Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33206    https://doi.org/10.1007/s11467-023-1362-7
RESEARCH ARTICLE
Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media
Yongxing Wang1,2, Jizi Lin1,2, Ping Xu3()
1. Zhangjiagang Campus, Jiangsu University of Science and Technology, Zhangjiagang 215600, China
2. Department of physics, Jiangsu University of Science and Technology Suzhou Institute of Technology, Zhangjiagang 215600, China
3. School of Physical Science and Technology, Soochow University, Suzhou 215006, China
 Download: PDF(8191 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a novel method to achieve the decoupling between the transmission and reflection waves of non-Hermitian doped epsilon-near-zero (ENZ) media by inserting a dielectric slit into the structure. Our method also allows for independent control over the amplitude and the phase of both the transmission and reflection waves through few dopants, enabling us to achieve various optical effects, such as perfect absorption, high-gain reflection without transmission, reflectionless high-gain transmission and reflectionless total transmission with different phases. By manipulating the permittivity of dopants with extremely low loss or gain, we can realize these effects in the same configuration. We also extend this principle to multi-port doped ENZ structures and design a highly reconfigurable and reflectionless signal distributor and generator that can split, amplify, decay and phase-shift the input signal in any desired way. Our method overcomes limitations of optical manipulation in doped ENZ caused by the interdependent nature of the transmission and reflection, and has potential applications in novel photonic devices.

Keywords photonic doping      non-Hermitian      epsilon-near-zero media      transmission-reflection decoupling     
Corresponding Author(s): Ping Xu   
Issue Date: 07 December 2023
 Cite this article:   
Yongxing Wang,Jizi Lin,Ping Xu. Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media[J]. Front. Phys. , 2024, 19(3): 33206.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1362-7
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33206
Fig.1  (a) Diagrammatic sketch of the doped ENZ structure with two ports. (b) Diagram of the solutions of m 1 on the complex plane for a given reflectance R when the transmission coefficient is fixed as t0. (c) Diagram of the solutions of m 1 and corresponding m2 on the complex plane for a given transmittance T when the reflection coefficient is fixed as r 0.
Fig.2  Calculation results of (a) reflectance R and (b) transmittance T versus the real part of the relative permittivity of dopant 1 ε d1 and the imaginary part of the relative permittivity of dopant 1 ε d1 when εd2 =1.196. (c) Calculation results of the reflection phase for R=103± 4×105, R=102±2× 10 4, R= 10 1±1 ×103, R=1±1×102, R=101±1× 10 1, R= 102±2 and R=103±4× 101.
Fig.3  (a) Simulation results of the distribution of magnetic fields in the ENZ structure for perfect absorption. (b) The corresponding distribution of the amplitude of magnetic fields along the gray dashed line in (a). (c) Simulation results of the distribution of magnetic fields in the ENZ structure for amplified reflection with extremely low transmission. (d) The corresponding distribution of the amplitude of magnetic fields along the gray dashed line in (c).
Fig.4  Calculation results of the transmittance T versus (a) the real part and imaginary part of the relative permittivity of dopant 1 and (b) that of dopant 2 for reflectance R=0. (c) Distributions of phase as a function of the real part and imaginary part of the relative permittivity of dopant 1 depicted by the red coordinate system and that of dopant 2 depicted by the blue coordinate system when the transmittance T=1±0.01.
Fig.5  (a) Simulation results of the distribution of magnetic fields in the ENZ structure for the amplified transmission with extremely low reflection. (b) The corresponding distribution of the amplitude of magnetic fields along the gray dashed line in (a). Simulation results of the distribution of magnetic fields in the ENZ structure for the reflectionless total transmission with (c) near-zero phase advance and (d) a π-phase advance.
Fig.6  Plane (a) and three-dimensional (b) diagrammatic sketch of the highly reconfigurable reflectionless signal distributor and generator. Simulation results of the magnetic field distribution in the signal distributor and generator when (c) the power of the incident wave is equally distributed into two output ports with opposite transmission phases, (d) when the incident wave is totally distributed into one output port with φ21= π/ 2 and (e) when the incident wave is amplified in one output port and decayed in another output port with the same phase.
