Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (5) : 504-508    https://doi.org/10.1007/s11467-012-0256-x
RESEARCH ARTICLE
Solving the Einstein-Podolsky-Rosen puzzle: The origin of non-locality in Aspect-type experiments
Werner A. Hofer()
Department of Physics, University of Liverpool, L69 3BX Liverpool, UK
 Download: PDF(149 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

So far no mechanism is known, which could connect the two measurementsin an Aspect-type experiment. Here, we suggest such a mechanism, basedon the phase of a photon’s field during propagation. We showthat two polarization measurements are correlated, even if no signalpasses from one point of measurement to the other. The non-local connectionof a photon pair is the result of its origin at a common source, wherethe two fields acquire a well defined phase difference. Therefore,it is not actually a non-local effect in any conventional sense. Weexpect that the model and the detailed analysis it allows will havea major impact on quantum cryptography and quantum computation.

Keywords entanglement      Bell inequalities      coincidence measurements      Einstein-Podolsky-Rosenparadox     
Corresponding Author(s): Hofer Werner A.,Email:whofer@liverpool.ac.uk   
Issue Date: 01 October 2012
 Cite this article:   
Werner A. Hofer. Solving the Einstein-Podolsky-Rosen puzzle: The origin of non-locality in Aspect-type experiments[J]. Front. Phys. , 2012, 7(5): 504-508.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-012-0256-x
https://academic.hep.com.cn/fop/EN/Y2012/V7/I5/504
1 A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. , 1935, 47(10): 777
doi: 10.1103/PhysRev.47.777
2 A. Aspect, Nature , 1999, 398(6724): 189
doi: 10.1038/18296
3 A. Aspect, P. Grangier, and G. Rogier, Phys. Rev. Lett. , 1982, 49(2): 91
doi: 10.1103/PhysRevLett.49.91
4 J. S. Bell, In: Speakable and Unspeakable in Quantum Mechanics , Cambridge: Cambridge University Press, 1987: 14
5 Tim Maudlin, QuantumNon-Locality and Relativity, Oxford: Blackwell , 1994
6 C. Doran and A. Lasenby, Geometric Algebra for Physicists , Cambridge: Cambridge UniversityPress, 2002
7 J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. , 1969, 23(15): 880
doi: 10.1103/PhysRevLett.23.880
8 G. Weihs, Th. Jennewein, Ch. Simon, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. , 1998, 81(23): 5039
doi: 10.1103/PhysRevLett.81.5039
9 W. A. Hofer, Found. Phys. , 2011, 41(4): 754
doi: 10.1007/s10701-010-9517-0
10 B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, New J. Phys. , 2012, 14(5): 053030
doi: 10.1088/1367-2630/14/5/053030
[1] Ling-Yun Sun, Li Xu, Jing Wang, Ming Li, Shu-Qian Shen, Lei Li, Shao-Ming Fei. Tight upper bound on the quantum value of Svetlichny operators under local filtering and hidden genuine nonlocality[J]. Front. Phys. , 2021, 16(3): 31501-.
[2] Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states[J]. Front. Phys. , 2021, 16(2): 21502-.
[3] Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Shi-Hai Dong. Tetrapartite entanglement features of W-Class state in uniform acceleration[J]. Front. Phys. , 2020, 15(1): 11602-.
[4] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[5] Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Wen-Chao Qiang, Shi-Hai Dong. Entanglement measures of a new type pseudo-pure state in accelerated frames[J]. Front. Phys. , 2019, 14(2): 21603-.
[6] Jun-Hao Liu, Yu-Bao Zhang, Ya-Fei Yu, Zhi-Ming Zhang. Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom[J]. Front. Phys. , 2019, 14(1): 12601-.
[7] Zhao Jin, S.-L. Su, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation[J]. Front. Phys. , 2018, 13(5): 134209-.
[8] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[9] Zhi-Rong Zhong, Xin Wang, Wei Qin. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure[J]. Front. Phys. , 2018, 13(5): 130319-.
[10] Xiao-Yu Chen, Li-Zhen Jiang, Zhu-An Xu. Precise detection of multipartite entanglement in fourqubit Greenberger–Horne–Zeilinger diagonal states[J]. Front. Phys. , 2018, 13(5): 130317-.
[11] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[12] Ahmed Farouk, J. Batle, M. Elhoseny, Mosayeb Naseri, Muzaffar Lone, Alex Fedorov, Majid Alkhambashi, Syed Hassan Ahmed, M. Abdel-Aty. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states[J]. Front. Phys. , 2018, 13(2): 130306-.
[13] Zhen-Zhen Zou, Xu-Tao Yu, Zai-Chen Zhang. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network[J]. Front. Phys. , 2018, 13(2): 130202-.
[14] Cun-Jin Liu, Wei Ye, Wei-Dong Zhou, Hao-Liang Zhang, Jie-Hui Huang, Li-Yun Hu. Entanglement of coherent superposition of photon-subtraction squeezed vacuum[J]. Front. Phys. , 2017, 12(5): 120307-.
[15] Xiang Yan, Ya-Fei Yu, Zhi-Ming Zhang. Entanglement concentration for a non-maximally entangled four-photon cluster state[J]. Front. Phys. , 2014, 9(5): 640-645.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed