|
|
Localization−delocalization transitions in non-Hermitian Aharonov−Bohm cages |
Xiang Li, Jin Liu, Tao Liu( ) |
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China |
|
|
Abstract A unique feature of non-Hermitian systems is the extreme sensitivity of the eigenspectrum to boundary conditions with the emergence of the non-Hermitian skin effect (NHSE). A NHSE originates from the point-gap topology of complex eigenspectrum, where an extensive number of eigenstates are anomalously localized at the boundary driven by nonreciprocal dissipation. Two different approaches to create localization are disorder and flat-band spectrum, and their interplay can lead to the anomalous inverse Anderson localization, where the Bernoulli anti-symmetric disorder induces mobility in a full-flat band system in the presence of Aharonov−Bohm (AB) Cage. In this work, we study the localization−delocalization transitions due to the interplay of the point-gap topology, flat band and correlated disorder in the one-dimensional rhombic lattice, where both its Hermitian and non-Hermitian structures show AB cage in the presence of magnetic flux. Although it remains the coexistence of localization and delocalization for the Hermitian rhombic lattice in the presence of the random anti-symmetric disorder, it surprisingly becomes complete delocalization, accompanied by the emergence of NHSE. To further study the effects from the Bernoulli anti-symmetric disorder, we found the similar NHSE due to the interplay of the point-gap topology, correlated disorder and flat bands. Our anomalous localization−delocalization property can be experimentally tested in the classical physical platform, such as electrical circuit.
|
Keywords
non-Hermitian skin effects
disorder
flat band
localization−delocalization transition
|
Corresponding Author(s):
Tao Liu
|
Issue Date: 24 May 2024
|
|
1 |
V. Konotop V., Yang J., A. Zezyulin D.. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys., 2016, 88(3): 035002
https://doi.org/10.1103/RevModPhys.88.035002
|
2 |
E. Lee T.. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett., 2016, 116(13): 133903
https://doi.org/10.1103/PhysRevLett.116.133903
|
3 |
Leykam D., Y. Bliokh K., Huang C., D. Chong Y., Nori F.. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett., 2017, 118(4): 040401
https://doi.org/10.1103/PhysRevLett.118.040401
|
4 |
Xu Y., T. Wang S., M. Duan L.. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett., 2017, 118(4): 045701
https://doi.org/10.1103/PhysRevLett.118.045701
|
5 |
Gong Z., Ashida Y., Kawabata K., Takasan K., Higashikawa S., Ueda M.. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
https://doi.org/10.1103/PhysRevX.8.031079
|
6 |
El-Ganainy R., G. Makris K., Khajavikhan M., H. Musslimani Z., Rotter S., N. Christodoulides D.. Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
https://doi.org/10.1038/nphys4323
|
7 |
Yao S., Wang Z.. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
https://doi.org/10.1103/PhysRevLett.121.086803
|
8 |
Zhang K., Yang Z., Fang C.. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
https://doi.org/10.1103/PhysRevLett.125.126402
|
9 |
Yokomizo K., Murakami S.. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
https://doi.org/10.1103/PhysRevLett.123.066404
|
10 |
Gao T., Estrecho E., Y. Bliokh K., C. H. Liew T., D. Fraser M., Brodbeck S., Kamp M., Schneider C., Höfling S., Yamamoto Y., Nori F., S. Kivshar Y., G. Truscott A., G. Dall R., A. Ostrovskaya E.. Observation of non-Hermitian degeneracies in a chaotic exciton‒polariton billiard. Nature, 2015, 526(7574): 554
https://doi.org/10.1038/nature15522
|
11 |
Y. Ju C., Miranowicz A., Y. Chen G., Nori F.. Non-Hermitian Hamiltonians and no‒go theorems in quantum information. Phys. Rev. A, 2019, 100(6): 062118
https://doi.org/10.1103/PhysRevA.100.062118
|
12 |
Minganti F., Miranowicz A., W. Chhajlany R., Nori F.. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps. Phys. Rev. A, 2019, 100(6): 062131
https://doi.org/10.1103/PhysRevA.100.062131
|
13 |
Peng B., K. Özdemir Ş., Lei F., Monifi F., Gianfreda M., L. Long G., Fan S., Nori F., M. Bender C., Yang L.. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10(5): 394
https://doi.org/10.1038/nphys2927
|
14 |
Peng B., K. Özdemir Ş., Rotter S., Yilmaz H., Liertzer M., Monifi F., M. Bender C., Nori F., Yang L.. Loss-induced suppression and revival of lasing. Science, 2014, 346(6207): 328
https://doi.org/10.1126/science.1258004
|
15 |
P. Liu Z., Zhang J., K. Özdemir Ş., Peng B., Jing H., Y. Lü X., W. Li C., Yang L., Nori F., Liu Y.. Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117(11): 110802
https://doi.org/10.1103/PhysRevLett.117.110802
|
16 |
K. Özdemir Ş., Rotter S., Nori F., Yang L.. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 2019, 18(8): 783
https://doi.org/10.1038/s41563-019-0304-9
|
17 |
Yao S., Song F., Wang Z.. Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
https://doi.org/10.1103/PhysRevLett.121.136802
|
18 |
K. Kunst F., Edvardsson E., C. Budich J., J. Bergholtz E.. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
https://doi.org/10.1103/PhysRevLett.121.026808
|
19 |
Liu T., R. Zhang Y., Ai Q., Gong Z., Kawabata K., Ueda M., Nori F.. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett., 2019, 122(7): 076801
https://doi.org/10.1103/PhysRevLett.122.076801
|
20 |
Y. Bliokh K., Leykam D., Lein M., Nori F.. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun., 2019, 10(1): 580
https://doi.org/10.1038/s41467-019-08397-6
|
21 |
Song F., Yao S., Wang Z.. Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
https://doi.org/10.1103/PhysRevLett.123.170401
|
22 |
Y. Lee J., Ahn J., Zhou H., Vishwanath A.. Topological correspondence between Hermitian and non-Hermitian systems: Anomalous dynamics. Phys. Rev. Lett., 2019, 123(20): 206404
https://doi.org/10.1103/PhysRevLett.123.206404
|
23 |
Kawabata K., Bessho T., Sato M.. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 2019, 123(6): 066405
https://doi.org/10.1103/PhysRevLett.123.066405
|
24 |
H. Lee C., Thomale R.. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
https://doi.org/10.1103/PhysRevB.99.201103
|
25 |
Fan A., D. Liang S.. Complex energy plane and topological invariant in non-Hermitian systems. Front. Phys., 2022, 17(3): 33501
https://doi.org/10.1007/s11467-021-1122-5
|
26 |
Sun G., C. Tang J., P. Kou S.. Biorthogonal quantum criticality in non-Hermitian many-body systems. Front. Phys., 2021, 17(3): 33502
https://doi.org/10.1007/s11467-021-1126-1
|
27 |
P. Wu Y., Q. Zhang G., X. Zhang C., Xu J., W. Zhang D.. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose‒Einstein condensate in a double-well potential. Front. Phys., 2022, 17(4): 42503
https://doi.org/10.1007/s11467-021-1133-2
|
28 |
T. Zhang Y., Jiang S., Li Q., F. Sun Q.. An analytical solution for quantum scattering through a PT-symmetric delta potential. Front. Phys., 2021, 16(4): 43503
https://doi.org/10.1007/s11467-021-1061-1
|
29 |
Y. Ge Z., R. Zhang Y., Liu T., W. Li S., Fan H., Nori F.. Topological band theory for non-Hermitian systems from the Dirac equation. Phys. Rev. B, 2019, 100(5): 054105
https://doi.org/10.1103/PhysRevB.100.054105
|
30 |
Zhou H., Y. Lee J.. Periodic table for topological bands with non-Hermitian symmetries. Phys. Rev. B, 2019, 99(23): 235112
https://doi.org/10.1103/PhysRevB.99.235112
|
31 |
Zhao H., Qiao X., Wu T., Midya B., Longhi S., Feng L.. Non-Hermitian topological light steering. Science, 2019, 365(6458): 1163
https://doi.org/10.1126/science.aay1064
|
32 |
Kawabata K., Shiozaki K., Ueda M., Sato M.. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
https://doi.org/10.1103/PhysRevX.9.041015
|
33 |
S. Borgnia D., J. Kruchkov A., J. Slager R.. Non-Hermitian boundary modes and topology. Phys. Rev. Lett., 2020, 124(5): 056802
https://doi.org/10.1103/PhysRevLett.124.056802
|
34 |
Liu T., J. He J., Yoshida T., L. Xiang Z., Nori F.. Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices. Phys. Rev. B, 2020, 102(23): 235151
https://doi.org/10.1103/PhysRevB.102.235151
|
35 |
Li L., H. Lee C., Mu S., Gong J.. Critical non-Hermitian skin effect. Nat. Commun., 2020, 11(1): 5491
https://doi.org/10.1038/s41467-020-18917-4
|
36 |
Yokomizo K., Murakami S.. Scaling rule for the critical non-Hermitian skin effect. Phys. Rev. B, 2021, 104(16): 165117
https://doi.org/10.1103/PhysRevB.104.165117
|
37 |
Ashida Y., Gong Z., Ueda M.. Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
https://doi.org/10.1080/00018732.2021.1876991
|
38 |
Kawabata K., Sato M., Shiozaki K.. Higher-order non-Hermitian skin effect. Phys. Rev. B, 2020, 102(20): 205118
https://doi.org/10.1103/PhysRevB.102.205118
|
39 |
Okuma N., Kawabata K., Shiozaki K., Sato M.. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
https://doi.org/10.1103/PhysRevLett.124.086801
|
40 |
Yi Y., Yang Z.. Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett., 2020, 125(18): 186802
https://doi.org/10.1103/PhysRevLett.125.186802
|
41 |
Liu T., J. He J., Yang Z., Nori F.. Higher-order Weyl-exceptional-ring semimetals. Phys. Rev. Lett., 2021, 127(19): 196801
https://doi.org/10.1103/PhysRevLett.127.196801
|
42 |
Li L., H. Lee C., Gong J.. Impurity induced scale-free localization. Commun. Phys., 2021, 4(1): 42
https://doi.org/10.1038/s42005-021-00547-x
|
43 |
Chen C., Liu Y., Zhao L., Hu X., Fu Y.. Asymmetric nonlinear-mode-conversion in an optical waveguide with PT symmetry. Front. Phys., 2022, 17(5): 52504
https://doi.org/10.1007/s11467-022-1177-y
|
44 |
J. Bergholtz E., C. Budich J., K. Kunst F.. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
https://doi.org/10.1103/RevModPhys.93.015005
|
45 |
Li Y., Liang C., Wang C., Lu C., C. Liu Y.. Gain-loss-induced hybrid skin-topological effect. Phys. Rev. Lett., 2022, 128(22): 223903
https://doi.org/10.1103/PhysRevLett.128.223903
|
46 |
Zhang K., Yang Z., Fang C.. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
https://doi.org/10.1038/s41467-022-30161-6
|
47 |
Li K., Xu Y.. Non-Hermitian absorption spectroscopy. Phys. Rev. Lett., 2022, 129(9): 093001
https://doi.org/10.1103/PhysRevLett.129.093001
|
48 |
Wang Y., Lin J., Xu P.. Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near- zero media. Front. Phys., 2024, 19(3): 33206
https://doi.org/10.1007/s11467-023-1362-7
|
49 |
R. Li J., Jiang C., Su H., Qi D., L. Zhang L., J. Gong W.. Parity-dependent skin effects and topological properties in the multilayer nonreciprocal Su–Schrieffer–Heeger structures. Front. Phys., 2024, 19(3): 33204
https://doi.org/10.1007/s11467-023-1350-y
|
50 |
Y. Zou Y., Zhou Y., M. Chen L., Ye P.. Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors. Front. Phys., 2024, 19(2): 23201
https://doi.org/10.1007/s11467-023-1337-8
|
51 |
Ren Z., Liu D., Zhao E., He C., K. Pak K., Li J., B. Jo G.. Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions. Nat. Phys., 2022, 18(4): 385