1 Bao L., Fu X., Y. Wu R., Ma A., J. Cui T.. Full-space manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface. Adv. Mater. Technol., 2021, 6(4): 2001032
https://doi.org/10.1002/admt.202001032
2 Li Z., Zhang J., Liu J., Liu L., Wang X., Premaratne M., Yao J., Zhu W.. Independent manipulation of aperture and radiation fields in a transmission-reflection integrated complex-amplitude metasurface. Adv. Mater. Technol., 2023, 8(6): 2201192
https://doi.org/10.1002/admt.202201192
3 Deng L., Li Z., Zhou Z., He Z., Zeng Y., Zheng G., Yu S.. Bilayer-metasurface design, fabrication, and functionalization for full-space light manipulation. Adv. Opt. Mater., 2022, 10(7): 2102179
https://doi.org/10.1002/adom.202102179
4 Cai T., M. Wang G., W. Tang S., X. Xu H., W. Duan J., J. Guo H., X. Guan F., L. Sun S., He Q., Zhou L.. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Phys. Rev. Appl., 2017, 8(3): 034033
https://doi.org/10.1103/PhysRevApplied.8.034033
5 Zheng C., Li H., Li J., Li J., Yue Z., Yang F., Zhang Y., Yao J.. All-dielectric metasurface for polarization selective full-space complex amplitude modulations. Opt. Lett., 2022, 47(17): 4291
https://doi.org/10.1364/OL.465194
6 Li G., Shi H., Yi J., Li B., Zhang A., Xu Z.. Transmission–reflection-integrated metasurfaces design for simultaneous manipulation of phase and amplitude. IEEE Trans. Antenn. Propag., 2022, 70(7): 6072
https://doi.org/10.1109/TAP.2022.3161335
7 Liberal I., Engheta N.. Near-zero refractive index photonics. Nat. Photonics, 2017, 11(3): 149
https://doi.org/10.1038/nphoton.2017.13
8 Kinsey N., DeVault C., Boltasseva A., M. Shalaev V.. Near zero-index materials for photonics. Nat. Rev. Mater., 2019, 4(12): 742
https://doi.org/10.1038/s41578-019-0133-0
9 Niu X., Hu X., Chu S., Gong Q.. Epsilon-near-zero photonics: A new platform for integrated devices. Adv. Opt. Mater., 2018, 6(10): 1701292
https://doi.org/10.1002/adom.201701292
10 Y. Wu J., T. Xie Z., H. Sha Y., Y. Fu H., Li Q.. Epsilon near-zero photonics: Infinite potentials. Photon. Res., 2021, 9(8): 1616
https://doi.org/10.1364/PRJ.427246
11 Enoch S., Tayeb G., Sabouroux P., Guerin N., Vincent P.. A metamaterial for directive emission. Phys. Rev. Lett., 2002, 89(21): 213902
https://doi.org/10.1103/PhysRevLett.89.213902
12 J. Yang J., Francescato Y., A. Maier S., Mao F., Huang M.. Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs. Opt. Express, 2014, 22(8): 9107
https://doi.org/10.1364/OE.22.009107
13 Alù A., G. Silveirinha M., Salandrino A., Engheta N.. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys. Rev. B, 2007, 75(15): 155410
https://doi.org/10.1103/PhysRevB.75.155410
14 Briere G., Cluzel B., Demichel O.. Improving the transmittance of an epsilon-near-zero-based wavefront shaper. Opt. Lett., 2016, 41(19): 4542
https://doi.org/10.1364/OL.41.004542
15 Silveirinha M., Engheta N.. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett., 2006, 97(15): 157403
https://doi.org/10.1103/PhysRevLett.97.157403
16 Luo J., Lai Y.. Anisotropic zero-index waveguide with arbitrary shapes. Sci. Rep., 2014, 4(1): 5875
https://doi.org/10.1038/srep05875
17 M. Sadeghi M., Nadgaran H., Y. Chen H.. Perfect field concentrator using zero index metamaterials and perfect electric conductors. Front. Phys., 2014, 9(1): 90
https://doi.org/10.1007/s11467-013-0374-0
18 Liberal I., M. Mahmoud A., Li Y., Edwards B., Engheta N.. Photonic doping of epsilon-near-zero media. Science, 2017, 355(6329): 1058
https://doi.org/10.1126/science.aal2672
19 Silveirinha M., Engheta N.. Design of matched zero index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B, 2007, 75(7): 075119
https://doi.org/10.1103/PhysRevB.75.075119
20 C. Nguyen V., Chen L., Halterman K.. Total transmission and total reflection by zero index metamaterials with defects. Phys. Rev. Lett., 2010, 105(23): 233908
