|
|
Review of the role of ionic liquids in two-dimensional materials |
Na Sa1, Meng Wu1( ), Hui-Qiong Wang1,2( ) |
1. Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, China 2. Department of Physics, and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia |
|
|
Abstract Ionic liquids (ILs) are expected to be used as readily available “designer” solvents, characterized by a number of tunable properties that can be obtained by modulating anion and cation combinations and ion chain lengths. Among them, its high ionicity is outstanding in the preparation and property modulation of two-dimensional (2D) materials. In this review, we mainly focus on the ILs-assisted exfoliation of 2D materials towards large-scale as well as functionalization. Meanwhile, electric-field controlled ILs-gating of 2D material systems have shown novel electronic, magnetic, optical and superconducting properties, attracting a broad range of scientific research activities. Moreover, ILs have also been extensively applied in various field practically. We summarize the recent developments of ILs modified 2D material systems from the electrochemical, solar cells and photocatalysis aspects, discuss their advantages and possibilities as “designer solvent”. It is believed that the design of ILs accompanying with diverse 2D materials will not only solve several scientific problems but also enrich materials design and engineer of 2D materials.
|
Keywords
ionic liquids
two-dimensional materials
liquid phase exfoliation
ionic liquid-gating
electrochemical capacitors
solar cells
photocatalysis
|
Corresponding Author(s):
Meng Wu,Hui-Qiong Wang
|
About author: Changjian Wang and Zhiying Yang contributed equally to this work. |
Issue Date: 23 February 2023
|
|
1 |
Welton T.. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8): 2071
https://doi.org/10.1021/cr980032t
|
2 |
P. Hallett J., Welton T.. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5): 3508
https://doi.org/10.1021/cr1003248
|
3 |
K. Singh S., W. Savoy A.. Ionic liquids synthesis and applications: An overview. J. Mol. Liq., 2020, 297: 112038
https://doi.org/10.1016/j.molliq.2019.112038
|
4 |
S. Egorova K., G. Gordeev E., P. Ananikov V.. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117: 7132
https://doi.org/10.1021/acs.chemrev.6b00562
|
5 |
M. Gomes J., S. Silva S., L. Reis R.. Biocompatible ionic liquids: Fundamental behaviours and applications. Chem. Soc. Rev., 2019, 48(15): 4317
https://doi.org/10.1039/C9CS00016J
|
6 |
R. MacFarlane D., Forsyth M., C. Howlett P., Kar M., Passerini S., M. Pringle J., Ohno H., Watanabe M., Yan F., J. Zheng W., G. Zhang S., Zhang J.. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater., 2016, 1(2): 15005
https://doi.org/10.1038/natrevmats.2015.5
|
7 |
J. Zhou W., Zhang M., Y. Kong X., W. Huang W., C. Zhang Q.. Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries. Adv. Sci. (Weinh.), 2021, 8(13): 2004490
https://doi.org/10.1002/advs.202004490
|
8 |
Li L., Zhao N., Wei W., H. Sun Y.. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel, 2013, 108: 112
https://doi.org/10.1016/j.fuel.2011.08.022
|
9 |
X. Tan X., F. Sun X., X. Han B.. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. Natl. Sci. Rev., 2022, 9(4): nwab022
https://doi.org/10.1093/nsr/nwab022
|
10 |
V. Kondratenko E., Mul G., Baltrusaitis J., O. Larrazabal G., Perez-Ramirez J.. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci., 2013, 6(11): 3112
https://doi.org/10.1039/c3ee41272e
|
11 |
J. Greer A., Jacquemin J., Hardacre C.. Industrial applications of ionic liquids. Molecules, 2020, 25
https://doi.org/10.3390/molecules25215207
|
12 |
Nasirpour N., Mohammadpourfard M., Z. Heris S.. Ionic liquids: Promising compounds for sustainable chemical processes and applications. Chem. Eng. Res. Des., 2020, 160: 264
https://doi.org/10.1016/j.cherd.2020.06.006
|
13 |
A. Elgharbawy A., A. Riyadi F., Z. Alam M., Moniruzzaman M.. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. J. Mol. Liq., 2018, 251: 150
https://doi.org/10.1016/j.molliq.2017.12.050
|
14 |
C. Cui J., Li Y., Chen D., G. Zhan T., D. Zhang K.. Ionic liquid-based stimuli-responsive functional materials. Adv. Funct. Mater., 2020, 30(50): 2005522
https://doi.org/10.1002/adfm.202005522
|
15 |
W. Cho C., P. T. Pham T., F. Zhao Y., Stolte S., S. Yun Y.. Review of the toxic effects of ionic liquids. Sci. Total Environ., 2021, 786: 147309
https://doi.org/10.1016/j.scitotenv.2021.147309
|
16 |
C. Duan X., Huang H., H. Xiao S., W. Deng J., Zhou G., H. Li Q., Wang T.. 3D hierarchical CuO mesocrystals from ionic liquid precursors: Towards better electrochemical performance for Li-ion batteries. J. Mater. Chem. A, 2016, 4(21): 8402
https://doi.org/10.1039/C5TA10173E
|
17 |
D. Rogers R., R. Seddon K.. Ionic liquids - Solvents of the future. Science, 2003, 302(5646): 792
https://doi.org/10.1126/science.1090313
|
18 |
K. Geim A., S. Novoselov K.. The rise of graphene. Nat. Mater., 2007, 6(3): 183
https://doi.org/10.1038/nmat1849
|
19 |
Kong W., Kum H., H. Bae S., Shim J., Kim H., P. Kong L., Meng Y., J. Wang K., Kim C., Kim J.. Path towards graphene commercialization from lab to market. Nat. Nanotechnol., 2019, 14(10): 927
https://doi.org/10.1038/s41565-019-0555-2
|
20 |
S. Novoselov K., Mishchenko A., Carvalho A., H. Castro Neto A.. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439
https://doi.org/10.1126/science.aac9439
|
21 |
Mukherjee S., Ren Z., Singh G.. Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett., 2018, 10(4): 70
https://doi.org/10.1007/s40820-018-0224-2
|
22 |
Jo S., Ubrig N., Berger H., B. Kuzmenko A., F. Morpurgo A.. Mono- and bilayer WS2 light-emitting transistors. Nano Lett., 2014, 14(4): 2019
https://doi.org/10.1021/nl500171v
|
23 |
Podzorov V., E. Gershenson M., Kloc C., Zeis R., Bucher E.. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett., 2004, 84(17): 3301
https://doi.org/10.1063/1.1723695
|
24 |
Zhang Y., Ye J., Matsuhashi Y., Iwasa Y.. Ambipolar MoS2 thin flake transistors. Nano Lett., 2012, 12(3): 1136
https://doi.org/10.1021/nl2021575
|
25 |
Braga D., G. Lezama I., Berger H., F. Morpurgo A.. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett., 2012, 12(10): 5218
https://doi.org/10.1021/nl302389d
|
26 |
Splendiani A., Sun L., Zhang Y., Li T., Kim J., Y. Chim C., Galli G., Wang F.. Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
https://doi.org/10.1021/nl903868w
|
27 |
F. Mak K., Lee C., Hone J., Shan J., F. Heinz T.. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
|
28 |
Kumar A., K. Ahluwalia P., , Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo W; X = S. Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B, 2012, 85(6): 186
https://doi.org/10.1140/epjb/e2012-30070-x
|
29 |
Chen Y., Xi J., O. Dumcenco D., Liu Z., Suenaga K., Wang D., Shuai Z., S. Huang Y., Xie L.. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano, 2013, 7(5): 4610
https://doi.org/10.1021/nn401420h
|
30 |
Terrones H., Lopez-Urias F., Terrones M.. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep., 2013, 3(1): 1549
https://doi.org/10.1038/srep01549
|
31 |
Zhang Y., Jeon M., J. Rich L., Hong H., Geng J., Zhang Y., Shi S., E. Barnhart T., Alexandridis P., D. Huizinga J., Seshadri M., Cai W., Kim C., F. Lovell J.. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat. Nanotechnol., 2014, 9(8): 631
https://doi.org/10.1038/nnano.2014.130
|
32 |
K. Geim A., S. Novoselov K.. The rise and rise of graphene. Nat. Nanotechnol., 2010, 5(11): 755
https://doi.org/10.1038/nnano.2010.224
|
33 |
Lee C., D. Wei X., W. Kysar J., Hone J.. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385
https://doi.org/10.1126/science.1157996
|
34 |
H. Castro Neto A., Guinea F., M. R. Peres N., S. Novoselov K., K. Geim A.. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81(1): 109
https://doi.org/10.1103/RevModPhys.81.109
|
35 |
Song L., J. Ci L., Lu H., B. Sorokin P., H. Jin C., Ni J., G. Kvashnin A., G. Kvashnin D., Lou J., I. Yakobson B., M. Ajayan P.. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209
https://doi.org/10.1021/nl1022139
|
36 |
C. Zheng J., Zhang L., V. Kretinin A., V. Morozov S., B. Wang Y., Wang T., J. Li X., Ren F., Y. Zhang J., Y. Lu C., C. Chen J., Lu M., Q. Wang H., K. Geim A., S. Novoselov K.. High thermal conductivity of hexagonal boron nitride laminates. 2D Mater., 2016, 3: 011004
https://doi.org/10.1088/2053-1583/3/1/011004
|
37 |
K. Li L., J. Yu Y., J. Ye G., Q. Ge Q., D. Ou X., Wu H., L. Feng D., H. Chen X., B. Zhang Y.. Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
https://doi.org/10.1038/nnano.2014.35
|
38 |
Tao L., Cinquanta E., Chiappe D., Grazianetti C., Fanciulli M., Dubey M., Molle A., Akinwande D.. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol., 2015, 10(3): 227
https://doi.org/10.1038/nnano.2014.325
|
39 |
Balendhran S., Walia S., Nili H., Sriram S., Bhaskaran M.. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small, 2015, 11(6): 640
https://doi.org/10.1002/smll.201402041
|
40 |
Q. Wang Z., Y. Lu T., Q. Wang H., P. Feng Y., C. Zheng J.. Review of borophene and its potential applications. Front. Phys., 2019, 14(3): 33403
https://doi.org/10.1007/s11467-019-0884-5
|
41 |
J. Ong W., L. Tan L., H. Ng Y., T. Yong S., P. Chai S.. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev., 2016, 116(12): 7159
https://doi.org/10.1021/acs.chemrev.6b00075
|
42 |
B. Pang J., G. Mendes R., Bachmatiuk A., Zhao L., Q. Ta H., Gemming T., Liu H., F. Liu Z., H. Rummeli M.. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev., 2019, 48(1): 72
https://doi.org/10.1039/C8CS00324F
|
43 |
Khan K., K. Tareen A., Aslam M., P. Zhang Y., H. Wang R., B. Ouyang Z., Y. Gou Z., Zhang H.. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 2019, 11(45): 21622
https://doi.org/10.1039/C9NR05919A
|
44 |
L. Chen X., S. Zhou Z., C. Deng B., F. Wu Z., N. Xia F., Cao Y., Zhang L., Huang W., Wang N., Wang L.. Electrically tunable physical properties of two-dimensional materials. Nano Today, 2019, 27: 99
https://doi.org/10.1016/j.nantod.2019.05.005
|
45 |
Liu Y., O. Weiss N., D. Duan X., C. Cheng H., Huang Y., F. Duan X.. Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
https://doi.org/10.1038/natrevmats.2016.42
|
46 |
S. Liu C., W. Chen H., Y. Wang S., Liu Q., G. Jiang Y., W. Zhang D., Liu M., Zhou P.. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol., 2020, 15(7): 545
https://doi.org/10.1038/s41565-020-0724-3
|
47 |
Kang K., E. Xie S., J. Huang L., M. Han Y., Y. Huang P., F. Mak K., J. Kim C., Muller D., Park J.. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520(7549): 656
https://doi.org/10.1038/nature14417
|
48 |
Chang C., Chen W., Chen Y., H. Chen Y., Chen Y.. et al.. Recent progress on two-dimensional materials. Acta Phys. - Chim. Sin., 2021, 37(12): 2108017
https://doi.org/10.3866/PKU.WHXB202108017
|
49 |
Keskin S., Kayrak-Talay D., Akman U., Hortacsu O.. A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids, 2007, 43(1): 150
https://doi.org/10.1016/j.supflu.2007.05.013
|
50 |
Shariati A., J. Peters C.. High-pressure phase equilibria of systems with ionic liquids. J. Supercrit. Fluids, 2005, 34(2): 171
https://doi.org/10.1016/j.supflu.2004.11.011
|
51 |
F. Brennecke J., J. Maginn E.. Ionic liquids: Innovative fluids for chemical processing. AIChE J., 2001, 47(11): 2384
https://doi.org/10.1002/aic.690471102
|
52 |
N. Coleman J., Lotya M., O’Neill A., D. Bergin S., J. King P.. et al.. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568
https://doi.org/10.1126/science.1194975
|
53 |
Xu S., Li D., Wu P.. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater., 2015, 25(7): 1127
https://doi.org/10.1002/adfm.201403863
|
54 |
Chen Y., Tan C., Zhang H., Wang L.. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev., 2015, 44(9): 2681
https://doi.org/10.1039/C4CS00300D
|
55 |
H. Wang Q., Kalantar-Zadeh K., Kis A., N. Coleman J., S. Strano M.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
|
56 |
H. L. Koppens F., Mueller T., Avouris P., C. Ferrari A., S. Vitiello M., Polini M.. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9(10): 780
https://doi.org/10.1038/nnano.2014.215
|
57 |
Luo W., Wang Y., Hitz E., Lin Y., Yang B., Hu L.. Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Adv. Funct. Mater., 2017, 27(31): 1701450
https://doi.org/10.1002/adfm.201701450
|
58 |
Wang X., Feng H., Wu Y., Jiao L.. Controlled synthesis of highly crystalline mos2 flakes by chemical vapor deposition. J. Am. Chem. Soc., 2013, 135(14): 5304
https://doi.org/10.1021/ja4013485
|
59 |
Xing W., Chen Y., Wu X., Xu X., Ye P., Zhu T., Guo Q., Yang L., Li W., Huang H.. PEDOT: PSS-assisted exfoliation and functionalization of 2D nanosheets for high-performance organic solar cells. Adv. Funct. Mater., 2017, 27(32): 1701622
https://doi.org/10.1002/adfm.201701622
|
60 |
Yi M., Shen Z.. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A, 2015, 3(22): 11700
https://doi.org/10.1039/C5TA00252D
|
61 |
Hernandez Y., Nicolosi V., Lotya M., M. Blighe F., Sun Z., De S., T. McGovern I., Holland B., Byrne M., K. Gun’ko Y., J. Boland J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., C. Ferrari A., N. Coleman J.. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9): 563
https://doi.org/10.1038/nnano.2008.215
|
62 |
Niu L., N. Coleman J., Zhang H., Shin H., Chhowalla M., Zheng Z.. Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small, 2016, 12(3): 272
https://doi.org/10.1002/smll.201502207
|
63 |
Tao H., Zhang Y., Gao Y., Sun Z., Yan C., Texter J.. Scalable exfoliation and dispersion of two-dimensional materials — an update. Phys. Chem. Chem. Phys., 2017, 19(2): 921
https://doi.org/10.1039/C6CP06813H
|
64 |
Feng X., Xing W., Yang H., Yuan B., Song L., Hu Y., M. Liew K.. High-performance poly(ethylene oxide)/molybdenum disulfide nanocomposite films: Reinforcement of properties based on the gradient interface effect. ACS Appl. Mater. Interfaces, 2015, 7(24): 13164
https://doi.org/10.1021/acsami.5b02312
|
65 |
D. Rogers R.. Reflections on ionic liquids. Nature, 2007, 447(7147): 917
https://doi.org/10.1038/447917a
|
66 |
Li W., Wu P.. Unusual thermal phase transition behavior of an ionic liquid and poly(ionic liquid) in water with significantly different LCST and dynamic mechanism. Polym. Chem., 2014, 5(19): 5578
https://doi.org/10.1039/C4PY00593G
|
67 |
Morishita T., Okamoto H., Katagiri Y., Matsushita M., Fukumori K.. A high-yield ionic liquid-promoted synthesis of boron nitride nanosheets by direct exfoliation. Chem. Commun. (Camb.), 2015, 51(60): 12068
https://doi.org/10.1039/C5CC04077A
|
68 |
Matsumoto M., Saito Y., Park C., Fukushima T., Aida T.. Ultrahigh-throughput exfoliation of graphite into pristine “single-layer” graphene using microwaves and molecularly engineered ionic liquids. Nat. Chem., 2015, 7(9): 730
https://doi.org/10.1038/nchem.2315
|
69 |
C. Du W., Q. Jiang X., H. Zhu L.. From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A, 2013, 1(36): 10592
https://doi.org/10.1039/c3ta12212c
|
70 |
Nuvoli D., Valentini L., Alzari V., Scognamillo S., B. Bon S., Piccinini M., Illescas J., Mariani A.. High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem., 2011, 21(10): 3428
https://doi.org/10.1039/C0JM02461A
|
71 |
Bordes E., Morcos B., Bourgogne D., M. Andanson J., O. Bussière P., C. Santini C., Benayad A., C. Gomes M., A. H. Pádua A.. Dispersion and stabilization of exfoliated graphene in ionic liquids. Front Chem., 2019, 7: 223
https://doi.org/10.3389/fchem.2019.00223
|
72 |
G. Gu X., Zhao Y., Sun K., L. Z. Vieira C., J. Jia Z., Cui C., J. Wang Z., Walsh A., D. Huang S.. Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene. Ultrason. Sonochem., 2019, 58: 104630
https://doi.org/10.1016/j.ultsonch.2019.104630
|
73 |
Restolho J., L. Mata J., Saramago B.. On the interfacial behavior of ionic liquids: Surface tensions and contact angles. J. Colloid Interface Sci., 2009, 340(1): 82
https://doi.org/10.1016/j.jcis.2009.08.013
|
74 |
A. Harnisch J., D. Porter M.. Electrochemically modulated liquid chromatography: An electrochemical strategy for manipulating chromatographic retention. Analyst (Lond. ), 2001, 126(11): 1841
https://doi.org/10.1039/b105249g
|
75 |
K. Reed S., J. Lanning O., A. Madden P.. Electrochemical interface between an ionic liquid and a model metallic electrode. J. Chem. Phys., 2007, 126(8): 084704
https://doi.org/10.1063/1.2464084
|
76 |
Q. Wang X., F. Fulvio P., A. Baker G., M. Veith G., R. Unocic R., M. Mahurin S., F. Chi M., Dai S.. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem. Commun. (Camb. ), 2010, 46(25): 4487
https://doi.org/10.1039/c0cc00799d
|
77 |
Beneš H., K. Donato R., Ecorchard P., Popelkova D., Pavlova E., Schelonka D., Pop-Georgievski O., S. Schrekker H., Stengl V.. Direct delamination of graphite ore into defect-free graphene using a biphasic solvent system under pressurized ultrasound. RSC Adv., 2016, 6(8): 6008
https://doi.org/10.1039/C5RA23654A
|
78 |
Winchester A., Ghosh S., M. Feng S., L. Elias A., Mallouk T., Terrones M., Talapatra S.. Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide. ACS Appl. Mater. Interfaces, 2014, 6(3): 2125
https://doi.org/10.1021/am4051316
|
79 |
Biswas Y., Dule M., K. Mandal T.. Poly(ionic liquid)-promoted solvent-borne efficient exfoliation of MoS2/MoSe2 nanosheets for dual-responsive dispersion and polymer nanocomposites. J. Phys. Chem. C, 2017, 121(8): 4747
https://doi.org/10.1021/acs.jpcc.7b00952
|
80 |
Guan G., Zhang S., Liu S., Cai Y., Low M., P. Teng C., Y. Phang I., Cheng Y., L. Duei K., M. Srinivasan B., Zheng Y., W. Zhang Y., Y. Han M.. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc., 2015, 137: 6152
https://doi.org/10.1021/jacs.5b02780
|
81 |
J. Smith R., J. King P., Lotya M., Wirtz C., Khan U., De S., O'Neill A., S. Duesberg G., C. Grunlan J., Moriarty G., Chen J., Wang J., I. Minett A., Nicolosi V., N. Coleman J.. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater., 2011, 23: 3944
https://doi.org/10.1002/adma.201102584
|
82 |
Lei Z., Zhou Y., Wu P.. Simultaneous exfoliation and functionalization of MoSe2 nanosheets to prepare “smart” nanocomposite hydrogels with tunable dual stimuli-responsive behavior. Small, 2016, 12(23): 3112
https://doi.org/10.1002/smll.201600727
|
83 |
W. Wang X., Y. Wu P.. Aqueous phase exfoliation of two-dimensional materials assisted by thermoresponsive polymeric ionic liquid and their applications in stimuli-responsive hydrogels and highly thermally conductive films. ACS Appl. Mater. Interfaces, 2018, 10(3): 2504
https://doi.org/10.1021/acsami.7b15712
|
84 |
Tian R., Jia X., Yang J., Li Y., Song H.. Large-scale, green, and high-efficiency exfoliation and noncovalent functionalization of fluorinated graphene by ionic liquid crystal. Chem. Eng. J., 2020, 395: 125104
https://doi.org/10.1016/j.cej.2020.125104
|
85 |
Gusain R., P. Mungse H., Kumar N., R. Ravindran T., Pandian R., Sugimura H., P. Khatri O.. Covalently attached graphene-ionic liquid hybrid nanomaterials: Synthesis, characterization and tribological application. J. Mater. Chem. A, 2016, 4(3): 926
https://doi.org/10.1039/C5TA08640J
|
86 |
Li M., S. Westover A., Carter R., Oakes L., Muralidharan N., C. Boire T., J. Sung H., L. Pint C.. Noncovalent Pi−Pi stacking at the carbon electrolyte interface: Controlling the voltage window of electrochemical supercapacitors. ACS Appl. Mater. Interfaces, 2016, 8(30): 19558
https://doi.org/10.1021/acsami.6b06753
|
87 |
Song W., Yan J., Ji H.. Tribological performance of an imidazolium ionic liquid-functionalized SiO2@graphene oxide as an additive. ACS Appl. Mater. Interfaces, 2021, 13(42): 50573
https://doi.org/10.1021/acsami.1c16030
|
88 |
Tian R., Jia X., Lan M., Wang S., Li Y., Yang J., Shao D., Feng L., Su Q., Song H.. Ionic liquid crystals confining ultrathin MoS2 nanosheets: A high-concentration and stable aqueous dispersion. ACS Sustain. Chem. & Eng., 2022, 10(13): 4186
https://doi.org/10.1021/acssuschemeng.1c08434
|
89 |
G. Shang N., Papakonstantinou P., Sharma S., Lubarsky G., X. Li M., W. McNeill D., J. Quinn A., Z. Zhou W., Blackley R.. Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding. Chem. Commun. (Camb.), 2012, 48(13): 1877
https://doi.org/10.1039/c2cc17185f
|
90 |
T. Zhang W., R. Wang Y., H. Zhang D., X. Yu S., X. Zhu W., Wang J., Q. Zheng F., X. Wang S., L. Wang J.. A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. Nanoscale, 2015, 7(22): 10210
https://doi.org/10.1039/C5NR02253C
|
91 |
Z. Bisri S., Shimizu S., Nakano M., Iwasa Y.. Endeavor of iontronics: From fundamentals to applications of ion-controlled electronics. Adv. Mater., 2017, 29(25): 1607054
https://doi.org/10.1002/adma.201607054
|
92 |
Yuan H., Shimotani H., Tsukazaki A., Ohtomo A., Kawasaki M., Iwasa Y.. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater., 2009, 19(7): 1046
https://doi.org/10.1002/adfm.200801633
|
93 |
Ono S., Minder N., Chen Z., Facchetti A., F. Morpurgo A.. High-performance n-type organic field-effect transistors with ionic liquid gates. Appl. Phys. Lett., 2010, 97(14): 143307
https://doi.org/10.1063/1.3493190
|
94 |
Hong K., H. Kim S., H. Lee K., D. Frisbie C.. Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic. Adv. Mater., 2013, 25(25): 3413
https://doi.org/10.1002/adma.201300211
|
95 |
Ueno K., Nakamura S., Shimotani H., Ohtomo A., Kimura N., Nojima T., Aoki H., Iwasa Y., Kawasaki M.. Electric-field-induced superconductivity in an insulator. Nat. Mater., 2008, 7(11): 855
https://doi.org/10.1038/nmat2298
|
96 |
T. Ye J., Inoue S., Kobayashi K., Kasahara Y., T. Yuan H., Shimotani H., Iwasa Y.. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater., 2010, 9(2): 125
https://doi.org/10.1038/nmat2587
|
97 |
Ueno K., Nakamura S., Shimotani H., T. Yuan H., Kimura N., Nojima T., Aoki H., Iwasa Y., Kawasaki M.. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol., 2011, 6(7): 408
https://doi.org/10.1038/nnano.2011.78
|
98 |
Ye J., F. Craciun M., Koshino M., Russo S., Inoue S., Yuan H., Shimotani H., F. Morpurgo A., Iwasa Y.. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. USA, 2011, 108(32): 13002
https://doi.org/10.1073/pnas.1018388108
|
99 |
T. Bollinger A., Dubuis G., Yoon J., Pavuna D., Misewich J., Bozovic I.. Superconductor−insulator transition in La2-xSrxCuO4 at the pair quantum resistance. Nature, 2011, 472(7344): 458
https://doi.org/10.1038/nature09998
|
100 |
Saito Y., Nakamura Y., S. Bahramy M., Kohama Y., Ye J., Kasahara Y., Nakagawa Y., Onga M., Tokunaga M., Nojima T., Yanase Y., Iwasa Y.. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys., 2016, 12: 144
https://doi.org/10.1038/nphys3580
|
101 |
Yu Y., Yang F., F. Lu X., J. Yan Y., H. Cho Y., Ma L., Niu X., Kim S., W. Son Y., Feng D., Li S., W. Cheong S., H. Chen X., Zhang Y.. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol., 2015, 10(3): 270
https://doi.org/10.1038/nnano.2014.323
|
102 |
Saito Y., Nojima T., Iwasa Y.. Gate-induced superconductivity in two-dimensional atomic crystals. Supercond. Sci. Technol., 2016, 29(9): 093001
https://doi.org/10.1088/0953-2048/29/9/093001
|
103 |
C. Wu Y., F. Li D., L. Wu C., Y. Hwang H., Cui Y.. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater., 2022,
https://doi.org/10.1038/s41578-022-00473-6
|
104 |
Liu L.Han J.Xu L.Zhou J.Zhao C. Ding S.Shi H.Xiao M.Ding L.Ma Z. Jin C.Zhang Z.M. Peng L., Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics, Science 368 (2020) 850
|
105 |
G. Lezama I., Ubaldini A., Longobardi M., Giannini E., Renner C., B. Kuzmenko A., F. Morpurgo A.. Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals. 2D Mater., 2014, 1: 021002
https://doi.org/10.1088/2053-1583/1/2/021002
|
106 |
L. Wang F., Stepanov P., Gray M., N. Lau C., E. Itkis M., C. Haddon R.. Ionic liquid gating of suspended MoS2 field effect transistor devices. Nano Lett., 2015, 15(8): 5284
https://doi.org/10.1021/acs.nanolett.5b01610
|
107 |
Shi W., T. Ye J., J. Zhang Y., Suzuki R., Yoshida M., Miyazaki J., Inoue N., Saito Y., Iwasa Y.. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep., 2015, 5(1): 12534
https://doi.org/10.1038/srep12534
|
108 |
Larentis S., R. Tolsma J., Fallahazad B., C. Dillen D., Kim K., H. MacDonald A., Tutuc E.. Band offset and negative compressibility in graphene−MoS2 heterostructures. Nano Lett., 2014, 14(4): 2039
https://doi.org/10.1021/nl500212s
|
109 |
Dezi G., Scopigno N., Caprara S., Grilli M.. Negative electronic compressibility and nanoscale inhomogeneity in ionic-liquid gated two-dimensional superconductors. Phys. Rev. B, 2018, 98(21): 214507
https://doi.org/10.1103/PhysRevB.98.214507
|
110 |
M. Ugeda M., J. Bradley A., Zhang Y., Onishi S., Chen Y., Ruan W., Ojeda-Aristizabal C., Ryu H., T. Edmonds M., Z. Tsai H., Riss A., K. Mo S., Lee D., Zettl A., Hussain Z., X. Shen Z., F. Crommie M.. Characterization of collective ground states in single-layer NbSe2. Nat. Phys., 2016, 12(1): 92
https://doi.org/10.1038/nphys3527
|
111 |
W. Tsen A., Hunt B., D. Kim Y., J. Yuan Z., Jia S., J. Cava R., Hone J., Kim P., R. Dean C., N. Pasupathy A.. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat. Phys., 2016, 12: 208
https://doi.org/10.1038/nphys3579
|
112 |
Xi X., Zhao L., Wang Z., Berger H., Forro L., Shan J., F. Mak K.. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol., 2015, 10: 765
https://doi.org/10.1038/nnano.2015.143
|
113 |
Xi X., Berger H., Forro L., Shan J., F. Mak K.. Gate tuning of electronic phase transitions in two-dimensional NbSe2. Phys. Rev. Lett., 2016, 117(10): 106801
https://doi.org/10.1103/PhysRevLett.117.106801
|
114 |
Chen Y., Xing W., Wang X., Shen B., Yuan W., Su T., Ma Y., Yao Y., Zhong J., Yun Y., C. Xie X., Jia S., Han W.. Role of oxygen in ionic liquid gating on two-dimensional Cr2Ge2Te6: A non-oxide material. ACS Appl. Mater. Interfaces, 2018, 10(1): 1383
https://doi.org/10.1021/acsami.7b14795
|
115 |
Y. Cheng C., L. Pai W., H. Chen Y., T. Paylaga N., Y. Wu P., W. Chen C., T. Liang C., C. Chou F., Sankar R., S. Fuhrer M., Y. Chen S., H. Wang W.. Phase modulation of self-gating in ionic liquid-functionalized InSe field-effect transistors. Nano Lett., 2022, 22(6): 2270
https://doi.org/10.1021/acs.nanolett.1c04522
|
116 |
Xu T., Du H., Liu H., Liu W., Zhang X., Si C., Liu P., Zhang K.. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater., 2021, 33(48): 2101368
https://doi.org/10.1002/adma.202101368
|
117 |
Alipoori S., Mazinani S., H. Aboutalebi S., Sharif F.. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storage, 2020, 27: 101072
https://doi.org/10.1016/j.est.2019.101072
|
118 |
R. MacFarlane D., Tachikawa N., Forsyth M., M. Pringle J., C. Howlett P., D. Elliott G., H. Davis J., Watanabe M., Simon P., A. Angell C.. Energy applications of ionic liquids. Energy Environ. Sci., 2014, 7(1): 232
https://doi.org/10.1039/C3EE42099J
|
119 |
W. Chi Y., C. Hu C., H. Shen H., P. Huang K.. New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping. Nano Lett., 2016, 16(9): 5719
https://doi.org/10.1021/acs.nanolett.6b02401
|
120 |
Balducci A., Soavi F., Mastragostino M.. The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl. Phys. A, 2006, 82: 627
https://doi.org/10.1007/s00339-005-3402-2
|
121 |
Balducci A., A. Henderson W., Mastragostino M., Passerini S., Simon P., Soavi F.. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim. Acta, 2005, 50(11): 2233
https://doi.org/10.1016/j.electacta.2004.10.006
|
122 |
Balducci A., Bardi U., Caporali S., Mastragostino M., Soavi F.. Ionic liquids for hybrid supercapacitors. Electrochem. Commun., 2004, 6(6): 566
https://doi.org/10.1016/j.elecom.2004.04.005
|
123 |
Mastragostino M., Soavi F.. Strategies for high-performance supercapacitors for HEV. J. Power Sources, 2007, 174(1): 89
https://doi.org/10.1016/j.jpowsour.2007.06.009
|
124 |
Galiński M., Lewandowski A., Stepniak I.. Ionic liquids as electrolytes. Electrochim. Acta, 2006, 51(26): 5567
https://doi.org/10.1016/j.electacta.2006.03.016
|
125 |
Lewandowski A., Galinski M.. Carbon-ionic liquid double-layer capacitors. J. Phys. Chem. Solids, 2004, 65(2−3): 281
https://doi.org/10.1016/j.jpcs.2003.09.009
|
126 |
Balducci A., Dugas R., L. Taberna P., Simon P., Plee D., Mastragostino M., Passerini S.. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources, 2007, 165(2): 922
https://doi.org/10.1016/j.jpowsour.2006.12.048
|
127 |
Arbizzani C., Beninati S., Lazzari M., Soavi F., Mastragostino M.. Electrode materials for ionic liquid-based supercapacitors. J. Power Sources, 2007, 174(2): 648
https://doi.org/10.1016/j.jpowsour.2007.06.162
|
128 |
Eftekhari A.. Supercapacitors utilising ionic liquids. Energy Storage Mater., 2017, 9: 47
https://doi.org/10.1016/j.ensm.2017.06.009
|
129 |
Y. Lin R., L. Taberna P., Fantini S., Presser V., R. Perez C., Malbosc F., L. Rupesinghe N., B. K. Teo K., Gogotsi Y., Simon P.. Capacitive energy storage from −50 to 100 °C using an ionic liquid electrolyte. J. Phys. Chem. Lett., 2011, 2(19): 2396
https://doi.org/10.1021/jz201065t
|
130 |
Kunze M., Jeong S., B. Appetecchi G., Schöenhoff M., Winter M., Passerini S.. Mixtures of ionic liquids for low temperature electrolytes. Electrochim. Acta, 2012, 82: 69
https://doi.org/10.1016/j.electacta.2012.02.035
|
131 |
Y. Tsai W., Lin R., Murali S., L. Zhang L., K. McDonough J., S. Ruoff R., L. Taberna P., Gogotsi Y., Simon P.. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy, 2013, 2(3): 403
https://doi.org/10.1016/j.nanoen.2012.11.006
|
132 |
Lethien C., Le Bideau J., Brousse T.. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci., 2019, 12(1): 96
https://doi.org/10.1039/C8EE02029A
|
133 |
Yang Z., Tian J., Yin Z., Cui C., Qian W., Wei F.. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon, 2019, 141: 467
https://doi.org/10.1016/j.carbon.2018.10.010
|
134 |
Cui C., Qian W., Yu Y., Kong C., Yu B., Xiang L., Wei F.. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc., 2014, 136(6): 2256
https://doi.org/10.1021/ja412219r
|
135 |
Yu Y., Cui C., Qian W., Wei F.. Full capacitance potential of SWCNT electrode in ionic liquids at 4 V. J. Mater. Chem. A, 2014, 2(46): 19897
https://doi.org/10.1039/C4TA04773G
|
136 |
Lazzari M., Mastragostino M., Soavi F.. Capacitance response of carbons in solvent-free ionic liquid electrolytes. Electrochem. Commun., 2007, 9(7): 1567
https://doi.org/10.1016/j.elecom.2007.02.021
|
137 |
R. MacFarlane D., Meakin P., Sun J., Amini N., Forsyth M.. Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B, 1999, 103(20): 4164
https://doi.org/10.1021/jp984145s
|
138 |
A. Henderson W., Passerini S.. Phase behavior of ionic liquid-LiX mixtures: Pyrrolidinium cations and TFSI- anions. Chem. Mater., 2004, 16(15): 2881
https://doi.org/10.1021/cm049942j
|
139 |
Zhou Y., Qi H., Yang J., Bo Z., Huang F., S. Islam M., Lu X., Dai L., Amal R., H. Wang C., Han Z.. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci., 2021, 14(4): 1854
https://doi.org/10.1039/D0EE03167D
|
140 |
Lota G., Fic K., Frackowiak E.. Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci., 2011, 4(5): 1592
https://doi.org/10.1039/c0ee00470g
|
141 |
F. El-Kady M., L. Shao Y., B. Kaner R.. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater., 2016, 1(7): 16033
https://doi.org/10.1038/natrevmats.2016.33
|
142 |
G. Pandolfo A., F. Hollenkamp A.. Carbon properties and their role in supercapacitors. J. Power Sources, 2006, 157(1): 11
https://doi.org/10.1016/j.jpowsour.2006.02.065
|
143 |
Hao L., Ning J., Luo B., Wang B., Zhang Y., Tang Z., Yang J., Thomas A., Zhi L.. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc., 2015, 137(1): 219
https://doi.org/10.1021/ja508693y
|
144 |
W. Zhu Y., Murali S., D. Stoller M., J. Ganesh K., W. Cai W., J. Ferreira P., Pirkle A., M. Wallace R., A. Cychosz K., Thommes M., Su D., A. Stach E., S. Ruoff R.. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332(6037): 1537
https://doi.org/10.1126/science.1200770
|
145 |
Largeot C., Portet C., Chmiola J., Taberna P.-L., Gogotsi Y., Simon P.. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc., 2008, 130: 2730
https://doi.org/10.1021/ja7106178
|
146 |
Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., L. Taberna P.. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, 313(5794): 1760
https://doi.org/10.1126/science.1132195
|
147 |
Zheng C., Z. Qian W., J. Cui C., Zhang Q., G. Jin Y., Q. Zhao M., H. Tan P., Wei F.. Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon, 2012, 50(14): 5167
https://doi.org/10.1016/j.carbon.2012.06.058
|
148 |
S. Yun Y., Y. Cho S., Shim J., H. Kim B., J. Chang S., J. Baek S., S. Huh Y., Tak Y., W. Park Y., Park S., J. Jin H.. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater., 2013, 25(14): 1993
https://doi.org/10.1002/adma.201204692
|
149 |
B. Lei Z., H. Liu Z., J. Wang H., X. Sun X., Lu L., S. Zhao X.. A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte. J. Mater. Chem. A, 2013, 1(6): 2313
https://doi.org/10.1039/c2ta01040b
|
150 |
Kim T., C. Kang H., Tran Thanh T., D. Lee J., Kim H., S. Yang W., G. Yoon H., S. Suh K.. Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Adv., 2012, 2(23): 8808
https://doi.org/10.1039/c2ra21400h
|
151 |
Wang H., Xu Z., Kohandehghan A., Li Z., Cui K., Tan X., J. Stephenson T., K. King’ondu C., M. B. Holt C., C. Olsen B., K. Tak J., Harfield D., O. Anyia A., Mitlin D.. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano, 2013, 7(6): 5131
https://doi.org/10.1021/nn400731g
|
152 |
L. Zhang L., Zhao X., D. Stoller M., Zhu Y., Ji H., Murali S., Wu Y., Perales S., Clevenger B., S. Ruoff R.. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett., 2012, 12(4): 1806
https://doi.org/10.1021/nl203903z
|
153 |
Jung N., Kwon S., Lee D., M. Yoon D., M. Park Y., Benayad A., Y. Choi J., S. Park J.. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors. Adv. Mater., 2013, 25(47): 6854
https://doi.org/10.1002/adma.201302788
|
154 |
P. Hao G., H. Lu A., Dong W., Y. Jin Z., Q. Zhang X., T. Zhang J., C. Li W.. Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance. Adv. Energy Mater., 2013, 3(11): 1421
https://doi.org/10.1002/aenm.201300383
|
155 |
Brousse T., Belanger D., W. Long J.. To be or not to be pseudocapacitive. J. Electrochem. Soc., 2015, 162(5): A5185
https://doi.org/10.1149/2.0201505jes
|
156 |
Simon P., Gogotsi Y., Dunn B.. Where do batteries end and supercapacitors begin. Science, 2014, 343(6176): 1210
https://doi.org/10.1126/science.1249625
|
157 |
E. Conway B.. Transition from supercapacitor to battery behavior in electrochemical energy-storage. J. Electrochem. Soc., 1991, 138(6): 1539
https://doi.org/10.1149/1.2085829
|
158 |
Mourad E., Coustan L., Lannelongue P., Zigah D., Mehdi A., Vioux A., A. Freunberger S., Favier F., Fontaine O.. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater., 2017, 16: 446
https://doi.org/10.1038/nmat4808
|
159 |
Simon P., Gogotsi Y.. Perspectives for electrochemical capacitors and related devices. Nat. Mater., 2020, 19(11): 1151
https://doi.org/10.1038/s41563-020-0747-z
|
160 |
Jing Y., Zhou Z., R. Cabrera C., Chen Z.. Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A, 2014, 2(31): 12104
https://doi.org/10.1039/C4TA01033G
|
161 |
K. Aslam M., B. Niu Y., W. Xu M., for non-lithium-ion (Na MXenes. Mg, and Al) batteries and supercapacitors. Adv. Energy Mater., 2021, 11(2): 2000681
https://doi.org/10.1002/aenm.202000681
|
162 |
Peigney A., Laurent C., Flahaut E., R. Bacsa R., Rousset A.. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4): 507
https://doi.org/10.1016/S0008-6223(00)00155-X
|
163 |
Wang J., Ding B., Xu Y., Shen L., Dou H., Zhang X.. Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances. ACS Appl. Mater. Interfaces, 2015, 7(40): 22284
https://doi.org/10.1021/acsami.5b05428
|
164 |
Yang X., Cheng C., Wang Y., Qiu L., Li D.. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013, 341(6145): 534
https://doi.org/10.1126/science.1239089
|
165 |
Futamura R., Iiyama T., Takasaki Y., Gogotsi Y., J. Biggs M., Salanne M., Segalini J., Simon P., Kaneko K.. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater., 2017, 16: 1225
https://doi.org/10.1038/nmat4974
|
166 |
N. Li Z., Gadipelli S., C. Li H., A. Howard C., J. L. Brett D., R. Shearing P., X. Guo Z., P. Parkin I., Li F.. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy, 2020, 5(2): 160
https://doi.org/10.1038/s41560-020-0560-6
|
167 |
Cheng C., Jiang G., P. Simon G., Z. Liu J., Li D.. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol., 2018, 13: 685
https://doi.org/10.1038/s41565-018-0181-4
|
168 |
L. Su X., R. Ye C., P. Li X., H. Guo M., G. Cao R., Ni K., W. Zhu Y.. Heterogeneous stacking carbon films for optimized supercapacitor performance. Energy Storage Mater., 2022, 50: 365
https://doi.org/10.1016/j.ensm.2022.05.020
|
169 |
Kim J., Kim S.. Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim. Acta, 2014, 119: 11
https://doi.org/10.1016/j.electacta.2013.11.187
|
170 |
Kim J., Kim S.. Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. Appl. Surf. Sci., 2014, 295: 31
https://doi.org/10.1016/j.apsusc.2013.12.156
|
171 |
Anasori B., Xie Y., Beidaghi M., Lu J., C. Hosler B., Hultman L., R. C. Kent P., Gogotsi Y., W. Barsoum M.. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 2015, 9(10): 9507
https://doi.org/10.1021/acsnano.5b03591
|
172 |
Hu Q., Sun D., Wu Q., Wang H., Wang L., Liu B., Zhou A., He J.. MXene: A new family of promising hydrogen storage medium. J. Phys. Chem. A, 2013, 117(51): 14253
https://doi.org/10.1021/jp409585v
|
173 |
Dong Y., Zheng S., Qin J., Zhao X., Shi H., Wang X., Chen J., S. Wu Z.. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano, 2018, 12(3): 2381
https://doi.org/10.1021/acsnano.7b07672
|
174 |
R. Lukatskaya M., Mashtalir O., E. Ren C., Dall’Agnese Y., Rozier P., L. Taberna P., Naguib M., Simon P., W. Barsoum M., Gogotsi Y.. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502
https://doi.org/10.1126/science.1241488
|
175 |
VahidMohammadi A., Moncada J., Chen H., Kayali E., Orangi J., A. Carrero C., Beidaghi M.. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A, 2018, 6(44): 22123
https://doi.org/10.1039/C8TA05807E
|
176 |
Lu M., J. Li H., J. Han W., N. Chen J., Shi W., H. Wang J., M. Meng X., G. Qi J., B. Li H., S. Zhang B., Zhang W., Zheng W.. 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy Chem., 2019, 31: 148
https://doi.org/10.1016/j.jechem.2018.05.017
|
177 |
Wu F., Jiang Y., Q. Ye Z., X. Huang Y., H. Wang Z., J. Li S., Mei Y., Xie M., Li L., J. Chen R.. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A, 2019, 7(3): 1315
https://doi.org/10.1039/C8TA11419F
|
178 |
Xia Y., S. Mathis T., Q. Zhao M., Anasori B., Dang A., H. Zhou Z., Cho H., Gogotsi Y., Yang S.. Thickness - independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557: 409
https://doi.org/10.1038/s41586-018-0109-z
|
179 |
F. Zhang C., P. Kremer M., Seral-Ascaso A., H. Park S., McEvoy N., Anasori B., Gogotsi Y., Nicolosi V.. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater., 2018, 28(9): 1705506
https://doi.org/10.1002/adfm.201705506
|
180 |
Xu S., Dall’Agnese Y., Wei G., Zhang C., Gogotsi Y., Han W.. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy, 2018, 50: 479
https://doi.org/10.1016/j.nanoen.2018.05.064
|
181 |
Lin Z., Barbara D., L. Taberna P., L. Van Aken K., Anasori B., Gogotsi Y., Simon P.. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources, 2016, 326: 575
https://doi.org/10.1016/j.jpowsour.2016.04.035
|
182 |
F. Lin Z., Rozier P., Duployer B., L. Taberna P., Anasori B., Gogotsi Y., Simon P.. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun., 2016, 72: 50
https://doi.org/10.1016/j.elecom.2016.08.023
|
183 |
H. Zheng S., Zhang C., Zhou F., F. Dong Y., Y. Shi X., Nicolosi V., S. Wu Z., H. Bao X.. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A, 2019, 7(16): 9478
https://doi.org/10.1039/C9TA02190F
|
184 |
D. Bakulina O., Y. Ivanov M., A. Prikhod’ko S., Pylaeva S., V. Zaytseva I., V. Surovtsev N., Y. Adonin N., V. Fedin M.. Nanocage formation and structural anomalies in imidazolium ionic liquid glasses governed by alkyl chains of cations. Nanoscale, 2020, 12(38): 19982
https://doi.org/10.1039/D0NR06065H
|
185 |
Liang K., A. Matsumoto R., Zhao W., C. Osti N., Popov I., P. Thapaliya B., Fleischmann S., Misra S., Prenger K., Tyagi M., Mamontov E., Augustyn V., R. Unocic R., P. Sokolov A., Dai S., T. Cummings P., Naguib M.. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater., 2021, 31(33): 2104007
https://doi.org/10.1002/adfm.202104007
|
186 |
Fan Q., Z. Zhao R., J. Yi M., Qi P., X. Chai C., Ying H., C. Hao J.. Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications. Chem. Eng. J., 2022, 428: 131107
https://doi.org/10.1016/j.cej.2021.131107
|
187 |
J. Wan Y., Rajavel K., M. Li X., Y. Wang X., Y. Liao S., Q. Lin Z., L. Zhu P., Sun R., P. Wong C.. Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J., 2021, 408: 127303
https://doi.org/10.1016/j.cej.2020.127303
|
188 |
S. Lee J., Q. Wang X., M. Luo H., A. Baker G., Dai S.. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc., 2009, 131: 4596
https://doi.org/10.1021/ja900686d
|
189 |
Yoshida Y., Fujie K., W. Lim D., Ikeda R., Kitagawa H.. Superionic conduction over a wide temperature range in a metal-organic framework impregnated with ionic liquids. Angew. Chem. Int. Ed., 2019, 58(32): 10909
https://doi.org/10.1002/anie.201903980
|
190 |
Bi S., Banda H., Chen M., Niu L., Chen M., Wu T., Wang J., Wang R., Feng J., Chen T., Dinca M., A. Kornyshev A., Feng G.. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater., 2020, 19: 552
https://doi.org/10.1038/s41563-019-0598-7
|
191 |
Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J.. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev., 2015, 44(21): 7484
https://doi.org/10.1039/C5CS00303B
|
192 |
Yang H., Kannappan S., S. Pandian A., H. Jang J., S. Lee Y., Lu W.. Graphene supercapacitor with both high power and energy density. Nanotechnology, 2017, 28(44): 445401
https://doi.org/10.1088/1361-6528/aa8948
|
193 |
González A., Goikolea E., Andoni Barrena J., Mysyk R.. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev., 2016, 58: 1189
https://doi.org/10.1016/j.rser.2015.12.249
|
194 |
Pohlmann S., S. Kühnel R., A. Centeno T., Balducci A.. The influence of anion-cation combinations on the physicochemical properties of advanced electrolytes for supercapacitors and the capacitance of activated carbons. ChemElectroChem, 2014, 1(8): 1301
https://doi.org/10.1002/celc.201402091
|
195 |
L. Van Aken K., Beidaghi M., Gogotsi Y.. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chem. Int. Ed., 2015, 54(16): 4806
https://doi.org/10.1002/anie.201412257
|
196 |
Pohlmann S., Ramirez-Castro C., Balducci A.. The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction. J. Electrochem. Soc., 2015, 162(5): A5020
https://doi.org/10.1149/2.0041505jes
|
197 |
Q. Ye W., Y. Wang H., Q. Ning J., J. Zhong Y., Hu Y.. New types of hybrid electrolytes for supercapacitors. J. Energy Chem., 2021, 57: 219
https://doi.org/10.1016/j.jechem.2020.09.016
|
198 |
Hagiwara R., Matsumoto K., Nakamori Y., Tsuda T., Ito Y., Matsumoto H., Momota K.. Physicochemical properties of 1, 3-dialkylimidazolium fluorohydrogenate room-temperature molten salts. J. Electrochem. Soc., 2003, 150(12): D195
https://doi.org/10.1149/1.1621414
|
199 |
Kong C., Qian W., Zheng C., Yu Y., Cui C., Wei F.. Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte. Chem. Commun. (Camb.), 2013, 49(91): 10727
https://doi.org/10.1039/c3cc46188b
|
200 |
Yang D., Zhou X., X. Yang R., Yang Z., Yu W., L. Wang X., Li C., Z. Liu S., P. H. Chang R.. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci., 2016, 9(10): 3071
https://doi.org/10.1039/C6EE02139E
|
201 |
Bai S., M. Da P., Li C., P. Wang Z., C. Yuan Z., Fu F., Kawecki M., J. Liu X., Sakai N., T. W. Wang J., Huettner S., Buecheler S., Fahlman M., Gao F., J. Snaith H.. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571: 245
https://doi.org/10.1038/s41586-019-1357-2
|
202 |
Divitini G., Cacovich S., Matteocci F., Cina L., Di Carlo A., Ducati C.. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy, 2016, 1(2): 15012
https://doi.org/10.1038/nenergy.2015.12
|
203 |
Leijtens T., T. Hoke E., Grancini G., J. Slotcavage D., E. Eperon G., M. Ball J., De Bastiani M., R. Bowring A., Martino N., Wojciechowski K., D. McGehee M., J. Snaith H., Petrozza A.. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater., 2015, 5(20): 1500962
https://doi.org/10.1002/aenm.201500962
|
204 |
Domanski K., Roose B., Matsui T., Saliba M., H. Turren-Cruz S., P. Correa-Baena J., Roldan-Carmona C., Richardson G., M. Foster J., De Angelis F., M. Ball J., Petrozza A., Mine N., K. Nazeeruddin M., Tress W., Grätzel M., Steiner U., Hagfeldt A., Abate A.. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci., 2017, 10(2): 604
https://doi.org/10.1039/C6EE03352K
|
205 |
J. Zhu X., Y. Du M., S. Feng J., Wang H., Xu Z., K. Wang L., N. Zuo S., Y. Wang C., Y. Wang Z., Zhang C., D. Ren X., Priya S., Yang D., Liu S.. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem. Int. Ed., 2021, 60(8): 4238
https://doi.org/10.1002/anie.202010987
|
206 |
Wang X., Ran X., Liu X., Gu H., Zuo S., Hui W., Lu H., Sun B., Gao X., Zhang J., Xia Y., Chen Y., Huang W.. Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic. Angew. Chem. Int. Ed., 2020, 59(32): 13354
https://doi.org/10.1002/anie.202004256
|
207 |
Liu C., Fang Z., S. Sun J., Lou Q., F. Ge J., Chen X., J. Zhou E., H. Shang M., Y. Yang W., Y. Ge Z.. Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2D perovskite materials. ACS Energy Lett., 2020, 5(11): 3617
https://doi.org/10.1021/acsenergylett.0c01784
|
208 |
Hui W., F. Chao L., Lu H., Xia F., Wei Q.. et al.. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 2021, 371: 1359
https://doi.org/10.1126/science.abf7652
|
209 |
K. Geim A., V. Grigorieva I.. Van der Waals heterostructures. Nature, 2013, 499(7459): 419
https://doi.org/10.1038/nature12385
|
210 |
F. Sun Y., Gao S., Xie Y.. Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction. Chem. Soc. Rev., 2014, 43(2): 530
https://doi.org/10.1039/C3CS60231A
|
211 |
Huang X.Tan C.Yin Z.Zhang H., 25th anniversary article: Hybrid nanostructures based on two-Dimensional nanomaterials, Adv. Mater. 26(14), 2185 (2014)
|
212 |
Sun Y., Gao S., Lei F., Xiao C., Xie Y.. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res., 2015, 48(1): 3
https://doi.org/10.1021/ar500164g
|
213 |
Sun Y., Cheng H., Gao S., Sun Z., Liu Q., Liu Q., Lei F., Yao T., He J., Wei S., Xie Y.. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem. Int. Ed., 2012, 51(35): 8727
https://doi.org/10.1002/anie.201204675
|
214 |
Li J., Yu Y., Zhang L.. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale, 2014, 6(15): 8473
https://doi.org/10.1039/C4NR02553A
|
215 |
Jiang J., Zhao K., Xiao X., Zhang L.. Synthesis and facet-dependent photoreactivity of BiOCl Single-crystalline nanosheets. J. Am. Chem. Soc., 2012, 134(10): 4473
https://doi.org/10.1021/ja210484t
|
216 |
Łuczak J., Paszkiewicz M., Krukowska A., Malankowska A., Zaleska-Medynska A.. Ionic liquids for nano- and microstructures preparation (Part 1): Properties and multifunctional role. Adv. Colloid Interface Sci., 2016, 230: 13
https://doi.org/10.1016/j.cis.2015.08.006
|
217 |
Łuczak J., Paszkiewicz M., Krukowska A., Malankowska A., Zaleska-Medynska A.. Ionic liquids for nano- and microstructures preparation (Part 2): Application in synthesis. Adv. Colloid Interface Sci., 2016, 227: 1
https://doi.org/10.1016/j.cis.2015.08.010
|
218 |
Dou L., Xiang Y., Zhong J., Li J., Huang S.. Ionic liquid-assisted preparation of thin Bi2SiO5 nanosheets for effective photocatalytic degradation of RhB. Mater. Lett., 2020, 261: 127117
https://doi.org/10.1016/j.matlet.2019.127117
|
219 |
Xia J., Ji M., Di J., Wang B., Yin S., He M., Zhang Q., Li H.. Improved photocatalytic activity of few-layer Bi4O5I2 nanosheets induced by efficient charge separation and lower valence position. J. Alloys Compd., 2017, 695: 922
https://doi.org/10.1016/j.jallcom.2016.10.203
|
220 |
H. Li J., Ren J., J. Hao Y., P. Zhou E., Wang Y., J. Wang X., Su R., Liu Y., H. Qi X., T. Li F.. Construction of beta-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position. J. Hazard. Mater., 2021, 401: 123262
https://doi.org/10.1016/j.jhazmat.2020.123262
|
221 |
K. Jana M., Biswas K., N. R. Rao C.. Ionothermal synthesis of few-layer nanostructures of Bi2Se3 and related materials. Chemistry, 2013, 19(28): 9110
https://doi.org/10.1002/chem.201300983
|
222 |
Z. Zhao J., X. Ji M., Di J., P. Ge Y., F. Zhang P., X. Xia J., M. Li H.. Synthesis of g-C3N4/Bi4O5Br2 via reactable ionic liquid and its cooperation effect for the enhanced photocatalytic behavior towards ciprofloxacin degradation. J. Photochem. Photobiol. A, 2017, 347: 168
https://doi.org/10.1016/j.jphotochem.2017.07.023
|
223 |
Y. Zhu Q., Y. Wang Z., F. Chen L., Y. Cheng H., W. Qi Z.. Ionic-liquid-controlled two-dimensional monolayer Bi2MoO6 and its adsorption of azo molecules. ACS Appl. Nano Mater., 2018, 1(9): 5083
https://doi.org/10.1021/acsanm.8b01186
|
224 |
Pancielejko A., Luczak J., Lisowski W., Trykowski G., Venieri D., Zaleska-Medynska A., Mazierski P.. Ionic liquid as morphology-directing agent of two-dimensional Bi2WO6: New insight into photocatalytic and antibacterial activity. Appl. Surf. Sci., 2022, 599: 153971
https://doi.org/10.1016/j.apsusc.2022.153971
|
225 |
Peplow M.. Graphene booms in factories but lacks a killer app. Nature, 2015, 522(7556): 268
https://doi.org/10.1038/522268a
|
226 |
Ravula S., N. Baker S., Kamath G., A. Baker G.. Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. Nanoscale, 2015, 7(10): 4338
https://doi.org/10.1039/C4NR01524J
|
227 |
Lu J., Yang J., Wang J., Lim A., Wang S., P. Loh K.. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8): 2367
https://doi.org/10.1021/nn900546b
|
228 |
Zhang Y., W. Li S., X. Xu Y., Y. Shi X., X. Zhang M., N. Huang Y., Liang Y., Q. Chen Y., L. Ji W., R. Kim J., L. Song W., G. Yu D., Kim I.. Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Res., 2022, 15(6): 5556
https://doi.org/10.1007/s12274-022-4160-6
|
229 |
Tajik S., Lohrasbi-Nejad A., Mohammadzadeh Jahani P., B. Askari M., Salarizadeh P., Beitollahi H.. Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ionic liquid and MoO3/WO3 nanocomposite. J. Food Meas. Charact., 2022, 16(1): 722
https://doi.org/10.1007/s11694-021-01201-4
|
230 |
G. Nejad F., Sheikhshoaie I., Beitollahi H.. Simultaneous detection of carmoisine and tartrazine in food samples using GO-Fe3O4-PAMAM and ionic liquid based electrochemical sensor. Food Chem. Toxicol., 2022, 162: 112864
https://doi.org/10.1016/j.fct.2022.112864
|
231 |
Karimi-Maleh H., Darabi R., Shabani-Nooshabadi M., Baghayeri M., Karimi F., Rouhi J., Alizadeh M., Karaman O., Vasseghian Y., Karaman C.. Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food Chem. Toxicol., 2022, 162: 112907
https://doi.org/10.1016/j.fct.2022.112907
|
232 |
Degani M., Z. An Q., Albaladejo-Siguan M., J. Hofstetter Y., Cho C., Paulus F., Grancini G., Vaynzof Y.. 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv., 2021, 7(49): eabj7930
https://doi.org/10.1126/sciadv.abj7930
|
233 |
Zeng G., J. Chen W., B. Chen X., Hu Y., Chen Y., Zhang B., Y. Chen H., W. Sun W., X. Shen Y., W. Li Y., Yan F., F. Li Y.. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc., 2022, 144(19): 8658
https://doi.org/10.1021/jacs.2c01503
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|