Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 53205    https://doi.org/10.1007/s11467-024-1392-9
Optimizing hydrogen evolution reaction: Computational screening of single metal atom impurities in 2D MXene Nb4C3O2
Željko Šljivančanin()
Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, RS-11001 Belgrade, Serbia
 Download: PDF(5077 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MXenes, a novel class of 2D transition metal carbides and nitrides, have recently emerged as a promising candidate in the quest for efficient catalysts for the hydrogen evolution reaction. To enhance the performance of 2D MXenes with modest or poor catalytic efficiency, a particularly prosperous strategy involves doping with transition and noble metal atoms. Taking the Nb4C3O2 monolayer as a model, we explore substitutional metallic impurities, which serve as single-atom catalysts embedded within the Nb4C3O2 surface. Our findings demonstrate the ability to finely tune the atomic H binding energy within a 0.6 eV range, showing the potential for precise control in catalytic applications. Across different transition and noble metals, the single atoms integrated into Nb4C3O2 effectively adjust the free energy of H adsorption at nearby O atoms, achieving values comparable to or superior to Pt catalysts. A comprehensive examination of the electronic properties around the impurities reveals a correlation between changes in local reactivity and charge transfer to neighboring O atoms, where H atoms bind.

Keywords hydrogen evolution reaction      MXenes      DFT      single-atom catalysts     
Corresponding Author(s): Željko Šljivančanin   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 15 April 2024
 Cite this article:   
?eljko ?ljivan?anin. Optimizing hydrogen evolution reaction: Computational screening of single metal atom impurities in 2D MXene Nb4C3O2[J]. Front. Phys. , 2024, 19(5): 53205.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1392-9
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/53205
Fig.1  Top (a) and side (b) view of the atomic structure of substitutional metal impurity in Nb4C3O2. The impurity atoms are depicted as blue spheres. Nb, C, and O atoms are presented as green, light gray, and red spheres. The dz in panel (b) marks impurity displacement out of the surface Nb plane.
Group Impurity EB (eV) dz (?) Impurity EB (eV) dz (?) Impurity EB (eV) dz (?)
IV Ti 9.60 0.11 Zr 11.02 0.31 Hf 11.73 0.27
V V 7.92 ?0.19 Nb 10.11 0.00 Ta 11.77 0.08
VI Cr 5.34 ?0.06 Mo 7.80 ?0.20 W 9.90 ?0.18
VII Mn 4.51 ?0.07 Tc ? ? Re 8.15 ?0.28
VIII Fe 4.98 ?0.37 Ru 6.40 ?0.31 Os 7.52 ?0.33
IX Co 5.80 ?0.68 Rh 5.66 ?0.53 Ir 5.79 ?0.29
X Ni 5.05 ?0.66 Pd 2.83 ?0.44 Pt 4.05 ?0.56
XI Cu 3.09 ?0.46 Ag 1.60 2.06 Au 0.35 ?0.29
XII Zn 1.56 1.31 Cd 0.47 1.80 Hg unstable ?
Tab.1  Binding energies (EB) of substitutional metal impurities in Nb4C3O2 monolayer and their displacements (dz) from the surface Nb atomic plane.
Group Impurity ΔG (eV) ΔQ (e) Impurity ΔG (eV) ΔQ (e) Impurity ΔG (eV) ΔQ (e)
IV Ti 0.14 ?0.003 Zr 0.36 0.038 Hf 0.36 0.045
V V 0.05 ?0.030 Nb 0.20 0.000 Ta 0.32 0.016
VI Cr ?0.01 ?0.046 Mo 0.14 ?0.034 W 0.17 ?0.015
VII Mn ?0.09 ?0.055 Tc ? ? Re 0.10 ?0.041
VIII Fe ?0.01 ?0.089 Ru ?0.11 ?0.088 Os ?0.11 ?0.062
IX Co ?0.15 ?0.106 Rh ?0.19 ?0.125 Ir ?0.17 ?0.088
X Ni ?0.18 ?0.107 Pd ?0.07 ?0.129 Pt 0.01 ?0.136
XI Cu 0.00 ?0.111 Ag 0.13 ?0.058 Au ?0.02 ?0.139
XII Zn 0.28 0.014 Cd 0.30 ?0.011 Hg ? ?