https://doi.org/10.1103/PhysRevLett.105.233908
21 Xu Y., Chen H.. Total reflection and transmission by epsilon-near-zero metamaterials with defects. Appl. Phys. Lett., 2011, 98(11): 113501
https://doi.org/10.1063/1.3565172
22 Zhang K., Fu J., Y. Xiao L., Wu Q., W. Li L.. Total transmission and total reflection of electromagnetic waves by anisotropic epsilon-near-zero metamaterials embedded with dielectric defects. J. Appl. Phys., 2013, 113(8): 084908
https://doi.org/10.1063/1.4794011
23 Wu Y., Li J.. Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Appl. Phys. Lett., 2013, 102(18): 183105
https://doi.org/10.1063/1.4804201
24 Huang Y., Li J.. Total reflection and cloaking by triangular defects embedded in zero index metamaterials. Adv. Appl. Math. Mech., 2015, 7(2): 135
https://doi.org/10.4208/aamm.2014.m659
25 Hao J., Yan W., Qiu M.. Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett., 2010, 96(10): 101109
https://doi.org/10.1063/1.3359428
26 Luo J., Xu P., Gao L., Lai Y., Chen H.. Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects. Plasmonics, 2012, 7(2): 353
https://doi.org/10.1007/s11468-011-9314-4
27 Wang T., Luo J., Gao L., Xu P., Lai Y.. Hiding objects and obtaining Fano resonances in index-near-zero and epsilon-near-zero metamaterials with Bragg-fiber-like defects. J. Opt. Soc. Am. B, 2013, 30(7): 1878
https://doi.org/10.1364/JOSAB.30.001878
28 M. Mahmoud A., Engheta N.. Wave–matter interactions in epsilon-and-mu-near-zero structures. Nat. Commun., 2014, 5(1): 5638
https://doi.org/10.1038/ncomms6638
29 Liberal I., Li Y., Engheta N.. Reconfigurable epsilon near-zero metasurfaces via photonic doping. Nanophotonics, 2018, 7(6): 1117
https://doi.org/10.1515/nanoph-2018-0012
30 Zhao L., Feng Y., Zhu B., Zhao J.. Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants. Opt. Express, 2019, 27(14): 20073
https://doi.org/10.1364/OE.27.020073
31 Liberal I., Lobet M., Li Y., Engheta N.. Near-zero index media as electromagnetic ideal fluids. Proc. Natl. Acad. Sci. USA, 2020, 117(39): 24050
https://doi.org/10.1073/pnas.2008143117
32 Zhou Z., Li Y., Nahvi E., Li H., He Y., Liberal I., Engheta N.. General impedance matching via doped epsilon-near-zero media. Phys. Rev. Appl., 2020, 13(3): 034005
https://doi.org/10.1103/PhysRevApplied.13.034005
33 Zhou Z., Li Y., Li H., Sun W., Liberal I., Engheta N.. Substrate-integrated photonic doping for near-zero-index devices. Nat. Commun., 2019, 10(1): 4132
https://doi.org/10.1038/s41467-019-12083-y
34 H. Zhou Z., Li H., Y. Sun W., J. He Y., Liberal I., Engheta N., H. Feng Z., Li Y.. Dispersion coding of ENZ media via multiple photonic dopants. Light Sci. Appl., 2022, 11(1): 207
https://doi.org/10.1038/s41377-022-00892-8
35 Nahvi E., J. Mencagli M., Engheta N.. Tunable radiation enhancement and suppression using a pair of photonically doped epsilon-near-zero (ENZ) slabs. Opt. Lett., 2022, 47(6): 1319
https://doi.org/10.1364/OL.444303
36 X. Wang Y., Xu P.. Spatial heterogeneity of the doping mode: A potential optical reconfiguration freedom of photonic doping epsilon-near-zero media. Opt. Mater., 2023, 135: 113300
https://doi.org/10.1016/j.optmat.2022.113300
37 Li Y.H. Zhou Z. J. He Y.Li H., Epsilon-Near-Zero Metamaterials, Cambridge University Press, Cambridge, 2021
38 H. Zhou Z., Li Y.. N-port equal/unequal-split power dividers using epsilon-near-zero metamaterials. IEEE Trans. Microw. Theory Tech., 2021, 69(3): 1529
https://doi.org/10.1109/TMTT.2020.3045722
39 Li H., Zhou Z., He Y., Sun W., Li Y., Liberal I., Engheta N.. Geometry-independent antenna based on epsilon-near-zero medium. Nat. Commun., 2022, 13(1): 3568
https://doi.org/10.1038/s41467-022-31013-z
40 Li H., Fu P., Zhou Z., Sun W., Li Y., Wu J., Dai Q.. Performing calculus with epsilon-near zero metamaterials. Sci. Adv., 2022, 8(30): eabq6198
https://doi.org/10.1126/sciadv.abq6198
41 Coppolaro M., Moccia M., Castaldi G., Engheta N., Galdi V.. Non-Hermitian doping of epsilon-near-zero media. Proc. Natl. Acad. Sci. USA, 2020, 117(25): 13921
https://doi.org/10.1073/pnas.2001125117
42 Y. Fu Y., J. Zhang X., D. Xu Y., Y. Chen H.. Design of zero index metamaterials with PT symmetry using epsilon near-zero media with defects. J. Appl. Phys., 2017, 121(9): 094503
https://doi.org/10.1063/1.4977692
43 Luo J., Liu B., H. Hang Z., Lai Y.. coherent perfect absorption via photonic doping of zero-index media. Laser Photonics Rev., 2018, 12(8): 1800001
https://doi.org/10.1002/lpor.201800001
44 Wang D., Luo J., Sun Z., Lai Y.. Transforming zero index media into geometry-invariant coherent perfect absorbers via embedded conductive films. Opt. Express, 2021, 29(4): 5247
https://doi.org/10.1364/OE.416632
45 Y. Jin B., Argyropoulos C.. Nonreciprocal transmission in nonlinear PT-symmetric metamaterials using epsilon-near-zero media doped with defects. Adv. Opt. Mater., 2019, 7(23): 1901083
https://doi.org/10.1002/adom.201901083
46 Bai P., Ding K., Wang G., Luo J., Q. Zhang Z., T. Chan C., Wu Y., Lai Y.. Simultaneous realization of a coherent perfect absorber and laser by zero index media with both gain and loss. Phys. Rev. A, 2016, 94(6): 063841
https://doi.org/10.1103/PhysRevA.94.063841
47 Y. Fu Y., D. Xu Y., Y. Chen H.. Zero index metamaterials with PT symmetry in a waveguide system. Opt. Express, 2016, 24(2): 1648
https://doi.org/10.1364/OE.24.001648
48 D. Chong Y., Ge L., D. Stone A.. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett., 2011, 106(9): 093902
https://doi.org/10.1103/PhysRevLett.106.093902
49 S. Li L., Zhang J., Wang C., Zheng N., Yin H.. Optical bound states in the continuum in a single slab with zero refractive index. Phys. Rev. A, 2017, 96(1): 013801
https://doi.org/10.1103/PhysRevA.96.013801
50 Y. Fu Y., D. Xu Y., Y. Chen H.. Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13(4): 134206
https://doi.org/10.1007/s11467-018-0781-3
[1] Haiyan Zhang, Zhiwei Guo, Yunhui Li, Yaping Yang, Yuguang Chen, Hong Chen. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer[J]. Front. Phys. , 2024, 19(4): 43209-.
[2] Xu-Dan Xie, Zheng-Yuan Xue, Dan-Bo Zhang. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems[J]. Front. Phys. , 2024, 19(4): 41202-.
[3] Xiang Li, Jin Liu, Tao Liu. Localization−delocalization transitions in non-Hermitian Aharonov−Bohm cages[J]. Front. Phys. , 2024, 19(3): 33211-.
[4] Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye. Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors[J]. Front. Phys. , 2024, 19(2): 23201-.
[5] Rijia Lin, Tommy Tai, Linhu Li, Ching Hua Lee. Topological non-Hermitian skin effect[J]. Front. Phys. , 2023, 18(5): 53605-.
[6] Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential[J]. Front. Phys. , 2022, 17(4): 42503-.
[7] Annan Fan, Shi-Dong Liang. Complex energy plane and topological invariant in non-Hermitian systems[J]. Front. Phys. , 2022, 17(3): 33501-.
[8] Gaoyong Sun, Jia-Chen Tang, Su-Peng Kou. Biorthogonal quantum criticality in non-Hermitian many-body systems[J]. Front. Phys. , 2022, 17(3): 33502-.
[9] Ying-Tao Zhang, Shan Jiang, Qingming Li, Qing-Feng Sun. An analytical solution for quantum scattering through a PT-symmetric delta potential[J]. Front. Phys. , 2021, 16(4): 43503-.
[10] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[11] Jun-Hua Chen(陈俊华), Hong-Yi Fan(范洪义). New application of non-Hermitian Hamiltonian operator in solving master equation for laser process[J]. Front. Phys. , 2012, 7(6): 632-636.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed