|
|
Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media |
Yongxing Wang1,2, Jizi Lin1,2, Ping Xu3( ) |
1. Zhangjiagang Campus, Jiangsu University of Science and Technology, Zhangjiagang 215600, China 2. Department of physics, Jiangsu University of Science and Technology Suzhou Institute of Technology, Zhangjiagang 215600, China 3. School of Physical Science and Technology, Soochow University, Suzhou 215006, China |
|
|
Abstract We present a novel method to achieve the decoupling between the transmission and reflection waves of non-Hermitian doped epsilon-near-zero (ENZ) media by inserting a dielectric slit into the structure. Our method also allows for independent control over the amplitude and the phase of both the transmission and reflection waves through few dopants, enabling us to achieve various optical effects, such as perfect absorption, high-gain reflection without transmission, reflectionless high-gain transmission and reflectionless total transmission with different phases. By manipulating the permittivity of dopants with extremely low loss or gain, we can realize these effects in the same configuration. We also extend this principle to multi-port doped ENZ structures and design a highly reconfigurable and reflectionless signal distributor and generator that can split, amplify, decay and phase-shift the input signal in any desired way. Our method overcomes limitations of optical manipulation in doped ENZ caused by the interdependent nature of the transmission and reflection, and has potential applications in novel photonic devices.
|
Keywords
photonic doping
non-Hermitian
epsilon-near-zero media
transmission-reflection decoupling
|
Corresponding Author(s):
Ping Xu
|
Issue Date: 07 December 2023
|
|
1 |
Bao L., Fu X., Y. Wu R., Ma A., J. Cui T.. Full-space manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface. Adv. Mater. Technol., 2021, 6(4): 2001032
https://doi.org/10.1002/admt.202001032
|
2 |
Li Z., Zhang J., Liu J., Liu L., Wang X., Premaratne M., Yao J., Zhu W.. Independent manipulation of aperture and radiation fields in a transmission-reflection integrated complex-amplitude metasurface. Adv. Mater. Technol., 2023, 8(6): 2201192
https://doi.org/10.1002/admt.202201192
|
3 |
Deng L., Li Z., Zhou Z., He Z., Zeng Y., Zheng G., Yu S.. Bilayer-metasurface design, fabrication, and functionalization for full-space light manipulation. Adv. Opt. Mater., 2022, 10(7): 2102179
https://doi.org/10.1002/adom.202102179
|
4 |
Cai T., M. Wang G., W. Tang S., X. Xu H., W. Duan J., J. Guo H., X. Guan F., L. Sun S., He Q., Zhou L.. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Phys. Rev. Appl., 2017, 8(3): 034033
https://doi.org/10.1103/PhysRevApplied.8.034033
|
5 |
Zheng C., Li H., Li J., Li J., Yue Z., Yang F., Zhang Y., Yao J.. All-dielectric metasurface for polarization selective full-space complex amplitude modulations. Opt. Lett., 2022, 47(17): 4291
https://doi.org/10.1364/OL.465194
|
6 |
Li G., Shi H., Yi J., Li B., Zhang A., Xu Z.. Transmission–reflection-integrated metasurfaces design for simultaneous manipulation of phase and amplitude. IEEE Trans. Antenn. Propag., 2022, 70(7): 6072
https://doi.org/10.1109/TAP.2022.3161335
|
7 |
Liberal I., Engheta N.. Near-zero refractive index photonics. Nat. Photonics, 2017, 11(3): 149
https://doi.org/10.1038/nphoton.2017.13
|
8 |
Kinsey N., DeVault C., Boltasseva A., M. Shalaev V.. Near zero-index materials for photonics. Nat. Rev. Mater., 2019, 4(12): 742
https://doi.org/10.1038/s41578-019-0133-0
|
9 |
Niu X., Hu X., Chu S., Gong Q.. Epsilon-near-zero photonics: A new platform for integrated devices. Adv. Opt. Mater., 2018, 6(10): 1701292
https://doi.org/10.1002/adom.201701292
|
10 |
Y. Wu J., T. Xie Z., H. Sha Y., Y. Fu H., Li Q.. Epsilon near-zero photonics: Infinite potentials. Photon. Res., 2021, 9(8): 1616
https://doi.org/10.1364/PRJ.427246
|
11 |
Enoch S., Tayeb G., Sabouroux P., Guerin N., Vincent P.. A metamaterial for directive emission. Phys. Rev. Lett., 2002, 89(21): 213902
https://doi.org/10.1103/PhysRevLett.89.213902
|
12 |
J. Yang J., Francescato Y., A. Maier S., Mao F., Huang M.. Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs. Opt. Express, 2014, 22(8): 9107
https://doi.org/10.1364/OE.22.009107
|
13 |
Alù A., G. Silveirinha M., Salandrino A., Engheta N.. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys. Rev. B, 2007, 75(15): 155410
https://doi.org/10.1103/PhysRevB.75.155410
|
14 |
Briere G., Cluzel B., Demichel O.. Improving the transmittance of an epsilon-near-zero-based wavefront shaper. Opt. Lett., 2016, 41(19): 4542
https://doi.org/10.1364/OL.41.004542
|
15 |
Silveirinha M., Engheta N.. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett., 2006, 97(15): 157403
https://doi.org/10.1103/PhysRevLett.97.157403
|
16 |
Luo J., Lai Y.. Anisotropic zero-index waveguide with arbitrary shapes. Sci. Rep., 2014, 4(1): 5875
https://doi.org/10.1038/srep05875
|
17 |
M. Sadeghi M., Nadgaran H., Y. Chen H.. Perfect field concentrator using zero index metamaterials and perfect electric conductors. Front. Phys., 2014, 9(1): 90
https://doi.org/10.1007/s11467-013-0374-0
|
18 |
Liberal I., M. Mahmoud A., Li Y., Edwards B., Engheta N.. Photonic doping of epsilon-near-zero media. Science, 2017, 355(6329): 1058
https://doi.org/10.1126/science.aal2672
|
19 |
Silveirinha M., Engheta N.. Design of matched zero index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B, 2007, 75(7): 075119
https://doi.org/10.1103/PhysRevB.75.075119
|
20 |
C. Nguyen V., Chen L., Halterman K.. Total transmission and total reflection by zero index metamaterials with defects. Phys. Rev. Lett., 2010, 105(23): 233908
https://doi.org/10.1103/PhysRevLett.105.233908
|
21 |
Xu Y., Chen H.. Total reflection and transmission by epsilon-near-zero metamaterials with defects. Appl. Phys. Lett., 2011, 98(11): 113501
https://doi.org/10.1063/1.3565172
|
22 |
Zhang K., Fu J., Y. Xiao L., Wu Q., W. Li L.. Total transmission and total reflection of electromagnetic waves by anisotropic epsilon-near-zero metamaterials embedded with dielectric defects. J. Appl. Phys., 2013, 113(8): 084908
https://doi.org/10.1063/1.4794011
|
23 |
Wu Y., Li J.. Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Appl. Phys. Lett., 2013, 102(18): 183105
https://doi.org/10.1063/1.4804201
|
24 |
Huang Y., Li J.. Total reflection and cloaking by triangular defects embedded in zero index metamaterials. Adv. Appl. Math. Mech., 2015, 7(2): 135
https://doi.org/10.4208/aamm.2014.m659
|
25 |
Hao J., Yan W., Qiu M.. Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett., 2010, 96(10): 101109
https://doi.org/10.1063/1.3359428
|
26 |
Luo J., Xu P., Gao L., Lai Y., Chen H.. Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects. Plasmonics, 2012, 7(2): 353
https://doi.org/10.1007/s11468-011-9314-4
|
27 |
Wang T., Luo J., Gao L., Xu P., Lai Y.. Hiding objects and obtaining Fano resonances in index-near-zero and epsilon-near-zero metamaterials with Bragg-fiber-like defects. J. Opt. Soc. Am. B, 2013, 30(7): 1878
https://doi.org/10.1364/JOSAB.30.001878
|
28 |
M. Mahmoud A., Engheta N.. Wave–matter interactions in epsilon-and-mu-near-zero structures. Nat. Commun., 2014, 5(1): 5638
https://doi.org/10.1038/ncomms6638
|
29 |
Liberal I., Li Y., Engheta N.. Reconfigurable epsilon near-zero metasurfaces via photonic doping. Nanophotonics, 2018, 7(6): 1117
https://doi.org/10.1515/nanoph-2018-0012
|
30 |
Zhao L., Feng Y., Zhu B., Zhao J.. Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants. Opt. Express, 2019, 27(14): 20073
https://doi.org/10.1364/OE.27.020073
|
31 |
Liberal I., Lobet M., Li Y., Engheta N.. Near-zero index media as electromagnetic ideal fluids. Proc. Natl. Acad. Sci. USA, 2020, 117(39): 24050
https://doi.org/10.1073/pnas.2008143117
|
32 |
Zhou Z., Li Y., Nahvi E., Li H., He Y., Liberal I., Engheta N.. General impedance matching via doped epsilon-near-zero media. Phys. Rev. Appl., 2020, 13(3): 034005
https://doi.org/10.1103/PhysRevApplied.13.034005
|
33 |
Zhou Z., Li Y., Li H., Sun W., Liberal I., Engheta N.. Substrate-integrated photonic doping for near-zero-index devices. Nat. Commun., 2019, 10(1): 4132
https://doi.org/10.1038/s41467-019-12083-y
|
34 |
H. Zhou Z., Li H., Y. Sun W., J. He Y., Liberal I., Engheta N., H. Feng Z., Li Y.. Dispersion coding of ENZ media via multiple photonic dopants. Light Sci. Appl., 2022, 11(1): 207
https://doi.org/10.1038/s41377-022-00892-8
|
35 |
Nahvi E., J. Mencagli M., Engheta N.. Tunable radiation enhancement and suppression using a pair of photonically doped epsilon-near-zero (ENZ) slabs. Opt. Lett., 2022, 47(6): 1319
https://doi.org/10.1364/OL.444303
|
36 |
X. Wang Y., Xu P.. Spatial heterogeneity of the doping mode: A potential optical reconfiguration freedom of photonic doping epsilon-near-zero media. Opt. Mater., 2023, 135: 113300
https://doi.org/10.1016/j.optmat.2022.113300
|
37 |
Li Y.H. Zhou Z. J. He Y.Li H., Epsilon-Near-Zero Metamaterials, Cambridge University Press, Cambridge, 2021
|
38 |
H. Zhou Z., Li Y.. N-port equal/unequal-split power dividers using epsilon-near-zero metamaterials. IEEE Trans. Microw. Theory Tech., 2021, 69(3): 1529
https://doi.org/10.1109/TMTT.2020.3045722
|
39 |
Li H., Zhou Z., He Y., Sun W., Li Y., Liberal I., Engheta N.. Geometry-independent antenna based on epsilon-near-zero medium. Nat. Commun., 2022, 13(1): 3568
https://doi.org/10.1038/s41467-022-31013-z
|
40 |
Li H., Fu P., Zhou Z., Sun W., Li Y., Wu J., Dai Q.. Performing calculus with epsilon-near zero metamaterials. Sci. Adv., 2022, 8(30): eabq6198
https://doi.org/10.1126/sciadv.abq6198
|
41 |
Coppolaro M., Moccia M., Castaldi G., Engheta N., Galdi V.. Non-Hermitian doping of epsilon-near-zero media. Proc. Natl. Acad. Sci. USA, 2020, 117(25): 13921
https://doi.org/10.1073/pnas.2001125117
|
42 |
Y. Fu Y., J. Zhang X., D. Xu Y., Y. Chen H.. Design of zero index metamaterials with PT symmetry using epsilon near-zero media with defects. J. Appl. Phys., 2017, 121(9): 094503
https://doi.org/10.1063/1.4977692
|
43 |
Luo J., Liu B., H. Hang Z., Lai Y.. coherent perfect absorption via photonic doping of zero-index media. Laser Photonics Rev., 2018, 12(8): 1800001
https://doi.org/10.1002/lpor.201800001
|
44 |
Wang D., Luo J., Sun Z., Lai Y.. Transforming zero index media into geometry-invariant coherent perfect absorbers via embedded conductive films. Opt. Express, 2021, 29(4): 5247
https://doi.org/10.1364/OE.416632
|
45 |
Y. Jin B., Argyropoulos C.. Nonreciprocal transmission in nonlinear PT-symmetric metamaterials using epsilon-near-zero media doped with defects. Adv. Opt. Mater., 2019, 7(23): 1901083
https://doi.org/10.1002/adom.201901083
|
46 |
Bai P., Ding K., Wang G., Luo J., Q. Zhang Z., T. Chan C., Wu Y., Lai Y.. Simultaneous realization of a coherent perfect absorber and laser by zero index media with both gain and loss. Phys. Rev. A, 2016, 94(6): 063841
https://doi.org/10.1103/PhysRevA.94.063841
|
47 |
Y. Fu Y., D. Xu Y., Y. Chen H.. Zero index metamaterials with PT symmetry in a waveguide system. Opt. Express, 2016, 24(2): 1648
https://doi.org/10.1364/OE.24.001648
|
48 |
D. Chong Y., Ge L., D. Stone A.. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett., 2011, 106(9): 093902
https://doi.org/10.1103/PhysRevLett.106.093902
|
49 |
S. Li L., Zhang J., Wang C., Zheng N., Yin H.. Optical bound states in the continuum in a single slab with zero refractive index. Phys. Rev. A, 2017, 96(1): 013801
https://doi.org/10.1103/PhysRevA.96.013801
|
50 |
Y. Fu Y., D. Xu Y., Y. Chen H.. Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13(4): 134206
https://doi.org/10.1007/s11467-018-0781-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|