|
|
Optimizing hydrogen evolution reaction: Computational screening of single metal atom impurities in 2D MXene Nb4C3O2 |
Željko Šljivančanin( ) |
Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, RS-11001 Belgrade, Serbia |
|
|
Abstract MXenes, a novel class of 2D transition metal carbides and nitrides, have recently emerged as a promising candidate in the quest for efficient catalysts for the hydrogen evolution reaction. To enhance the performance of 2D MXenes with modest or poor catalytic efficiency, a particularly prosperous strategy involves doping with transition and noble metal atoms. Taking the Nb4C3O2 monolayer as a model, we explore substitutional metallic impurities, which serve as single-atom catalysts embedded within the Nb4C3O2 surface. Our findings demonstrate the ability to finely tune the atomic H binding energy within a 0.6 eV range, showing the potential for precise control in catalytic applications. Across different transition and noble metals, the single atoms integrated into Nb4C3O2 effectively adjust the free energy of H adsorption at nearby O atoms, achieving values comparable to or superior to Pt catalysts. A comprehensive examination of the electronic properties around the impurities reveals a correlation between changes in local reactivity and charge transfer to neighboring O atoms, where H atoms bind.
|
Keywords
hydrogen evolution reaction
MXenes
DFT
single-atom catalysts
|
Corresponding Author(s):
Željko Šljivančanin
|
About author: Li Liu and Yanqing Liu contributed equally to this work. |
Issue Date: 15 April 2024
|
|
1 |
Zheng Y. , Jiao Y. , Jaroniec M. , Z. Qiao S. . Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed., 2015, 54(1): 52
https://doi.org/10.1002/anie.201407031
|
2 |
Luo M. , T. Yang J. , G. Li X. , Eguchi M. , Yamauchi Y. , L. Wang Z. . Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci. (Camb.), 2023, 14(13): 3400
https://doi.org/10.1039/D2SC06298D
|
3 |
K. Nørskov J. , Bligaard T. , A. Logadottir T. , R. Kitchin J. , G. Chen J. , Pandelov S. , Stimming U. . Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc., 2005, 152(3): J23
https://doi.org/10.1149/1.1856988
|
4 |
Greeley J. , F. Jaramillo T. , Bonde J. , B. Chorkendorff I. , K. Nørskov J. . Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater., 2006, 5(11): 909
https://doi.org/10.1038/nmat1752
|
5 |
K. Nørskov J. , Bligaard T. , Rossmeisl J. , H. Christensen C. . Towards the computational design of solid catalysts. Nat. Chem., 2009, 1(1): 37
https://doi.org/10.1038/nchem.121
|
6 |
Mahmood J. , Li F. , M. Jung S. , S. Okyay M. , Ahmad I. , J. Kim S. , Park N. , Y. Jeong H. , B. Baek J. . An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol., 2017, 12(5): 441
https://doi.org/10.1038/nnano.2016.304
|
7 |
X. Zhu Z. , X. Lin Y. , Fang P. , S. Wang M. , Z. Zhu M. , Y. Zhang X. , S. Liu J. , G. Hu J. , Y. Xu X. . Orderly nanodendritic nickel substitute for Raney nickel catalyst improving alkali water electrolyzer. Adv. Mater., 2024, 36(1): 2307035
https://doi.org/10.1002/adma.202307035
|
8 |
Y. Jin H. , X. Guo C. , Liu X. , L. Liu J. , Vasileff A. , Jiao Y. , Zheng Y. , Z. Qiao S. . Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev., 2018, 118(13): 6337
https://doi.org/10.1021/acs.chemrev.7b00689
|
9 |
Gong M. , Zhou W. , C. Tsai M. , G. Zhou J. , Y. Guan M. , C. Lin M. , Zhang B. , F. Hu Y. , Y. Wang D. , Yang J. , J. Pennycook S. , J. Hwang B. , J. Dai H. . Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun., 2014, 5(1): 4695
https://doi.org/10.1038/ncomms5695
|
10 |
Q. Wang L. , X. Hao Y. , M. Deng L. , Hu F. , Zhao S. , L. Li L. , J. Peng S. . Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun., 2022, 13(1): 5785
https://doi.org/10.1038/s41467-022-33590-5
|
11 |
Fang P. , Z. Zhu M. , Liu J. , X. Zhu Z. , G. Hu J. , Y. Xu X. . Making ternary-metal hydroxy-sulfide catalyst via cathodic reconstruction with ion regulation for industrial-level hydrogen generation. Adv. Energy Mater., 2023, 13(35): 2301222
https://doi.org/10.1002/aenm.202301222
|
12 |
Bian L. , Y. Zhang Z. , Tian H. , N. Tian N. , Ma Z. , L. Wang Z. . Grain boundary-abundant copper nanoribbons on balanced gas‒liquid diffusion electrodes for efficient CO2 electroreduction to C2H4. Chin. J. Catal., 2023, 54: 199
https://doi.org/10.1016/S1872-2067(23)64540-1
|
13 |
Y. Zhang Z. , Tian H. , Bian L. , Z. Liu S. , Liu Y. , L. Wang Z. . Cu‒Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products. J. Energy Chem., 2023, 83: 90
https://doi.org/10.1016/j.jechem.2023.04.034
|
14 |
G. Li Y. , L. Wang H. , M. Xie L. , Y. Liang Y. , S. Hong G. , J. Dai H. . MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc., 2011, 133(19): 7296
https://doi.org/10.1021/ja201269b
|
15 |
A. Lukowski M. , S. Daniel A. , Meng F. , Forticaux A. , S. Li L. , Jin S. . Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc., 2013, 135(28): 10274
https://doi.org/10.1021/ja404523s
|
16 |
Hinnemann B. , G. Moses P. , Bonde J. , P. Jørgensen K. , H. Nielsen J. , Horch S. , B. Chork-endorff I. , K. Nørskov J. . Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc., 2005, 127(15): 5308
https://doi.org/10.1021/ja0504690
|
17 |
Tsai C. , Abild-Pedersen F. , K. Nørskov J. . Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett., 2014, 14(3): 1381
https://doi.org/10.1021/nl404444k
|
18 |
Deng J. , Li H. , Xiao J. , Tu Y. , Deng D. , Yang H. , Tian H. , Li J. , Ren P. , Bao X. . Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci., 2015, 8(5): 1594
https://doi.org/10.1039/C5EE00751H
|
19 |
Ramalingam V. , Varadhan P. , C. Fu H. , Kim H. , L. Zhang D. , M. Chen S. , Song L. , Ma D. , Wang Y. , N. Alshareef H. , H. He J. . Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater., 2019, 31(48): 1903841
https://doi.org/10.1002/adma.201903841
|
20 |
Lu Q.Yu Y.Ma Q.Chen K.Zhang H., 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions, Adv. Mater. 28(10), 1917 (2016)
|
21 |
Naguib M. , Mashtalir O. , Carle C. , Presser V. , Lu J. , Hultman L. , Gogotsi Y. , W. Barsoum M. . Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322
https://doi.org/10.1021/nn204153h
|
22 |
Khazaei M. , Arai M. , Sasaki T. , Y. Chung C. , S. Venkataramanan N. , Estili M. , Sakka Y. , Kawazoe Y. . Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater., 2013, 23(17): 2185
https://doi.org/10.1002/adfm.201202502
|
23 |
Anasori B.R. Lukatskaya M.Gogotsi Y., 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)
|
24 |
T. Jiang X. , V. Kuklin A. , Baev A. , Q. Ge Y. , Ågren H. , Zhang H. , N. Prasad P. . Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep., 2020, 848: 1
https://doi.org/10.1016/j.physrep.2019.12.006
|
25 |
W. Seh Z. , D. Fredrickson K. , Anasori B. , Kibsgaard J. , L. Strickler A. , R. Lukatskaya M. , Gogotsi Y. , F. Jaramillo T. , Vojvodic A. . Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett., 2016, 1(3): 589
https://doi.org/10.1021/acsenergylett.6b00247
|
26 |
Gao G.P. O’Mullane A.Du A., 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7(1), 494 (2017)
|
27 |
Pandey M. , S. Thygesen K. . Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. J. Phys. Chem. C, 2017, 121(25): 13593
https://doi.org/10.1021/acs.jpcc.7b05270
|
28 |
Bai S. , Yang M. , Jiang J. , He X. , Zou J. , Xiong Z. , Liao G. , Liu S. . Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl., 2021, 5: 78
https://doi.org/10.1038/s41699-021-00259-4
|
29 |
Kong Q.An X.Huang L.Wang X.Feng W.Qiu S.Wang Q.Sun C., A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure a hydrogen evolution performance, Front. Phys. 16(5), 53506 (2021)
|
30 |
Tang Y. , H. Yang C. , T. Xu X. , Q. Kang Y. , Henzie Y. , X. Que W. , Yamauchi Y. . MXene nanoarchitectonics: Defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv. Energy Mater., 2022, 12(12): 2103867
https://doi.org/10.1002/aenm.202103867
|
31 |
Y. Shuai T. , N. Zhan Q. , M. Xu H. , J. Zhang Z. , R. Li G. . Recent developments of MXene-based catalysts for hydrogen production by water splitting. Green Chem., 2023, 25(5): 1749
https://doi.org/10.1039/D2GC04205C
|
32 |
C. Cheng N. , Stambula S. , Wang D. , N. Banis M. , Liu J. , Riese A. , W. Xiao B. , Y. Li R. , K. Sham T. , M. Liu L. , A. Botton G. , L. Sun X. . Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun., 2016, 7(1): 13638
https://doi.org/10.1038/ncomms13638
|
33 |
Alarawi A. , Ramalingam V. , H. He J. . Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater. Today Energy, 2019, 11: 1
https://doi.org/10.1016/j.mtener.2018.10.014
|
34 |
N. Sredojević D. , R. Belić M. , Šljivančanin Ž. . Hydrogen evolution reaction over single-atom catalysts based on metal adatoms at defected graphene and h-BN. J. Phys. Chem. C, 2020, 124(31): 16860
https://doi.org/10.1021/acs.jpcc.0c01151
|
35 |
Zhang J. , Zhao Y. , Guo X. , Chen C. , L. Dong C. , S. Liu R. , P. Han C. , Li Y. , Gogotsi Y. , Wang G. . Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal., 2018, 1(12): 985
https://doi.org/10.1038/s41929-018-0195-1
|
36 |
A. Kuznetsov D. , Chen Z. , V. Kumar P. , Tsoukalou A. , Kierzkowska A. , M. Abdala P. , V. Safonova O. , Fedorov A. , R. Müller C. . Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc., 2019, 141(44): 17809
https://doi.org/10.1021/jacs.9b08897
|
37 |
Liu H. , Hu Z. , Liu Q. , Sun P. , Wang Y. , Chou S. , Hu Z. , Zhang Z. . Single-atom Ru anchored in nitrogen-doped MXene (Ti3C2Tx) as an efficient catalyst for the hydrogen evolution reaction at all pH values. J. Mater. Chem. A, 2020, 8(46): 24710
https://doi.org/10.1039/D0TA09538A
|
38 |
A. Le T. , V. Bui Q. , Q. Tran N. , Cho Y. , Hong Y. , Kawazoe Y. , Lee H. . Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustain. Chem. & Eng., 2019, 7(19): 16879
https://doi.org/10.1021/acssuschemeng.9b04470
|
39 |
X. Qu G. , Zhou Y. , L. Wu T. , L. Zhao G. , F. Li F. , J. Kang Y. , Xu C. . Phosphorized MXene-phase molybdenum carbide as an earth-abundant hydrogen evolution electrocatalyst. ACS Appl. Energy Mater., 2018, 1(12): 7206
https://doi.org/10.1021/acsaem.8b01642
|
40 |
J. Mortensen J. , B. Hansen L. , W. Jacobsen K. . Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 2005, 71(3): 035109
https://doi.org/10.1103/PhysRevB.71.035109
|
41 |
Enkovaara J. , Rostgaard C. , J. Mortensen J. , Chen J. , Dulak M. , Ferrighi L. , Gavnholt J. , Glinsvad C. , Haikola V. , A. Hansen H. , H. Kristoffersen H. , Kuisma M. , H. Larsen A. , Lehtovaara L. , Ljungberg M. , Lopez-Acevedo O. , G. Moses P. , Ojanen J. , Olsen T. , Petzold V. , A. Romero N. , Stausholm-Moller J. , Strange M. , A. Tritsaris G. , Vanin M. , Walter M. , Hammer B. , Hakkinen H. , K. H. Madsen G. , M. Nieminen R. , K. Norskov J. , Puska M. , T. Rantala T. , Schiotz J. , S. Thygesen K. , W. Jacobsen K. . Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter, 2010, 22(25): 253202
https://doi.org/10.1088/0953-8984/22/25/253202
|
42 |
E. Blöchl P. . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
|
43 |
J. Mortensen J. , B. Hansen L. , W. Jacobsen K. . Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 2005, 71(3): 035109
https://doi.org/10.1103/PhysRevB.71.035109
|
44 |
|
45 |
J. Monkhorst H. , D. Pack J. . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
|
46 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
47 |
R. Davidson E. . The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys., 1975, 17(1): 87
https://doi.org/10.1016/0021-9991(75)90065-0
|
48 |
C. Liu D. , Nocedal J. . On the limited memory BFGS method for large scale optimization. Math. Program., 1989, 45(1−3): 503
https://doi.org/10.1007/BF01589116
|
49 |
R. Bahn S. , W. Jacobsen K. . An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng., 2002, 4(3): 56
https://doi.org/10.1109/5992.998641
|
50 |
F. W. Bader R., Atoms in Molecules: A Quantum Theory, New York: Oxford University Press, 1990
|
51 |
Hjorth Larsen A. , Jørgen Mortensen J. , Blomqvist J. , E. Castelli I. , Christensen R. , Dułak M. , Friis J. , N. Groves M. , Hammer B. , Hargus C. , D. Hermes E. , C. Jennings P. , Bjerre Jensen P. , Kermode J. , R. Kitchin J. , Leonhard Kolsbjerg E. , Kubal J. , Kaasbjerg K. , Lysgaard S. , Bergmann Maronsson J. , Maxson T. , Olsen T. , Pastewka L. , Peterson A. , Rostgaard C. , Schiøtz J. , Schütt O. , Strange M. , S. Thygesen K. , Vegge T. , Vilhelmsen L. , Walter M. , Zeng Z. , W. Jacobsen K. . The atomic simulation environment — a Python library for working with atoms. J. Phys.: Condens. Matter, 2017, 29(27): 273002
https://doi.org/10.1088/1361-648X/aa680e
|
52 |
W. Cheng Y. , H. Dai J. , M. Zhang J. , Song Y. . Two-dimensional, ordered, double transition metal carbides (MXenes): A new family of promising catalysts for the hydrogen evolution reaction. J. Phys. Chem. C, 2018, 122(49): 28113
https://doi.org/10.1021/acs.jpcc.8b08914
|
53 |
Hammer B. , K. Nørskov J. . Theoretical surface science and catalysis ‒ Calculations and concepts. Adv. Catal., 2000, 45: 71
https://doi.org/10.1016/S0360-0564(02)45013-4
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|