https://doi.org/10.1038/s41567-021-01491-x
|
52 |
Kawabata K., Numasawa T., Ryu S.. Entanglement phase transition induced by the non-Hermitian skin effect. Phys. Rev. X, 2023, 13(2): 021007
https://doi.org/10.1103/PhysRevX.13.021007
|
53 |
Lin R., Tai T., Li L., H. Lee C.. Topological non-Hermitian skin effect. Front. Phys., 2023, 18(5): 53605
https://doi.org/10.1007/s11467-023-1309-z
|
54 |
Zhang K., Fang C., Yang Z.. Dynamical degeneracy splitting and directional invisibility in non-Hermitian systems. Phys. Rev. Lett., 2023, 131(3): 036402
https://doi.org/10.1103/PhysRevLett.131.036402
|
55 |
A. Li C., Trauzettel B., Neupert T., B. Zhang S.. Enhancement of second-order non-Hermitian skin effect by magnetic fields. Phys. Rev. Lett., 2023, 131(11): 116601
https://doi.org/10.1103/PhysRevLett.131.116601
|
56 |
Okuma N., Sato M.. Non-Hermitian topological phenomena: A review. Annu. Rev. Condens. Matter Phys., 2023, 14(1): 83
https://doi.org/10.1146/annurev-conmatphys-040521-033133
|
57 |
F. Cai Z.Liu T.Yang Z., Non-Hermitian skin effect in periodically-driven dissipative ultracold atoms, arXiv: 2311.06550 (2023)
|
58 |
Leefmans C., Dutt A., Williams J., Yuan L., Parto M., Nori F., Fan S., Marandi A.. Topological dissipation in a time-multiplexed photonic resonator network. Nat. Phys., 2022, 18(4): 442
https://doi.org/10.1038/s41567-021-01492-w
|
59 |
R. Leefmans C.Parto M.Williams J. H. Y. Li G.Dutt A.Nori F.Marandi A., Topological temporally mode-locked laser, Nat. Phys., doi: 10.1038/s41567-024-02420-4 (2024)
|
60 |
Zhang H., Guo Z., Li Y., Yang Y., Chen Y., Chen H.. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer. Front. Phys., 2024, 19(4): 43209
https://doi.org/10.1007/s11467-023-1388-x
|
61 |
D. Xie X., Y. Xue Z., B. Zhang D.. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems. Front. Phys., 2024, 19(4): 41202
https://doi.org/10.1007/s11467-023-1382-3
|
62 |
Zhou Q., Wu J., Pu Z., Lu J., Huang X., Deng W., Ke M., Liu Z.. Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points. Nat. Commun., 2023, 14(1): 4569
https://doi.org/10.1038/s41467-023-40236-7
|
63 |
Weidemann S., Kremer M., Helbig T., Hofmann T., Stegmaier A., Greiter M., Thomale R., Szameit A.. Topological funneling of light. Science, 2020, 368(6488): 311
https://doi.org/10.1126/science.aaz8727
|
64 |
Wang K., Dutt A., Y. Yang K., C. Wojcik C., Vučković J., Fan S.. Generating arbitrary topological windings of a non-Hermitian band. Science, 2021, 371(6535): 1240
https://doi.org/10.1126/science.abf6568
|
65 |
Helbig T., Hofmann T., Imhof S., Abdelghany M., Kiessling T., W. Molenkamp L., H. Lee C., Szameit A., Greiter M., Thomale R.. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
https://doi.org/10.1038/s41567-020-0922-9
|
66 |
Zou D., Chen T., He W., Bao J., H. Lee C., Sun H., Zhang X.. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
https://doi.org/10.1038/s41467-021-26414-5
|
67 |
Liang Q., Xie D., Dong Z., Li H., Li H., Gadway B., Yi W., Yan B.. Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett., 2022, 129(7): 070401
https://doi.org/10.1103/PhysRevLett.129.070401
|
68 |
Feng L., El-Ganainy R., Ge L.. Non-Hermitian photonics based on parity‒time symmetry. Nat. Photonics, 2017, 11(12): 752
https://doi.org/10.1038/s41566-017-0031-1
|
69 |
El-Ganainy R., G. Makris K., Khajavikhan M., H. Musslimani Z., Rotter S., N. Christodoulides D.. Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
https://doi.org/10.1038/nphys4323
|
70 |
Wu Y., Kang L., H. Werner D.. Generalized PT symmetry in non-Hermitian wireless power transfer systems. Phys. Rev. Lett., 2022, 129(20): 200201
https://doi.org/10.1103/PhysRevLett.129.200201
|
71 |
Hao X., Yin K., Zou J., Wang R., Huang Y., Ma X., Dong T.. Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics. Phys. Rev. Lett., 2023, 130(7): 077202
https://doi.org/10.1103/PhysRevLett.130.077202
|
72 |
Kawabata K., Ryu S.. Nonunitary scaling theory of non-Hermitian localization. Phys. Rev. Lett., 2021, 126(16): 166801
https://doi.org/10.1103/PhysRevLett.126.166801
|
73 |
W. Anderson P.. Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109(5): 1492
https://doi.org/10.1103/PhysRev.109.1492
|
74 |
A. Lee P., V. Ramakrishnan T.. Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
https://doi.org/10.1103/RevModPhys.57.287
|
75 |
Hatano N., R. Nelson D.. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett., 1996, 77(3): 570
https://doi.org/10.1103/PhysRevLett.77.570
|
76 |
Hatano N., R. Nelson D.. Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B, 1998, 58(13): 8384
https://doi.org/10.1103/PhysRevB.58.8384
|
77 |
Feinberg J., Zee A.. Non-Hermitian localization and delocalization. Phys. Rev. E, 1999, 59(6): 6433
https://doi.org/10.1103/PhysRevE.59.6433
|
78 |
Gong Z., Ashida Y., Kawabata K., Takasan K., Higashikawa S., Ueda M.. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
https://doi.org/10.1103/PhysRevX.8.031079
|
79 |
Jiang H., J. Lang L., Yang C., L. Zhu S., Chen S.. Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
https://doi.org/10.1103/PhysRevB.100.054301
|
80 |
Wang C., R. Wang X.. Level statistics of extended states in random non-Hermitian Hamiltonians. Phys. Rev. B, 2020, 101(16): 165114
https://doi.org/10.1103/PhysRevB.101.165114
|
81 |
Longhi S.. Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
https://doi.org/10.1103/PhysRevLett.122.237601
|
82 |
F. Tzortzakakis A., G. Makris K., N. Economou E.. Non-Hermitian disorder in two-dimensional optical lattices. Phys. Rev. B, 2020, 101(1): 014202
https://doi.org/10.1103/PhysRevB.101.014202
|
83 |
Huang Y., I. Shklovskii B.. Anderson transition in three-dimensional systems with non-Hermitian disorder. Phys. Rev. B, 2020, 101(1): 014204
https://doi.org/10.1103/PhysRevB.101.014204
|
84 |
W. Zhang D., Z. Tang L., J. Lang L., Yan H., L. Zhu S.. Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech. Astron., 2020, 63(6): 267062
https://doi.org/10.1007/s11433-020-1521-9
|
85 |
Claes J., L. Hughes T.. Skin effect and winding number in disordered non-Hermitian systems. Phys. Rev. B, 2021, 103(14): L140201
https://doi.org/10.1103/PhysRevB.103.L140201
|
86 |
Luo X., Ohtsuki T., Shindou R.. Universality classes of the Anderson transitions driven by non-Hermitian disorder. Phys. Rev. Lett., 2021, 126(9): 090402
https://doi.org/10.1103/PhysRevLett.126.090402
|
87 |
Luo X., Ohtsuki T., Shindou R.. Transfer matrix study of the Anderson transition in non-Hermitian systems. Phys. Rev. B, 2021, 104(10): 104203
https://doi.org/10.1103/PhysRevB.104.104203
|
88 |
M. Kim K., J. Park M.. Disorder-driven phase transition in the second-order non-Hermitian skin effect. Phys. Rev. B, 2021, 104(12): L121101
https://doi.org/10.1103/PhysRevB.104.L121101
|
89 |
C. Wanjura C., Brunelli M., Nunnenkamp A.. Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett., 2021, 127(21): 213601
https://doi.org/10.1103/PhysRevLett.127.213601
|
90 |
Weidemann S., Kremer M., Longhi S., Szameit A.. Coexistence of dynamical delocalization and spectral localization through stochastic dissipation. Nat. Photonics, 2021, 15(8): 576
https://doi.org/10.1038/s41566-021-00823-w
|
91 |
Lin Q., Li T., Xiao L., Wang K., Yi W., Xue P.. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
https://doi.org/10.1038/s41467-022-30938-9
|
92 |
Liu H., Lu M., Q. Zhang Z., Jiang H.. Modified generalized Brillouin zone theory with on-site disorder. Phys. Rev. B, 2023, 107(14): 144204
https://doi.org/10.1103/PhysRevB.107.144204
|
93 |
Liu J.F. Cai Z.Liu T.Yang Z., Reentrant non-Hermitian skin effect in coupled non-Hermitian and Hermitian chains with correlated disorder, arXiv: 2311.03777 (2023)
|
94 |
Wang C., He W., Ren H., R. Wang X.. Berezinskii‒Kosterlitz‒Thouless-like localization−localization transitions in disordered two-dimensional quantized quadrupole insulators. Phys. Rev. B, 2024, 109(2): L020202
https://doi.org/10.1103/PhysRevB.109.L020202
|
95 |
Leykam D., Andreanov A., Flach S.. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X, 2018, 3(1): 1473052
https://doi.org/10.1080/23746149.2018.1473052
|
96 |
W. Rhim J., J. Yang B.. Singular flat bands. Adv. Phys. X, 2021, 6(1): 1901606
https://doi.org/10.1080/23746149.2021.1901606
|
97 |
Vidal J., Douçot B., Mosseri R., Butaud P.. Interaction induced delocalization for two particles in a periodic potential. Phys. Rev. Lett., 2000, 85(18): 3906
https://doi.org/10.1103/PhysRevLett.85.3906
|
98 |
Douçcot B., Vidal J.. Pairing of cooper pairs in a fully frustrated Josephson-junction chain. Phys. Rev. Lett., 2002, 88(22): 227005
https://doi.org/10.1103/PhysRevLett.88.227005
|
99 |
Longhi S.. Aharonov−Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields. Opt. Lett., 2014, 39(20): 5892
https://doi.org/10.1364/OL.39.005892
|
100 |
Mukherjee S., Di Liberto M., Öhberg P., R. Thomson R., Goldman N.. Experimental observation of Aharonov‒Bohm cages in photonic lattices. Phys. Rev. Lett., 2018, 121(7): 075502
https://doi.org/10.1103/PhysRevLett.121.075502
|
101 |
Kremer M., Petrides I., Meyer E., Heinrich M., Zilberberg O., Szameit A.. A square-root topological insulator with non-quantized indices realized with photonic Aharonov‒Bohm cages. Nat. Commun., 2020, 11(1): 907
https://doi.org/10.1038/s41467-020-14692-4
|
102 |
Li H., Dong Z., Longhi S., Liang Q., Xie D., Yan B.. Aharonov‒Bohm caging and inverse Anderson transition in ultracold atoms. Phys. Rev. Lett., 2022, 129(22): 220403
https://doi.org/10.1103/PhysRevLett.129.220403
|
103 |
G. C. Martinez J., S. Chiu C., M. Smitham B., A. Houck A.. Flat-band localization and interaction-induced delocalization of photons. Sci. Adv., 2023, 9(50): eadj7195
https://doi.org/10.1126/sciadv.adj7195
|
104 |
Vidal J., Mosseri R., Douçcot B.. Aharonov‒Bohm cages in two-dimensional structures. Phys. Rev. Lett., 1998, 81(26): 5888
https://doi.org/10.1103/PhysRevLett.81.5888
|
105 |
Vidal J., Butaud P., Dou¸cot B., Mosseri R.. Disorder and interactions in Aharonov‒Bohm cages. Phys. Rev. B, 2001, 64(15): 155306
https://doi.org/10.1103/PhysRevB.64.155306
|
106 |
L. Lin Y., Nori F.. Quantum interference on the kagomé lattice. Phys. Rev. B, 1994, 50(21): 15953
https://doi.org/10.1103/PhysRevB.50.15953
|
107 |
L. Lin Y., Nori F.. Quantum interference in superconducting wire networks and Josephson junction arrays: An analytical approach based on multiple-loop Aharonov‒Bohm Feynman path integrals. Phys. Rev. B, 2002, 65(21): 214504
https://doi.org/10.1103/PhysRevB.65.214504
|
108 |
W. Y. Tu M., M. Zhang W., Nori F.. Coherent control of double-dot molecules using Aharonov−Bohm magnetic flux. Phys. Rev. B, 2012, 86(19): 195403
https://doi.org/10.1103/PhysRevB.86.195403
|
109 |
Goda M., Nishino S., Matsuda H.. Inverse Anderson transition caused by flatbands. Phys. Rev. Lett., 2006, 96(12): 126401
https://doi.org/10.1103/PhysRevLett.96.126401
|
110 |
Baboux F., Ge L., Jacqmin T., Biondi M., Galopin E., Lemaĭtre A., Le Gratiet L., Sagnes I., Schmidt S., E. Türeci H., Amo A., Bloch J.. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett., 2016, 116(6): 066402
https://doi.org/10.1103/PhysRevLett.116.066402
|
111 |
Ge L.. Parity−time symmetry in a flat-band system. Phys. Rev. A, 2015, 92(5): 052103
https://doi.org/10.1103/PhysRevA.92.052103
|
112 |
Ramezani H.. Non-Hermiticity-induced flat band. Phys. Rev. A, 2017, 96(1): 011802
https://doi.org/10.1103/PhysRevA.96.011802
|
113 |
Leykam D., Flach S., D. Chong Y.. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B, 2017, 96(6): 064305
https://doi.org/10.1103/PhysRevB.96.064305
|
114 |
M. Zhang S., Jin L.. Flat band in two-dimensional non-Hermitian optical lattices. Phys. Rev. A, 2019, 100(4): 043808
https://doi.org/10.1103/PhysRevA.100.043808
|
115 |
He P., T. Ding H., L. Zhu S.. Geometry and superfluidity of the flat band in a non-Hermitian optical lattice. Phys. Rev. A, 2021, 103(4): 043329
https://doi.org/10.1103/PhysRevA.103.043329
|
116 |
Biesenthal T., Kremer M., Heinrich M., Szameit A.. Experimental realization of PT-symmetric flat bands. Phys. Rev. Lett., 2019, 123(18): 183601
https://doi.org/10.1103/PhysRevLett.123.183601
|
117 |
Qi B., Zhang L., Ge L.. Defect states emerging from a non-Hermitian flatband of photonic zero modes. Phys. Rev. Lett., 2018, 120(9): 093901
https://doi.org/10.1103/PhysRevLett.120.093901
|
118 |
M. Zhang S., Jin L.. Localization in non-Hermitian asymmetric rhombic lattice. Phys. Rev. Res., 2020, 2(3): 033127
https://doi.org/10.1103/PhysRevResearch.2.033127
|
119 |
M. Zhang S., S. Xu H., Jin L.. Tunable Aharonov−Bohm cages through anti-PT-symmetric imaginary couplings. Phys. Rev. A, 2023, 108(2): 023518
https://doi.org/10.1103/PhysRevA.108.023518
|
120 |
Ramya Parkavi J., K. Chandrasekar V.. Localization in a non-Hermitian flat band lattice with nonlinearity. Optik (Stuttg.), 2022, 271: 170129
https://doi.org/10.1016/j.ijleo.2022.170129
|
121 |
Ke S., Wen W., Zhao D., Wang Y.. Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays. Phys. Rev. A, 2023, 107(5): 053508
https://doi.org/10.1103/PhysRevA.107.053508
|
122 |
Amelio I.Goldman N., Lasing, quantum geometry and coherence in non-Hermitian flat bands, arXiv: 2308.08418 (2023)
|
123 |
Martínez-Strasser C., A. J. Herrera M., García-Etxarri A., Palumbo G., K. Kunst F., Bercioux D.. Topological properties of a non-Hermitian quasi-1D chain with a flat band. Adv. Quant. Technol., 2023, 7(2): 2300225
https://doi.org/10.1002/qute.202300225
|
124 |
Longhi S.. Inverse Anderson transition in photonic cages. Opt. Lett., 2021, 46(12): 2872
https://doi.org/10.1364/OL.430196
|
125 |
Molignini P., Arandes O., J. Bergholtz E.. Anomalous skin effects in disordered systems with a single non-Hermitian impurity. Phys. Rev. Res., 2023, 5(3): 033058
https://doi.org/10.1103/PhysRevResearch.5.033058
|
126 |
Hofmann T., Helbig T., H. Lee C., Greiter M., Thomale R.. Chiral voltage propagation and calibration in a topolectrical chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
https://doi.org/10.1103/PhysRevLett.122.247702
|
127 |
Dong J., Juričić V., Roy B.. Topolectric circuits: Theory and construction. Phys. Rev. Res., 2021, 3(2): 023056
https://doi.org/10.1103/PhysRevResearch.3.023056
|
128 |
H. Lee C., Imhof S., Berger C., Bayer F., Brehm J., W. Molenkamp L., Kiessling T., Thomale R.. Topolectrical circuits. Commun. Phys., 2018, 1(1): 39
https://doi.org/10.1038/s42005-018-0035-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|