Tab.2  Free energy of H adsorption (ΔG) and the effective charge transfer on an O atom in the vicinity of the impurity (ΔQ) at Nb4C3O2 monolayer with substitutional metal impurities.
Fig.2  The top view of the H adsorption geometry at Nb4C3O2 monolayer with Mn impurity. The side view is shown in the inset. Blue and yellow spheres represent Mn and H atoms. The color coding of other atoms is the same as in Fig.1.
Fig.3  The variation in ΔG(H) with the Group number of substitutional impurity in Nb4C3O2 monolayer. The points corresponding to Nb (representing the pristine Nb4C3O2) and impurities giving rise to the |ΔG(H)|0.1 eV are labeled.
Fig.4  The correlation between ΔG(H) and the 2p center of the O atoms where H binds, for Nb4C3O2 monolayer with 3d, 4d and 5d transition and noble metal impurities.
Fig.5  Impurity-induced charge density perturbation δρ in Nb4C3O2 monolayer with (a) Ta, (b) Cu, and (c) Ir substitutional impurities; δρ is defined as the difference in the charge densities of the MXene with the impurity and the pristine one; the orange and yellow isocontours are plotted at the values of 0.05 e/?3 and ?0.05 e/?3, respectively. (d) DOS projected on the 2p states of an O atom next to the impurity. The color scheme: Nb ? green; O ? red; C ? gray. The impurities atoms are enclosed in orange and yellow isocontoures and thus not visible.
1 Zheng Y. , Jiao Y. , Jaroniec M. , Z. Qiao S. . Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed., 2015, 54(1): 52
https://doi.org/10.1002/anie.201407031
2 Luo M. , T. Yang J. , G. Li X. , Eguchi M. , Yamauchi Y. , L. Wang Z. . Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci. (Camb.), 2023, 14(13): 3400
https://doi.org/10.1039/D2SC06298D
3 K. Nørskov J. , Bligaard T. , A. Logadottir T. , R. Kitchin J. , G. Chen J. , Pandelov S. , Stimming U. . Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc., 2005, 152(3): J23
https://doi.org/10.1149/1.1856988
4 Greeley J. , F. Jaramillo T. , Bonde J. , B. Chorkendorff I. , K. Nørskov J. . Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater., 2006, 5(11): 909
https://doi.org/10.1038/nmat1752
5 K. Nørskov J. , Bligaard T. , Rossmeisl J. , H. Christensen C. . Towards the computational design of solid catalysts. Nat. Chem., 2009, 1(1): 37
https://doi.org/10.1038/nchem.121
6 Mahmood J. , Li F. , M. Jung S. , S. Okyay M. , Ahmad I. , J. Kim S. , Park N. , Y. Jeong H. , B. Baek J. . An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol., 2017, 12(5): 441
https://doi.org/10.1038/nnano.2016.304
7 X. Zhu Z. , X. Lin Y. , Fang P. , S. Wang M. , Z. Zhu M. , Y. Zhang X. , S. Liu J. , G. Hu J. , Y. Xu X. . Orderly nanodendritic nickel substitute for Raney nickel catalyst improving alkali water electrolyzer. Adv. Mater., 2024, 36(1): 2307035
https://doi.org/10.1002/adma.202307035
8 Y. Jin H. , X. Guo C. , Liu X. , L. Liu J. , Vasileff A. , Jiao Y. , Zheng Y. , Z. Qiao S. . Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev., 2018, 118(13): 6337
https://doi.org/10.1021/acs.chemrev.7b00689
9 Gong M. , Zhou W. , C. Tsai M. , G. Zhou J. , Y. Guan M. , C. Lin M. , Zhang B. , F. Hu Y. , Y. Wang D. , Yang J. , J. Pennycook S. , J. Hwang B. , J. Dai H. . Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun., 2014, 5(1): 4695
https://doi.org/10.1038/ncomms5695
10 Q. Wang L. , X. Hao Y. , M. Deng L. , Hu F. , Zhao S. , L. Li L. , J. Peng S. . Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun., 2022, 13(1): 5785
https://doi.org/10.1038/s41467-022-33590-5
11 Fang P. , Z. Zhu M. , Liu J. , X. Zhu Z. , G. Hu J. , Y. Xu X. . Making ternary-metal hydroxy-sulfide catalyst via cathodic reconstruction with ion regulation for industrial-level hydrogen generation. Adv. Energy Mater., 2023, 13(35): 2301222
https://doi.org/10.1002/aenm.202301222
12 Bian L. , Y. Zhang Z. , Tian H. , N. Tian N. , Ma Z. , L. Wang Z. . Grain boundary-abundant copper nanoribbons on balanced gas‒liquid diffusion electrodes for efficient CO2 electroreduction to C2H4. Chin. J. Catal., 2023, 54: 199
https://doi.org/10.1016/S1872-2067(23)64540-1
13 Y. Zhang Z. , Tian H. , Bian L. , Z. Liu S. , Liu Y. , L. Wang Z. . Cu‒Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products. J. Energy Chem., 2023, 83: 90
https://doi.org/10.1016/j.jechem.2023.04.034
14 G. Li Y. , L. Wang H. , M. Xie L. , Y. Liang Y. , S. Hong G. , J. Dai H. . MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc., 2011, 133(19): 7296
https://doi.org/10.1021/ja201269b
15 A. Lukowski M. , S. Daniel A. , Meng F. , Forticaux A. , S. Li L. , Jin S. . Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc., 2013, 135(28): 10274
https://doi.org/10.1021/ja404523s
16 Hinnemann B. , G. Moses P. , Bonde J. , P. Jørgensen K. , H. Nielsen J. , Horch S. , B. Chork-endorff I. , K. Nørskov J. . Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc., 2005, 127(15): 5308
https://doi.org/10.1021/ja0504690
17 Tsai C. , Abild-Pedersen F. , K. Nørskov J. . Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett., 2014, 14(3): 1381
https://doi.org/10.1021/nl404444k
18 Deng J. , Li H. , Xiao J. , Tu Y. , Deng D. , Yang H. , Tian H. , Li J. , Ren P. , Bao X. . Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci., 2015, 8(5): 1594
https://doi.org/10.1039/C5EE00751H
19 Ramalingam V. , Varadhan P. , C. Fu H. , Kim H. , L. Zhang D. , M. Chen S. , Song L. , Ma D. , Wang Y. , N. Alshareef H. , H. He J. . Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater., 2019, 31(48): 1903841
https://doi.org/10.1002/adma.201903841
20 Lu Q.Yu Y.Ma Q.Chen K.Zhang H., 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions, Adv. Mater. 28(10), 1917 (2016)
21 Naguib M. , Mashtalir O. , Carle C. , Presser V. , Lu J. , Hultman L. , Gogotsi Y. , W. Barsoum M. . Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322
https://doi.org/10.1021/nn204153h
22 Khazaei M. , Arai M. , Sasaki T. , Y. Chung C. , S. Venkataramanan N. , Estili M. , Sakka Y. , Kawazoe Y. . Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater., 2013, 23(17): 2185
https://doi.org/10.1002/adfm.201202502
23 Anasori B.R. Lukatskaya M.Gogotsi Y., 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)
24 T. Jiang X. , V. Kuklin A. , Baev A. , Q. Ge Y. , Ågren H. , Zhang H. , N. Prasad P. . Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep., 2020, 848: 1
https://doi.org/10.1016/j.physrep.2019.12.006
25 W. Seh Z. , D. Fredrickson K. , Anasori B. , Kibsgaard J. , L. Strickler A. , R. Lukatskaya M. , Gogotsi Y. , F. Jaramillo T. , Vojvodic A. . Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett., 2016, 1(3): 589
https://doi.org/10.1021/acsenergylett.6b00247
26 Gao G.P. O’Mullane A.Du A., 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7(1), 494 (2017)
27 Pandey M. , S. Thygesen K. . Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. J. Phys. Chem. C, 2017, 121(25): 13593
https://doi.org/10.1021/acs.jpcc.7b05270
28 Bai S. , Yang M. , Jiang J. , He X. , Zou J. , Xiong Z. , Liao G. , Liu S. . Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl., 2021, 5: 78
https://doi.org/10.1038/s41699-021-00259-4
29 Kong Q.An X.Huang L.Wang X.Feng W.Qiu S.Wang Q.Sun C., A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure a hydrogen evolution performance, Front. Phys. 16(5), 53506 (2021)
30 Tang Y. , H. Yang C. , T. Xu X. , Q. Kang Y. , Henzie Y. , X. Que W. , Yamauchi Y. . MXene nanoarchitectonics: Defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv. Energy Mater., 2022, 12(12): 2103867
https://doi.org/10.1002/aenm.202103867
31 Y. Shuai T. , N. Zhan Q. , M. Xu H. , J. Zhang Z. , R. Li G. . Recent developments of MXene-based catalysts for hydrogen production by water splitting. Green Chem., 2023, 25(5): 1749
https://doi.org/10.1039/D2GC04205C
32 C. Cheng N. , Stambula S. , Wang D. , N. Banis M. , Liu J. , Riese A. , W. Xiao B. , Y. Li R. , K. Sham T. , M. Liu L. , A. Botton G. , L. Sun X. . Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun., 2016, 7(1): 13638
https://doi.org/10.1038/ncomms13638
33 Alarawi A. , Ramalingam V. , H. He J. . Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater. Today Energy, 2019, 11: 1
https://doi.org/10.1016/j.mtener.2018.10.014
34 N. Sredojević D. , R. Belić M. , Šljivančanin Ž. . Hydrogen evolution reaction over single-atom catalysts based on metal adatoms at defected graphene and h-BN. J. Phys. Chem. C, 2020, 124(31): 16860
https://doi.org/10.1021/acs.jpcc.0c01151
35 Zhang J. , Zhao Y. , Guo X. , Chen C. , L. Dong C. , S. Liu R. , P. Han C. , Li Y. , Gogotsi Y. , Wang G. . Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal., 2018, 1(12): 985
https://doi.org/10.1038/s41929-018-0195-1
36 A. Kuznetsov D. , Chen Z. , V. Kumar P. , Tsoukalou A. , Kierzkowska A. , M. Abdala P. , V. Safonova O. , Fedorov A. , R. Müller C. . Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc., 2019, 141(44): 17809
https://doi.org/10.1021/jacs.9b08897
37 Liu H. , Hu Z. , Liu Q. , Sun P. , Wang Y. , Chou S. , Hu Z. , Zhang Z. . Single-atom Ru anchored in nitrogen-doped MXene (Ti3C2Tx) as an efficient catalyst for the hydrogen evolution reaction at all pH values. J. Mater. Chem. A, 2020, 8(46): 24710
https://doi.org/10.1039/D0TA09538A
38 A. Le T. , V. Bui Q. , Q. Tran N. , Cho Y. , Hong Y. , Kawazoe Y. , Lee H. . Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustain. Chem. & Eng., 2019, 7(19): 16879
https://doi.org/10.1021/acssuschemeng.9b04470
39 X. Qu G. , Zhou Y. , L. Wu T. , L. Zhao G. , F. Li F. , J. Kang Y. , Xu C. . Phosphorized MXene-phase molybdenum carbide as an earth-abundant hydrogen evolution electrocatalyst. ACS Appl. Energy Mater., 2018, 1(12): 7206
https://doi.org/10.1021/acsaem.8b01642
40 J. Mortensen J. , B. Hansen L. , W. Jacobsen K. . Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 2005, 71(3): 035109
https://doi.org/10.1103/PhysRevB.71.035109
41 Enkovaara J. , Rostgaard C. , J. Mortensen J. , Chen J. , Dulak M. , Ferrighi L. , Gavnholt J. , Glinsvad C. , Haikola V. , A. Hansen H. , H. Kristoffersen H. , Kuisma M. , H. Larsen A. , Lehtovaara L. , Ljungberg M. , Lopez-Acevedo O. , G. Moses P. , Ojanen J. , Olsen T. , Petzold V. , A. Romero N. , Stausholm-Moller J. , Strange M. , A. Tritsaris G. , Vanin M. , Walter M. , Hammer B. , Hakkinen H. , K. H. Madsen G. , M. Nieminen R. , K. Norskov J. , Puska M. , T. Rantala T. , Schiotz J. , S. Thygesen K. , W. Jacobsen K. . Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter, 2010, 22(25): 253202
https://doi.org/10.1088/0953-8984/22/25/253202
42 E. Blöchl P. . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
43 J. Mortensen J. , B. Hansen L. , W. Jacobsen K. . Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 2005, 71(3): 035109
https://doi.org/10.1103/PhysRevB.71.035109
44
45 J. Monkhorst H. , D. Pack J. . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
46 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
47 R. Davidson E. . The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys., 1975, 17(1): 87
https://doi.org/10.1016/0021-9991(75)90065-0
48 C. Liu D. , Nocedal J. . On the limited memory BFGS method for large scale optimization. Math. Program., 1989, 45(1−3): 503
https://doi.org/10.1007/BF01589116
49 R. Bahn S. , W. Jacobsen K. . An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng., 2002, 4(3): 56
https://doi.org/10.1109/5992.998641
50 F. W. Bader R., Atoms in Molecules: A Quantum Theory, New York: Oxford University Press, 1990
51 Hjorth Larsen A. , Jørgen Mortensen J. , Blomqvist J. , E. Castelli I. , Christensen R. , Dułak M. , Friis J. , N. Groves M. , Hammer B. , Hargus C. , D. Hermes E. , C. Jennings P. , Bjerre Jensen P. , Kermode J. , R. Kitchin J. , Leonhard Kolsbjerg E. , Kubal J. , Kaasbjerg K. , Lysgaard S. , Bergmann Maronsson J. , Maxson T. , Olsen T. , Pastewka L. , Peterson A. , Rostgaard C. , Schiøtz J. , Schütt O. , Strange M. , S. Thygesen K. , Vegge T. , Vilhelmsen L. , Walter M. , Zeng Z. , W. Jacobsen K. . The atomic simulation environment — a Python library for working with atoms. J. Phys.: Condens. Matter, 2017, 29(27): 273002
https://doi.org/10.1088/1361-648X/aa680e
52 W. Cheng Y. , H. Dai J. , M. Zhang J. , Song Y. . Two-dimensional, ordered, double transition metal carbides (MXenes): A new family of promising catalysts for the hydrogen evolution reaction. J. Phys. Chem. C, 2018, 122(49): 28113
https://doi.org/10.1021/acs.jpcc.8b08914
53 Hammer B. , K. Nørskov J. . Theoretical surface science and catalysis ‒ Calculations and concepts. Adv. Catal., 2000, 45: 71
https://doi.org/10.1016/S0360-0564(02)45013-4
[1] Jing Zhang, Zixiang Cui, Jie Liu, Chunjie Li, Haoyi Tan, Guangcun Shan, Ruguang Ma. Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond[J]. Front. Phys. , 2023, 18(1): 13603-.
[2] Tianyi Wang, Ani Dong, Xiaoli Zhang, Rosalie K. Hocking, Chenghua Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction[J]. Front. Phys. , 2022, 17(2): 23501-.
[3] Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu. Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products[J]. Front. Phys. , 2021, 16(6): 63500-.
[4] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[5] Qinye Li, Siyao Qiu, Baohua Jia. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction[J]. Front. Phys. , 2021, 16(1): 13503-.
[6] Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking[J]. Front. Phys. , 2020, 15(6): 63503-.
[7] Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502-.
[8] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[9] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[10] Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility[J]. Front. Phys. , 2018, 13(4): 138117-.
[11] Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions[J]. Front. Phys. , 2018, 13(3): 138501-.
[12] Xue-Rong Hu, Ji-Ming Zheng, Zhao-Yu Ren. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation[J]. Front. Phys. , 2018, 13(2): 137302-.
[13] Jian-Wei Li,Bin Wang,Yun-Jin Yu,Ya-Dong Wei,Zhi-Zhou Yu,Yin Wang. Spin-resolved quantum transport in graphene-based nanojunctions[J]. Front. Phys. , 2017, 12(4): 126501-.
[14] Jianing Zhuang,Yin Wang,Yan Zhou,Jian Wang,Hong Guo. Impurity-limited quantum transport variability in magnetic tunnel junctions[J]. Front. Phys. , 2017, 12(4): 127304-.
[15] Yang Li, Hong Zhang, Da-Wei Yan, Hai-Feng Yin, Xin-Lu Cheng. Secondary plasmon resonance in graphene nanostructures[J]. Front. Phys. , 2015, 10(1): 103101-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed