Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33211    https://doi.org/10.1007/s11467-024-1412-9
Localization−delocalization transitions in non-Hermitian Aharonov−Bohm cages
Xiang Li, Jin Liu, Tao Liu()
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
 Download: PDF(4420 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A unique feature of non-Hermitian systems is the extreme sensitivity of the eigenspectrum to boundary conditions with the emergence of the non-Hermitian skin effect (NHSE). A NHSE originates from the point-gap topology of complex eigenspectrum, where an extensive number of eigenstates are anomalously localized at the boundary driven by nonreciprocal dissipation. Two different approaches to create localization are disorder and flat-band spectrum, and their interplay can lead to the anomalous inverse Anderson localization, where the Bernoulli anti-symmetric disorder induces mobility in a full-flat band system in the presence of Aharonov−Bohm (AB) Cage. In this work, we study the localization−delocalization transitions due to the interplay of the point-gap topology, flat band and correlated disorder in the one-dimensional rhombic lattice, where both its Hermitian and non-Hermitian structures show AB cage in the presence of magnetic flux. Although it remains the coexistence of localization and delocalization for the Hermitian rhombic lattice in the presence of the random anti-symmetric disorder, it surprisingly becomes complete delocalization, accompanied by the emergence of NHSE. To further study the effects from the Bernoulli anti-symmetric disorder, we found the similar NHSE due to the interplay of the point-gap topology, correlated disorder and flat bands. Our anomalous localization−delocalization property can be experimentally tested in the classical physical platform, such as electrical circuit.

Keywords non-Hermitian skin effects      disorder      flat band      localization−delocalization transition     
Corresponding Author(s): Tao Liu   
Issue Date: 24 May 2024
 Cite this article:   
Xiang Li,Jin Liu,Tao Liu. Localization−delocalization transitions in non-Hermitian Aharonov−Bohm cages[J]. Front. Phys. , 2024, 19(3): 33211.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1412-9
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33211
Fig.1  (a) Tight-binding representation of an asymmetric rhombic chain enclosed by a ϕ magnetic flux in each plaquette. Each unit cell contains three sublattices indicated by A, B and C. γ±λ denote the asymmetric hopping strengths (red and yellow lines with arrows), and t is the symmetric hopping strength (black line). Real part (b1) and imaginary part (b2) of single-particle eigenspectrum for ϕ=0. (b3) R e(E) vs. Im(E) of eigenenergies in complex plane with PBC (blue dots) and OBC (red dots) for ϕ =0. (b4) Probability density distributions |ψj |2 (summed over each unit cell) of eigenstates for their eigenenergies inside point gaps with |E|0 under OBC for ϕ=0, where |ψj |2=| ψj,A|2+|ψj,B|2+|ψj,C|2. Real part (c1) and imaginary part (c2) of single-particle eigenspectrum for ϕ=π, and its bands are perfect flat, leading to mode localization. The other parameters are γ/ t=1 and λ /t =0.8.
Fig.2  (a) Eigenenergies and (b) probability density distributions | ψj|2 (summed over each unit cell) of eigenstates of the Hermitian rhombic lattice, subjected to the random anti-symmetric disorder, under OBCs for Δ/t=1. The red dots indicate the topological boundary states. (c) | ψj|2 for E=0 with Δ/t=1. (d) IPR vs. Δ. The other parameters for Hermitian conditions are ϕ= π, γ /t=1 and λ /t=0.
Fig.3  The localization and delocalization of the non-Hermitian rhombic lattice subjected to random anti-symmetric disorder Δj (B)=Δj (C)=Δj (Δ j[ Δ/2,Δ/2]) for ϕ= π. Complex eigenenergies under both OBCs (blue dots) and PBCs (red dots) (a1) for Δ /t=1 and λ /t=γ /t =1, (b1) for Δ/t=2 and λ/t=γ/t=1, and (c1) for Δ /t =2 and λ/t=γ/t=5. The corresponding probability density distributions | ψj|2 (summed over each unit cell) of eigenstates are shown in (a2, b2, c2). (d) mcom as functions of λ and Δ with λ =γ. (e) mcom as functions of λ and Δ with γ /t =1. The mcom is averaged over 2000 disorder realization with N=100.
Fig.4  (a) Winding number w as functions of λ and Δ with γ /t=1 for the non-Hermitian rhombic lattice subjected to random anti-symmetric disorder. (b) Winding number w as functions of λ and Δ with λ=γ =1 for the non-Hermitian rhombic lattice subjected to random anti-symmetric disorder. The results are averaged over 2000 disorder realizations with N=200.
Fig.5  The localization of the non-Hermitian rhombic lattice subjected to random symmetric disorder Δ j(B )= Δj(C )= Δj (Δ j[ Δ/2,Δ/2]) for ϕ= π. (a) Complex eigenenergies under both OBCs (blue dots) and PBCs (red dots) for Δ /t=1, and λ /t=γ /t =1. (b) The corresponding probability density distributions | ψj|2 (summed over each unit cell) of eigenstates under OBCs. (c) mcom as functions of λ and Δ with λ=γ. The mcom is averaged over 2000 disorder realization with N=100.
Fig.6  Localization and delocalization of the non-Hermitian rhombic lattice subjected to Bernoulli anti-symmetric disorder with Δj (B)=Δj (C)=Δj (Δ j randomly takes two values of ± Δ) for ϕ =π. Complex eigenenergies under both OBCs (blue dots) and PBCs (red dots) (a1) for Δ/t=1 and λ/t=γ/t=0.8. The corresponding probability density distributions | ψj|2 (summed over each unit cell) of eigenstates are shown in (a2). (b) mcom as functions of λ and Δ with λ =γ. (c) mcom as functions of λ and Δ with γ /t =1. The mcom is averaged over 2000 disorder realization with N=100.
Fig.7  Localization of the non-Hermitian rhombic lattice subjected to Bernoulli symmetric disorder with Δ j(B )=Δ j(C )= Δj (Δ j randomly takes two values of ± Δ) for ϕ =π. (a) Complex eigenenergies under both OBCs (blue dots) and PBCs (red dots) for Δ/t=1, and λ/t=γ/t=1. (b) The corresponding probability density distributions |ψj |2 (summed over each unit cell) of eigenstates under OBCs f. (c) mcom as functions of λ and Δ with λ =γ. The mcom is averaged over 2000 disorder realization with N=100.
Fig.8  (a) Electrical circuit implementation of the model in Eq. (1), corresponding to the lattice structure in (b). The nonreciprocal hopping between nodes j and j+1 is realized by the negative impedance converters through current inversions (INICs). (c) Details of INIC.
1 V. Konotop V., Yang J., A. Zezyulin D.. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys., 2016, 88(3): 035002
https://doi.org/10.1103/RevModPhys.88.035002
2 E. Lee T.. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett., 2016, 116(13): 133903
https://doi.org/10.1103/PhysRevLett.116.133903
3 Leykam D., Y. Bliokh K., Huang C., D. Chong Y., Nori F.. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett., 2017, 118(4): 040401
https://doi.org/10.1103/PhysRevLett.118.040401
4 Xu Y., T. Wang S., M. Duan L.. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett., 2017, 118(4): 045701
https://doi.org/10.1103/PhysRevLett.118.045701
5 Gong Z., Ashida Y., Kawabata K., Takasan K., Higashikawa S., Ueda M.. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
https://doi.org/10.1103/PhysRevX.8.031079
6 El-Ganainy R., G. Makris K., Khajavikhan M., H. Musslimani Z., Rotter S., N. Christodoulides D.. Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
https://doi.org/10.1038/nphys4323
7 Yao S., Wang Z.. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
https://doi.org/10.1103/PhysRevLett.121.086803
8 Zhang K., Yang Z., Fang C.. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
https://doi.org/10.1103/PhysRevLett.125.126402
9 Yokomizo K., Murakami S.. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
https://doi.org/10.1103/PhysRevLett.123.066404
10 Gao T., Estrecho E., Y. Bliokh K., C. H. Liew T., D. Fraser M., Brodbeck S., Kamp M., Schneider C., Höfling S., Yamamoto Y., Nori F., S. Kivshar Y., G. Truscott A., G. Dall R., A. Ostrovskaya E.. Observation of non-Hermitian degeneracies in a chaotic exciton‒polariton billiard. Nature, 2015, 526(7574): 554
https://doi.org/10.1038/nature15522
11 Y. Ju C., Miranowicz A., Y. Chen G., Nori F.. Non-Hermitian Hamiltonians and no‒go theorems in quantum information. Phys. Rev. A, 2019, 100(6): 062118
https://doi.org/10.1103/PhysRevA.100.062118
12 Minganti F., Miranowicz A., W. Chhajlany R., Nori F.. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps. Phys. Rev. A, 2019, 100(6): 062131
https://doi.org/10.1103/PhysRevA.100.062131
13 Peng B., K. Özdemir Ş., Lei F., Monifi F., Gianfreda M., L. Long G., Fan S., Nori F., M. Bender C., Yang L.. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10(5): 394
https://doi.org/10.1038/nphys2927
14 Peng B., K. Özdemir Ş., Rotter S., Yilmaz H., Liertzer M., Monifi F., M. Bender C., Nori F., Yang L.. Loss-induced suppression and revival of lasing. Science, 2014, 346(6207): 328
https://doi.org/10.1126/science.1258004
15 P. Liu Z., Zhang J., K. Özdemir Ş., Peng B., Jing H., Y. Lü X., W. Li C., Yang L., Nori F., Liu Y.. Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117(11): 110802
https://doi.org/10.1103/PhysRevLett.117.110802
16 K. Özdemir Ş., Rotter S., Nori F., Yang L.. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 2019, 18(8): 783
https://doi.org/10.1038/s41563-019-0304-9
17 Yao S., Song F., Wang Z.. Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
https://doi.org/10.1103/PhysRevLett.121.136802
18 K. Kunst F., Edvardsson E., C. Budich J., J. Bergholtz E.. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
https://doi.org/10.1103/PhysRevLett.121.026808
19 Liu T., R. Zhang Y., Ai Q., Gong Z., Kawabata K., Ueda M., Nori F.. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett., 2019, 122(7): 076801
https://doi.org/10.1103/PhysRevLett.122.076801
20 Y. Bliokh K., Leykam D., Lein M., Nori F.. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun., 2019, 10(1): 580
https://doi.org/10.1038/s41467-019-08397-6
21 Song F., Yao S., Wang Z.. Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
https://doi.org/10.1103/PhysRevLett.123.170401
22 Y. Lee J., Ahn J., Zhou H., Vishwanath A.. Topological correspondence between Hermitian and non-Hermitian systems: Anomalous dynamics. Phys. Rev. Lett., 2019, 123(20): 206404
https://doi.org/10.1103/PhysRevLett.123.206404
23 Kawabata K., Bessho T., Sato M.. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 2019, 123(6): 066405
https://doi.org/10.1103/PhysRevLett.123.066405
24 H. Lee C., Thomale R.. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
https://doi.org/10.1103/PhysRevB.99.201103
25 Fan A., D. Liang S.. Complex energy plane and topological invariant in non-Hermitian systems. Front. Phys., 2022, 17(3): 33501
https://doi.org/10.1007/s11467-021-1122-5
26 Sun G., C. Tang J., P. Kou S.. Biorthogonal quantum criticality in non-Hermitian many-body systems. Front. Phys., 2021, 17(3): 33502
https://doi.org/10.1007/s11467-021-1126-1
27 P. Wu Y., Q. Zhang G., X. Zhang C., Xu J., W. Zhang D.. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose‒Einstein condensate in a double-well potential. Front. Phys., 2022, 17(4): 42503
https://doi.org/10.1007/s11467-021-1133-2
28 T. Zhang Y., Jiang S., Li Q., F. Sun Q.. An analytical solution for quantum scattering through a PT-symmetric delta potential. Front. Phys., 2021, 16(4): 43503
https://doi.org/10.1007/s11467-021-1061-1
29 Y. Ge Z., R. Zhang Y., Liu T., W. Li S., Fan H., Nori F.. Topological band theory for non-Hermitian systems from the Dirac equation. Phys. Rev. B, 2019, 100(5): 054105
https://doi.org/10.1103/PhysRevB.100.054105
30 Zhou H., Y. Lee J.. Periodic table for topological bands with non-Hermitian symmetries. Phys. Rev. B, 2019, 99(23): 235112
https://doi.org/10.1103/PhysRevB.99.235112
31 Zhao H., Qiao X., Wu T., Midya B., Longhi S., Feng L.. Non-Hermitian topological light steering. Science, 2019, 365(6458): 1163
https://doi.org/10.1126/science.aay1064
32 Kawabata K., Shiozaki K., Ueda M., Sato M.. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
https://doi.org/10.1103/PhysRevX.9.041015
33 S. Borgnia D., J. Kruchkov A., J. Slager R.. Non-Hermitian boundary modes and topology. Phys. Rev. Lett., 2020, 124(5): 056802
https://doi.org/10.1103/PhysRevLett.124.056802
34 Liu T., J. He J., Yoshida T., L. Xiang Z., Nori F.. Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices. Phys. Rev. B, 2020, 102(23): 235151
https://doi.org/10.1103/PhysRevB.102.235151
35 Li L., H. Lee C., Mu S., Gong J.. Critical non-Hermitian skin effect. Nat. Commun., 2020, 11(1): 5491
https://doi.org/10.1038/s41467-020-18917-4
36 Yokomizo K., Murakami S.. Scaling rule for the critical non-Hermitian skin effect. Phys. Rev. B, 2021, 104(16): 165117
https://doi.org/10.1103/PhysRevB.104.165117
37 Ashida Y., Gong Z., Ueda M.. Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
https://doi.org/10.1080/00018732.2021.1876991
38 Kawabata K., Sato M., Shiozaki K.. Higher-order non-Hermitian skin effect. Phys. Rev. B, 2020, 102(20): 205118
https://doi.org/10.1103/PhysRevB.102.205118
39 Okuma N., Kawabata K., Shiozaki K., Sato M.. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
https://doi.org/10.1103/PhysRevLett.124.086801
40 Yi Y., Yang Z.. Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett., 2020, 125(18): 186802
https://doi.org/10.1103/PhysRevLett.125.186802
41 Liu T., J. He J., Yang Z., Nori F.. Higher-order Weyl-exceptional-ring semimetals. Phys. Rev. Lett., 2021, 127(19): 196801
https://doi.org/10.1103/PhysRevLett.127.196801
42 Li L., H. Lee C., Gong J.. Impurity induced scale-free localization. Commun. Phys., 2021, 4(1): 42
https://doi.org/10.1038/s42005-021-00547-x
43 Chen C., Liu Y., Zhao L., Hu X., Fu Y.. Asymmetric nonlinear-mode-conversion in an optical waveguide with PT symmetry. Front. Phys., 2022, 17(5): 52504
https://doi.org/10.1007/s11467-022-1177-y
44 J. Bergholtz E., C. Budich J., K. Kunst F.. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
https://doi.org/10.1103/RevModPhys.93.015005
45 Li Y., Liang C., Wang C., Lu C., C. Liu Y.. Gain-loss-induced hybrid skin-topological effect. Phys. Rev. Lett., 2022, 128(22): 223903
https://doi.org/10.1103/PhysRevLett.128.223903
46 Zhang K., Yang Z., Fang C.. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
https://doi.org/10.1038/s41467-022-30161-6
47 Li K., Xu Y.. Non-Hermitian absorption spectroscopy. Phys. Rev. Lett., 2022, 129(9): 093001
https://doi.org/10.1103/PhysRevLett.129.093001
48 Wang Y., Lin J., Xu P.. Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near- zero media. Front. Phys., 2024, 19(3): 33206
https://doi.org/10.1007/s11467-023-1362-7
49 R. Li J., Jiang C., Su H., Qi D., L. Zhang L., J. Gong W.. Parity-dependent skin effects and topological properties in the multilayer nonreciprocal Su–Schrieffer–Heeger structures. Front. Phys., 2024, 19(3): 33204
https://doi.org/10.1007/s11467-023-1350-y
50 Y. Zou Y., Zhou Y., M. Chen L., Ye P.. Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors. Front. Phys., 2024, 19(2): 23201
https://doi.org/10.1007/s11467-023-1337-8
51 Ren Z., Liu D., Zhao E., He C., K. Pak K., Li J., B. Jo G.. Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions. Nat. Phys., 2022, 18(4): 385
https://doi.org/10.1038/s41567-021-01491-x
52 Kawabata K., Numasawa T., Ryu S.. Entanglement phase transition induced by the non-Hermitian skin effect. Phys. Rev. X, 2023, 13(2): 021007
https://doi.org/10.1103/PhysRevX.13.021007
53 Lin R., Tai T., Li L., H. Lee C.. Topological non-Hermitian skin effect. Front. Phys., 2023, 18(5): 53605
https://doi.org/10.1007/s11467-023-1309-z
54 Zhang K., Fang C., Yang Z.. Dynamical degeneracy splitting and directional invisibility in non-Hermitian systems. Phys. Rev. Lett., 2023, 131(3): 036402
https://doi.org/10.1103/PhysRevLett.131.036402
55 A. Li C., Trauzettel B., Neupert T., B. Zhang S.. Enhancement of second-order non-Hermitian skin effect by magnetic fields. Phys. Rev. Lett., 2023, 131(11): 116601
https://doi.org/10.1103/PhysRevLett.131.116601
56 Okuma N., Sato M.. Non-Hermitian topological phenomena: A review. Annu. Rev. Condens. Matter Phys., 2023, 14(1): 83
https://doi.org/10.1146/annurev-conmatphys-040521-033133
57 F. Cai Z.Liu T.Yang Z., Non-Hermitian skin effect in periodically-driven dissipative ultracold atoms, arXiv: 2311.06550 (2023)
58 Leefmans C., Dutt A., Williams J., Yuan L., Parto M., Nori F., Fan S., Marandi A.. Topological dissipation in a time-multiplexed photonic resonator network. Nat. Phys., 2022, 18(4): 442
https://doi.org/10.1038/s41567-021-01492-w
59 R. Leefmans C.Parto M.Williams J. H. Y. Li G.Dutt A.Nori F.Marandi A., Topological temporally mode-locked laser, Nat. Phys., doi: 10.1038/s41567-024-02420-4 (2024)
60 Zhang H., Guo Z., Li Y., Yang Y., Chen Y., Chen H.. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer. Front. Phys., 2024, 19(4): 43209
https://doi.org/10.1007/s11467-023-1388-x
61 D. Xie X., Y. Xue Z., B. Zhang D.. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems. Front. Phys., 2024, 19(4): 41202
https://doi.org/10.1007/s11467-023-1382-3
62 Zhou Q., Wu J., Pu Z., Lu J., Huang X., Deng W., Ke M., Liu Z.. Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points. Nat. Commun., 2023, 14(1): 4569
https://doi.org/10.1038/s41467-023-40236-7
63 Weidemann S., Kremer M., Helbig T., Hofmann T., Stegmaier A., Greiter M., Thomale R., Szameit A.. Topological funneling of light. Science, 2020, 368(6488): 311
https://doi.org/10.1126/science.aaz8727
64 Wang K., Dutt A., Y. Yang K., C. Wojcik C., Vučković J., Fan S.. Generating arbitrary topological windings of a non-Hermitian band. Science, 2021, 371(6535): 1240
https://doi.org/10.1126/science.abf6568
65 Helbig T., Hofmann T., Imhof S., Abdelghany M., Kiessling T., W. Molenkamp L., H. Lee C., Szameit A., Greiter M., Thomale R.. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
https://doi.org/10.1038/s41567-020-0922-9
66 Zou D., Chen T., He W., Bao J., H. Lee C., Sun H., Zhang X.. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
https://doi.org/10.1038/s41467-021-26414-5
67 Liang Q., Xie D., Dong Z., Li H., Li H., Gadway B., Yi W., Yan B.. Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett., 2022, 129(7): 070401
https://doi.org/10.1103/PhysRevLett.129.070401
68 Feng L., El-Ganainy R., Ge L.. Non-Hermitian photonics based on parity‒time symmetry. Nat. Photonics, 2017, 11(12): 752
https://doi.org/10.1038/s41566-017-0031-1
69 El-Ganainy R., G. Makris K., Khajavikhan M., H. Musslimani Z., Rotter S., N. Christodoulides D.. Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
https://doi.org/10.1038/nphys4323
70 Wu Y., Kang L., H. Werner D.. Generalized PT symmetry in non-Hermitian wireless power transfer systems. Phys. Rev. Lett., 2022, 129(20): 200201
https://doi.org/10.1103/PhysRevLett.129.200201
71 Hao X., Yin K., Zou J., Wang R., Huang Y., Ma X., Dong T.. Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics. Phys. Rev. Lett., 2023, 130(7): 077202
https://doi.org/10.1103/PhysRevLett.130.077202
72 Kawabata K., Ryu S.. Nonunitary scaling theory of non-Hermitian localization. Phys. Rev. Lett., 2021, 126(16): 166801
https://doi.org/10.1103/PhysRevLett.126.166801
73 W. Anderson P.. Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109(5): 1492
https://doi.org/10.1103/PhysRev.109.1492
74 A. Lee P., V. Ramakrishnan T.. Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
https://doi.org/10.1103/RevModPhys.57.287
75 Hatano N., R. Nelson D.. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett., 1996, 77(3): 570
https://doi.org/10.1103/PhysRevLett.77.570
76 Hatano N., R. Nelson D.. Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B, 1998, 58(13): 8384
https://doi.org/10.1103/PhysRevB.58.8384
77 Feinberg J., Zee A.. Non-Hermitian localization and delocalization. Phys. Rev. E, 1999, 59(6): 6433
https://doi.org/10.1103/PhysRevE.59.6433
78 Gong Z., Ashida Y., Kawabata K., Takasan K., Higashikawa S., Ueda M.. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
https://doi.org/10.1103/PhysRevX.8.031079
79 Jiang H., J. Lang L., Yang C., L. Zhu S., Chen S.. Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
https://doi.org/10.1103/PhysRevB.100.054301
80 Wang C., R. Wang X.. Level statistics of extended states in random non-Hermitian Hamiltonians. Phys. Rev. B, 2020, 101(16): 165114
https://doi.org/10.1103/PhysRevB.101.165114
81 Longhi S.. Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
https://doi.org/10.1103/PhysRevLett.122.237601
82 F. Tzortzakakis A., G. Makris K., N. Economou E.. Non-Hermitian disorder in two-dimensional optical lattices. Phys. Rev. B, 2020, 101(1): 014202
https://doi.org/10.1103/PhysRevB.101.014202
83 Huang Y., I. Shklovskii B.. Anderson transition in three-dimensional systems with non-Hermitian disorder. Phys. Rev. B, 2020, 101(1): 014204
https://doi.org/10.1103/PhysRevB.101.014204
84 W. Zhang D., Z. Tang L., J. Lang L., Yan H., L. Zhu S.. Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech. Astron., 2020, 63(6): 267062
https://doi.org/10.1007/s11433-020-1521-9
85 Claes J., L. Hughes T.. Skin effect and winding number in disordered non-Hermitian systems. Phys. Rev. B, 2021, 103(14): L140201
https://doi.org/10.1103/PhysRevB.103.L140201
86 Luo X., Ohtsuki T., Shindou R.. Universality classes of the Anderson transitions driven by non-Hermitian disorder. Phys. Rev. Lett., 2021, 126(9): 090402
https://doi.org/10.1103/PhysRevLett.126.090402
87 Luo X., Ohtsuki T., Shindou R.. Transfer matrix study of the Anderson transition in non-Hermitian systems. Phys. Rev. B, 2021, 104(10): 104203
https://doi.org/10.1103/PhysRevB.104.104203
88 M. Kim K., J. Park M.. Disorder-driven phase transition in the second-order non-Hermitian skin effect. Phys. Rev. B, 2021, 104(12): L121101
https://doi.org/10.1103/PhysRevB.104.L121101
89 C. Wanjura C., Brunelli M., Nunnenkamp A.. Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett., 2021, 127(21): 213601
https://doi.org/10.1103/PhysRevLett.127.213601
90 Weidemann S., Kremer M., Longhi S., Szameit A.. Coexistence of dynamical delocalization and spectral localization through stochastic dissipation. Nat. Photonics, 2021, 15(8): 576
https://doi.org/10.1038/s41566-021-00823-w
91 Lin Q., Li T., Xiao L., Wang K., Yi W., Xue P.. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
https://doi.org/10.1038/s41467-022-30938-9
92 Liu H., Lu M., Q. Zhang Z., Jiang H.. Modified generalized Brillouin zone theory with on-site disorder. Phys. Rev. B, 2023, 107(14): 144204
https://doi.org/10.1103/PhysRevB.107.144204
93 Liu J.F. Cai Z.Liu T.Yang Z., Reentrant non-Hermitian skin effect in coupled non-Hermitian and Hermitian chains with correlated disorder, arXiv: 2311.03777 (2023)
94 Wang C., He W., Ren H., R. Wang X.. Berezinskii‒Kosterlitz‒Thouless-like localization−localization transitions in disordered two-dimensional quantized quadrupole insulators. Phys. Rev. B, 2024, 109(2): L020202
https://doi.org/10.1103/PhysRevB.109.L020202
95 Leykam D., Andreanov A., Flach S.. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X, 2018, 3(1): 1473052
https://doi.org/10.1080/23746149.2018.1473052
96 W. Rhim J., J. Yang B.. Singular flat bands. Adv. Phys. X, 2021, 6(1): 1901606
https://doi.org/10.1080/23746149.2021.1901606
97 Vidal J., Douçot B., Mosseri R., Butaud P.. Interaction induced delocalization for two particles in a periodic potential. Phys. Rev. Lett., 2000, 85(18): 3906
https://doi.org/10.1103/PhysRevLett.85.3906
98 Douçcot B., Vidal J.. Pairing of cooper pairs in a fully frustrated Josephson-junction chain. Phys. Rev. Lett., 2002, 88(22): 227005
https://doi.org/10.1103/PhysRevLett.88.227005
99 Longhi S.. Aharonov−Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields. Opt. Lett., 2014, 39(20): 5892
https://doi.org/10.1364/OL.39.005892
100 Mukherjee S., Di Liberto M., Öhberg P., R. Thomson R., Goldman N.. Experimental observation of Aharonov‒Bohm cages in photonic lattices. Phys. Rev. Lett., 2018, 121(7): 075502
https://doi.org/10.1103/PhysRevLett.121.075502
101 Kremer M., Petrides I., Meyer E., Heinrich M., Zilberberg O., Szameit A.. A square-root topological insulator with non-quantized indices realized with photonic Aharonov‒Bohm cages. Nat. Commun., 2020, 11(1): 907
https://doi.org/10.1038/s41467-020-14692-4
102 Li H., Dong Z., Longhi S., Liang Q., Xie D., Yan B.. Aharonov‒Bohm caging and inverse Anderson transition in ultracold atoms. Phys. Rev. Lett., 2022, 129(22): 220403
https://doi.org/10.1103/PhysRevLett.129.220403
103 G. C. Martinez J., S. Chiu C., M. Smitham B., A. Houck A.. Flat-band localization and interaction-induced delocalization of photons. Sci. Adv., 2023, 9(50): eadj7195
https://doi.org/10.1126/sciadv.adj7195
104 Vidal J., Mosseri R., Douçcot B.. Aharonov‒Bohm cages in two-dimensional structures. Phys. Rev. Lett., 1998, 81(26): 5888
https://doi.org/10.1103/PhysRevLett.81.5888
105 Vidal J., Butaud P., Dou¸cot B., Mosseri R.. Disorder and interactions in Aharonov‒Bohm cages. Phys. Rev. B, 2001, 64(15): 155306
https://doi.org/10.1103/PhysRevB.64.155306
106 L. Lin Y., Nori F.. Quantum interference on the kagomé lattice. Phys. Rev. B, 1994, 50(21): 15953
https://doi.org/10.1103/PhysRevB.50.15953
107 L. Lin Y., Nori F.. Quantum interference in superconducting wire networks and Josephson junction arrays: An analytical approach based on multiple-loop Aharonov‒Bohm Feynman path integrals. Phys. Rev. B, 2002, 65(21): 214504
https://doi.org/10.1103/PhysRevB.65.214504
108 W. Y. Tu M., M. Zhang W., Nori F.. Coherent control of double-dot molecules using Aharonov−Bohm magnetic flux. Phys. Rev. B, 2012, 86(19): 195403
https://doi.org/10.1103/PhysRevB.86.195403
109 Goda M., Nishino S., Matsuda H.. Inverse Anderson transition caused by flatbands. Phys. Rev. Lett., 2006, 96(12): 126401
https://doi.org/10.1103/PhysRevLett.96.126401
110 Baboux F., Ge L., Jacqmin T., Biondi M., Galopin E., Lemaĭtre A., Le Gratiet L., Sagnes I., Schmidt S., E. Türeci H., Amo A., Bloch J.. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett., 2016, 116(6): 066402
https://doi.org/10.1103/PhysRevLett.116.066402
111 Ge L.. Parity−time symmetry in a flat-band system. Phys. Rev. A, 2015, 92(5): 052103
https://doi.org/10.1103/PhysRevA.92.052103
112 Ramezani H.. Non-Hermiticity-induced flat band. Phys. Rev. A, 2017, 96(1): 011802
https://doi.org/10.1103/PhysRevA.96.011802
113 Leykam D., Flach S., D. Chong Y.. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B, 2017, 96(6): 064305
https://doi.org/10.1103/PhysRevB.96.064305
114 M. Zhang S., Jin L.. Flat band in two-dimensional non-Hermitian optical lattices. Phys. Rev. A, 2019, 100(4): 043808
https://doi.org/10.1103/PhysRevA.100.043808
115 He P., T. Ding H., L. Zhu S.. Geometry and superfluidity of the flat band in a non-Hermitian optical lattice. Phys. Rev. A, 2021, 103(4): 043329
https://doi.org/10.1103/PhysRevA.103.043329
116 Biesenthal T., Kremer M., Heinrich M., Szameit A.. Experimental realization of PT-symmetric flat bands. Phys. Rev. Lett., 2019, 123(18): 183601
https://doi.org/10.1103/PhysRevLett.123.183601
117 Qi B., Zhang L., Ge L.. Defect states emerging from a non-Hermitian flatband of photonic zero modes. Phys. Rev. Lett., 2018, 120(9): 093901
https://doi.org/10.1103/PhysRevLett.120.093901
118 M. Zhang S., Jin L.. Localization in non-Hermitian asymmetric rhombic lattice. Phys. Rev. Res., 2020, 2(3): 033127
https://doi.org/10.1103/PhysRevResearch.2.033127
119 M. Zhang S., S. Xu H., Jin L.. Tunable Aharonov−Bohm cages through anti-PT-symmetric imaginary couplings. Phys. Rev. A, 2023, 108(2): 023518
https://doi.org/10.1103/PhysRevA.108.023518
120 Ramya Parkavi J., K. Chandrasekar V.. Localization in a non-Hermitian flat band lattice with nonlinearity. Optik (Stuttg.), 2022, 271: 170129
https://doi.org/10.1016/j.ijleo.2022.170129
121 Ke S., Wen W., Zhao D., Wang Y.. Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays. Phys. Rev. A, 2023, 107(5): 053508
https://doi.org/10.1103/PhysRevA.107.053508
122 Amelio I.Goldman N., Lasing, quantum geometry and coherence in non-Hermitian flat bands, arXiv: 2308.08418 (2023)
123 Martínez-Strasser C., A. J. Herrera M., García-Etxarri A., Palumbo G., K. Kunst F., Bercioux D.. Topological properties of a non-Hermitian quasi-1D chain with a flat band. Adv. Quant. Technol., 2023, 7(2): 2300225
https://doi.org/10.1002/qute.202300225
124 Longhi S.. Inverse Anderson transition in photonic cages. Opt. Lett., 2021, 46(12): 2872
https://doi.org/10.1364/OL.430196
125 Molignini P., Arandes O., J. Bergholtz E.. Anomalous skin effects in disordered systems with a single non-Hermitian impurity. Phys. Rev. Res., 2023, 5(3): 033058
https://doi.org/10.1103/PhysRevResearch.5.033058
126 Hofmann T., Helbig T., H. Lee C., Greiter M., Thomale R.. Chiral voltage propagation and calibration in a topolectrical chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
https://doi.org/10.1103/PhysRevLett.122.247702
127 Dong J., Juričić V., Roy B.. Topolectric circuits: Theory and construction. Phys. Rev. Res., 2021, 3(2): 023056
https://doi.org/10.1103/PhysRevResearch.3.023056
128 H. Lee C., Imhof S., Berger C., Bayer F., Brehm J., W. Molenkamp L., Kiessling T., Thomale R.. Topolectrical circuits. Commun. Phys., 2018, 1(1): 39
https://doi.org/10.1038/s42005-018-0035-2
[1] P. M. Marychev, A. A. Shanenko, A. V. Vagov. Intertype superconductivity evoked by the interplay of disorder and multiple bands[J]. Front. Phys. , 2024, 19(4): 43205-.
[2] Zhen Ma, Wei-Jin Chen, Yuntian Chen, Jin-Hua Gao, X. C. Xie. Flat band localization due to self-localized orbital[J]. Front. Phys. , 2023, 18(6): 63302-.
[3] Gaoyang Li, Fuming Xu, Jian Wang. Universal behaviors of magnon-mediated spin transport in disordered nonmagnetic metal-ferromagnetic insulator heterostructures[J]. Front. Phys. , 2023, 18(3): 33310-.
[4] Zhen Ma, Shuai Li, Meng-Meng Xiao, Ya-Wen Zheng, Ming Lu, Haiwen Liu, Jin-Hua Gao, X. C. Xie. Moiré flat bands of twisted few-layer graphite[J]. Front. Phys. , 2023, 18(1): 13307-.
[5] Zhiming Chen, Xiuye Liu, Jianhua Zeng. Electromagnetically induced moiré optical lattices in a coherent atomic gas[J]. Front. Phys. , 2022, 17(4): 42508-.
[6] Jing-Kai Fang, Jun-Han Huang, Han-Qing Wu, Dao-Xin Yao. Dynamical properties of the Haldane chain with bond disorder[J]. Front. Phys. , 2022, 17(3): 33503-.
[7] Guoyu Luo, Xinyu Lv, Lu Wen, Zhiqiang Li, Zhenbing Dai. Strain induced topological transitions in twisted double bilayer graphene[J]. Front. Phys. , 2022, 17(2): 23502-.
[8] Xu-Ping Yao, Jian Qiao Liu, Chun-Jiong Huang, Xiaoqun Wang, Gang Chen. Generic spiral spin liquids[J]. Front. Phys. , 2021, 16(5): 53303-.
[9] Chao Zhang, Fuming Xu, Jian Wang. Full counting statistics of phonon transport in disordered systems[J]. Front. Phys. , 2021, 16(3): 33502-.
[10] Yong-Hao Gao, Xu-Ping Yao, Fei-Ye Li, Gang Chen. Spin-1 pyrochlore antiferromagnets: Theory, model, and materials’ survey[J]. Front. Phys. , 2020, 15(6): 63201-.
[11] Yunhuan Nie, Hua Tong, Jun Liu, Mengjie Zu, Ning Xu. Role of disorder in determining the vibrational properties of mass-spring networks[J]. Front. Phys. , 2017, 12(3): 126301-.
[12] Jun-Ying Huang, Zu-Hui Wu, Ji-Ping Huang. Spectral blueshift as a three-dimensional structure-ordering process[J]. Front. Phys. , 2017, 12(3): 124205-.
[13] Ze-Lian Wang,Wen-Hui Xie,Yong-Hong Zhao. Tunable band structure and effective mass of disordered chalcopyrite[J]. Front. Phys. , 2017, 12(1): 127103-.
[14] V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze,K. G. Popov,V. A. Khodel. Strongly correlated Fermi systems as a new state of matter[J]. Front. Phys. , 2016, 11(5): 117103-.
[15] Ge Zhang,Bin Liu,Yi-Feng Yang,Shiping Feng. Spatial modulation of unitary impurity-induced resonances in superconducting CeCoIn5[J]. Front. Phys. , 2016, 11(3): 117402-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed