinohara S., Hentschel M., Schomerus H.. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A, 2011, 84(2): 023845
https://doi.org/10.1103/PhysRevA.84.023845
|
57 |
V. Fyodorov Y., V. Savin D.. Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality. Phys. Rev. Lett., 2012, 108(18): 184101
https://doi.org/10.1103/PhysRevLett.108.184101
|
58 |
G. Makris K., Ge L., E. Türeci H.. Anomalous transient amplification of waves in non-normal photonic media. Phys. Rev. X, 2014, 4(4): 041044
https://doi.org/10.1103/PhysRevX.4.041044
|
59 |
Davy M., Z. Genack A.. Selectively exciting quasi-normal modes in open disordered systems. Nat. Commun., 2018, 9(1): 4714
https://doi.org/10.1038/s41467-018-07180-3
|
60 |
Davy M., Z. Genack A.. Probing nonorthogonality of eigenfunctions and its impact on transport through open systems. Phys. Rev. Res., 2019, 1(3): 033026
https://doi.org/10.1103/PhysRevResearch.1.033026
|
61 |
Song F., Yao S., Wang Z.. Non-Hermitian topological invariants in real space. Phys. Rev. Lett., 2019, 123(24): 246801
https://doi.org/10.1103/PhysRevLett.123.246801
|
62 |
D. Lee T., Wolfenstein L.. Analysis of CP-noninvariant interactions and the k10, k20 system. Phys. Rev., 1965, 138(6B): B1490
https://doi.org/10.1103/PhysRev.138.B1490
|
63 |
Wang H., H. Lai Y., Yuan Z., G. Suh M., Vahala K.. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun., 2020, 11(1): 1610
https://doi.org/10.1038/s41467-020-15341-6
|
64 |
Cheng J., Zhang X., H. Lu M., F. Chen Y.. Competition between band topology and non-Hermiticity. Phys. Rev. B, 2022, 105(9): 094103
https://doi.org/10.1103/PhysRevB.105.094103
|
65 |
Oztas Z., Candemir N.. Su‒Schrieffer‒Heeger model with imaginary gauge field. Phys. Lett. A, 2019, 383(15): 1821
https://doi.org/10.1016/j.physleta.2019.02.037
|
66 |
R. Wang X., X. Guo C., P. Kou S.. Defective edge states and number-anomalous bulk‒boundary correspondence in non-Hermitian topological systems. Phys. Rev. B, 2020, 101(12): 121116
https://doi.org/10.1103/PhysRevB.101.121116
|
67 |
Zhu W., X. Teo W., Li L., Gong J.. Delocalization of topological edge states. Phys. Rev. B, 2021, 103(19): 195414
https://doi.org/10.1103/PhysRevB.103.195414
|
68 |
Zhou Y.M. Chen L.Ye P., to be appeared (2023)
|
69 |
W. Demmel J.. Nearest defective matrices and the geometry of ill-conditioning. Reliable Numer. Comput., 1990, 44: 35
|
70 |
H. Lee C., Ye P., L. Qi X.. Position‒momentum duality in the entanglement spectrum of free fermions. J. Stat. Mech., 2014, 2014(10): P10023
https://doi.org/10.1088/1742-5468/2014/10/P10023
|
71 |
H. Lee C., Ye P.. Free-fermion entanglement spectrum through Wannier interpolation. Phys. Rev. B, 2015, 91(8): 085119
https://doi.org/10.1103/PhysRevB.91.085119
|
72 |
Long Y., Xue H., Zhang B.. Non-Hermitian topological systems with eigenvalues that are always real. Phys. Rev. B, 2022, 105(10): L100102
https://doi.org/10.1103/PhysRevB.105.L100102
|
73 |
Zettl A., Sturm‒Liouville Theory, 121, American Mathematical Society, 2012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|