|
|
Transport in electron−photon systems |
Jian-Sheng Wang1( ), Jiebin Peng2, Zu-Quan Zhang3, Yong-Mei Zhang4, Tao Zhu5,6 |
1. Department of Physics, National University of Singapore, Singapore 117551, Republic of Singapore 2. Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China 3. Department of Physics, Zhejiang Normal University, Jinhua 321004, China 4. College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 5. School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China 6. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We review the description and modeling of transport phenomena among the electron systems coupled via scalar or vector photons. It consists of three parts. The first part is about scalar photons, i.e., Coulomb interactions. The second part is with transverse photons described by vector potentials. The third part is on ϕ = 0 or temporal gauge, which is a full theory of the electrodynamics. We use the nonequilibrium Green’s function (NEGF) formalism as a basic tool to study steady-state transport. Although with local equilibrium it is equivalent to the fluctuational electrodynamics (FE), the advantage of NEGF is that it can go beyond FE due to its generality. We have given a few examples in the review, such as transfer of heat between graphene sheets driven by potential bias, emission of light by a double quantum dot, and emission of energy, momentum, and angular momentum from a graphene nanoribbon. All of these calculations are based on a generalization of the Meir−Wingreen formula commonly used in electronic transport in mesoscopic systems, with materials properties represented by photon self-energy, coupled with the Keldysh equation and the solution to the Dyson equation.
|
Keywords
quantum transport
thermal radiation
scalar and vector photons
nonequilibrium Green's function
|
Corresponding Author(s):
Jian-Sheng Wang
|
Issue Date: 17 March 2023
|
|
1 |
Tannoudji C.Dupont-Roc J.Grynberg G., Photons and Atoms: Introduction to Quantum Electrodynamics, Wiley, 1989
|
2 |
Bloch J., Cavalleri A., Galitski V., Hafezi M., Rubio A.. Strongly correlated electron–photon systems. Nature, 2022, 606(7912): 41
https://doi.org/10.1038/s41586-022-04726-w
|
3 |
Planck M., The Theory of Heat Radiation, 2nd Ed., P. Blakiston’s Son & Co., Philadelphia, 1914
|
4 |
M. Hargreaves C.. Anomalous radiative transfer between closely-spaced bodies. Phys. Lett. A, 1969, 30(9): 491
https://doi.org/10.1016/0375-9601(69)90264-3
|
5 |
A. Domoto G., F. Boehm R., L. Tien C.. Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J. Heat Transfer, 1970, 92(3): 412
https://doi.org/10.1115/1.3449677
|
6 |
Polder D., van Hove M.. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B, 1971, 4(10): 3303
https://doi.org/10.1103/PhysRevB.4.3303
|
7 |
M. Rytov S., Theory of Electric Fluctuations and Thermal Radiation, Air Force Cambridge Research Center, Bedford, MA, 1953
|
8 |
M. Rytov S.A. Kravtsov Y.I. Tatarskii V., Principles of Statistical Radiophysics 3, Springer, Berlin, 1989
|
9 |
B. Callen H., A. Welton T.. Irreversibility and generalized noise. Phys. Rev., 1951, 83(1): 34
https://doi.org/10.1103/PhysRev.83.34
|
10 |
Krüger M., Emig T., Kardar M.. Nonequilibrium Electromagnetic Fluctuations: Heat transfer and interactions. Phys. Rev. Lett., 2011, 106(21): 210404
https://doi.org/10.1103/PhysRevLett.106.210404
|
11 |
R. Otey C., Zhu L., Sandhu S., Fan S.. Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview. J. Quant. Spectrosc. Radiat. Transf., 2014, 132: 3
https://doi.org/10.1016/j.jqsrt.2013.04.017
|
12 |
Tang G., Zhang L., Zhang Y., Chen J., T. Chan C.. Near-field energy transfer between graphene and magneto−optic media. Phys. Rev. Lett., 2021, 127(24): 247401
https://doi.org/10.1103/PhysRevLett.127.247401
|
13 |
Joulain K., P. Mulet J., Marquier F., Carminati R., J. Greffet J.. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep., 2005, 57(3−4): 59
https://doi.org/10.1016/j.surfrep.2004.12.002
|
14 |
Basu S., M. Zhang Z., J. Fu C.. Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res., 2009, 33(13): 1203
https://doi.org/10.1002/er.1607
|
15 |
Song B., Fiorino A., Meyhofer E., Reddy P.. Near-field radiative thermal transport: From theory to experiment. AIP Adv., 2015, 5(5): 053503
https://doi.org/10.1063/1.4919048
|
16 |
I. Volokitin A., N. J. Persson B.. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys., 2007, 79(4): 1291
https://doi.org/10.1103/RevModPhys.79.1291
|
17 |
A. Biehs S., Messina R., S. Venkataram P., W. Rodriguez A., C. Cuevas J., Ben-Abdallah P.. Near-field radiative heat transfer in many-body systems. Rev. Mod. Phys., 2021, 93(2): 025009
https://doi.org/10.1103/RevModPhys.93.025009
|
18 |
Bimonte G., Emig T., Kardar M., Krüger M.. Nonequilibrium fluctuational quantum electrodynamics: Heat radiation, heat transfer, and force. Annu. Rev. Condens. Matter Phys., 2017, 8(1): 119
https://doi.org/10.1146/annurev-conmatphys-031016-025203
|
19 |
Henkel C.. Nanoscale thermal transfer – An invitation to fluctuation electrodynamics. Zeitschrift für Naturforshchung A, 2017, 72(2): 99
https://doi.org/10.1515/zna-2016-0372
|
20 |
Pascale M.Giteau M.T. Papadakis G., Perspective on near-field radiative heat transfer, arXiv: 2210.00929 (2022)
|
21 |
Kittel A., Müller-Hirsch W., Parisi J., A. Biehs S., Reddig D., Holthaus M.. Near-field heat transfer in a scanning thermal microscope. Phys. Rev. Lett., 2005, 95(22): 224301
https://doi.org/10.1103/PhysRevLett.95.224301
|
22 |
Shen S., Narayanaswamy A., Chen G.. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett., 2009, 9(8): 2909
https://doi.org/10.1021/nl901208v
|
23 |
S. Ottens R., Quetschke V., Wise S., A. Alemi A., Lundock R., Mueller G., H. Reitze D., B. Tanner D., F. Whiting B.. Near-field radiative heat transfer between macroscopic planar surfaces. Phys. Rev. Lett., 2011, 107(1): 014301
https://doi.org/10.1103/PhysRevLett.107.014301
|
24 |
Kim K., Song B., Fernández-Hurtado V., Lee W., Jeong W., Cui L., Thompson D., Feist J., T. H. Reid M., J. García-Vidal F., C. Cuevas J., Meyhofer E., Reddy P.. Radiative heat transfer in the extreme near field. Nature, 2015, 528(7582): 387
https://doi.org/10.1038/nature16070
|
25 |
Cui L., Jeong W., Fernández-Hurtado V., Feist J., J. García-Vidal F., C. Cuevas J., Meyhofer E., Reddy P.. Study of radiative heat transfer in Ångström- and nanometre-sized gaps. Nat. Commun., 2017, 8(1): 14479
https://doi.org/10.1038/ncomms14479
|
26 |
Kloppstech K., Könne N., A. Biehs S., W. Rodriguez A., Worbes L., Hellmann D., Kittel A.. Giant heat transfer in the crossover regime between conduction and radiation. Nat. Commun., 2017, 8(1): 14475
https://doi.org/10.1038/ncomms14475
|
27 |
Tokunaga T., Jarzembski A., Shiga T., Park K., Francoeur M.. Extreme near-field heat transfer between gold surfaces. Phys. Rev. B, 2021, 104(12): 125404
https://doi.org/10.1103/PhysRevB.104.125404
|
28 |
Fernández-Hurtado V., I. Fernández-Domínguez A., Feist J., J. García-Vidal F., C. Cuevas J.. Super-Planckian far-field radiative heat transfer. Phys. Rev. B, 2018, 97(4): 045408
https://doi.org/10.1103/PhysRevB.97.045408
|
29 |
C. Cuevas J.. Thermal radiation from subwavelength objects and the violation of Planck’s law. Nat. Commun., 2019, 10(1): 3342
https://doi.org/10.1038/s41467-019-11287-6
|
30 |
Thompson D., Zhu L., Mittapally R., Sadat S., Xing Z., McArdle P., Qazilbash M., Reddy P., Meyhofer E.. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature, 2018, 561(7722): 216
https://doi.org/10.1038/s41586-018-0480-9
|
31 |
B. G. Casimir H.. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet., 1948, 51: 793
|
32 |
M. Lifshitz E.. The theory of molecular attractive forces between solids. Sov. Phys. JETP, 1956, 2: 73
|
33 |
H. G. M. van Blokland P.T. G. Overbeek J., van der Waals forces between objects covered with a chromium layer, J. Chem. Soc. Faraday Trans. I 74(0), 2637 (1978)
|
34 |
K. Lamoreaux S.. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett., 1997, 78(1): 5
https://doi.org/10.1103/PhysRevLett.78.5
|
35 |
Mohideen U., Roy A.. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett., 1998, 81(21): 4549
https://doi.org/10.1103/PhysRevLett.81.4549
|
36 |
M. Obrecht J., J. Wild R., Antezza M., P. Pitaevskii L., Stringari S., A. Cornell E.. Measurement of the temperature dependence of the Casimir−Polder force. Phys. Rev. Lett., 2007, 98(6): 063201
https://doi.org/10.1103/PhysRevLett.98.063201
|
37 |
L. Klimchitskaya G., Mohideen U., M. Mostepanenko V.. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys., 2009, 81(4): 1827
https://doi.org/10.1103/RevModPhys.81.1827
|
38 |
L. Garrett J., A. T. Somers D., N. Munday J.. Measurement of the Casimir force between two spheres. Phys. Rev. Lett., 2018, 120(4): 040401
https://doi.org/10.1103/PhysRevLett.120.040401
|
39 |
Stange A., K. Campbell D., J. Bishop D.. Science and technology of the Casimir effect. Phys. Today, 2021, 74(1): 42
https://doi.org/10.1063/PT.3.4656
|
40 |
M. Wilson C., Johansson G., Pourkabirian A., Simoen M., R. Johansson J., Duty T., Nori F., Delsing P.. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 2011, 479(7373): 376
https://doi.org/10.1038/nature10561
|
41 |
Vezzoli S., Mussot A., Westerberg N., Kudlinski A., Dinparasti Saleh H., Prain A., Biancalana F., Lantz E., Faccio D.. Optical analogue of the dynamical Casimir effect in a dispersion-oscillating fibre. Commun. Phys., 2019, 2(1): 84
https://doi.org/10.1038/s42005-019-0183-z
|
42 |
Y. Fong K., K. Li H., Zhao R., Yang S., Wang Y., Zhang X.. Phonon heat transfer across a vacuum through quantum fluctuations. Nature, 2019, 576(7786): 243
https://doi.org/10.1038/s41586-019-1800-4
|
43 |
F. Maghrebi M., V. Gorshkov A., D. Sau J.. Fluctuation-induced torque on a topological insulator out of thermal equilibrium. Phys. Rev. Lett., 2019, 123(5): 055901
https://doi.org/10.1103/PhysRevLett.123.055901
|
44 |
Katoh M., Fujimoto M., Kawaguchi H., Tsuchiya K., Ohmi K., Kaneyasu T., Taira Y., Hosaka M., Mochihashi A., Takashima Y.. Angular momentum of twisted radiation from an electron in spiral motion. Phys. Rev. Lett., 2017, 118(9): 094801
https://doi.org/10.1103/PhysRevLett.118.094801
|
45 |
Gao X., Khandekar C., Jacob Z., Li T.. Thermal equilibrium spin torque: Near-field radiative angular momentum transfer in magneto−optical media. Phys. Rev. B, 2021, 103(12): 125424
https://doi.org/10.1103/PhysRevB.103.125424
|
46 |
L. N. Chen M., J. Jiang L., E. I. Sha W.. Orbital angular momentum generation and detection by geometric-phase based metasurfaces. Appl. Sci. (Basel), 2018, 8(3): 362
https://doi.org/10.3390/app8030362
|
47 |
Nagali E., Sciarrino F., De Martini F., Marrucci L., Piccirillo B., Karimi E., Santamato E.. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett., 2009, 103(1): 013601
https://doi.org/10.1103/PhysRevLett.103.013601
|
48 |
S. Asadchy V., S. Mirmoosa M., Dìaz-Rubio A., Fan S., A. Tretyakov S.. Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE, 2020, 108(10): 1684
https://doi.org/10.1109/JPROC.2020.3012381
|
49 |
Khandekar C., Buddhiraju S., R. Wilkinson P., K. Gimzewski J., W. Rodriguez A., Chase C., Fan S.. Nonequilibrium lateral force and torque by thermally excited nonreciprocal surface electromagnetic waves. Phys. Rev. B, 2021, 104(24): 245433
https://doi.org/10.1103/PhysRevB.104.245433
|
50 |
Messina R., Antezza M.. Casimir−Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies. Europhys. Lett., 2011, 95(6): 61002
https://doi.org/10.1209/0295-5075/95/61002
|
51 |
Messina R., Antezza M.. Scattering-matrix approach to Casimir−Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies. Phys. Rev. A, 2011, 84(4): 042102
https://doi.org/10.1103/PhysRevA.84.042102
|
52 |
Krüger M., Bimonte G., Emig T., Kardar M.. Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects. Phys. Rev. B, 2012, 86(11): 115423
https://doi.org/10.1103/PhysRevB.86.115423
|
53 |
A. Lippmann B., Schwinger J.. Variational principles for scattering processes I. Phys. Rev., 1950, 79(3): 469
https://doi.org/10.1103/PhysRev.79.469
|
54 |
Ben-Abdallah P., A. Biehs S., Joulain K.. Many-body radiative heat transfer theory. Phys. Rev. Lett., 2011, 107(11): 114301
https://doi.org/10.1103/PhysRevLett.107.114301
|
55 |
W. Rodriguez A., Ilic O., Bermel P., Celanovic I., D. Joannopoulos J., Soljačić M., G. Johnson S.. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: A computational approach for arbitrary geometries and materials. Phys. Rev. Lett., 2011, 107(11): 114302
https://doi.org/10.1103/PhysRevLett.107.114302
|
56 |
W. Rodriguez A.T. H. Reid M.G. Johnson S., Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries, Phys. Rev. B 86, 220302(R) (2012)
|
57 |
Datta S., Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, 1995
|
58 |
D. Ventra M., Electrical Transport in Nanoscale Systems, Cambridge Univ. Press, 2008
|
59 |
S. Wang J., Wang J., T. Lü J.. Quantum thermal transport in nanostructures. Eur. Phys. J. B, 2008, 62(4): 381
https://doi.org/10.1140/epjb/e2008-00195-8
|
60 |
Z. Yu Z.H. Xiong G.F. Zhang L., A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
|
61 |
Janowicz M., Reddig D., Holthaus M.. Quantum approach to electromagnetic energy transfer between two dielectric bodies. Phys. Rev. A, 2003, 68(4): 043823
https://doi.org/10.1103/PhysRevA.68.043823
|
62 |
Aeberhard U.. Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism. J. Comput. Electron., 2011, 10(4): 394
https://doi.org/10.1007/s10825-011-0375-6
|
63 |
Haug H.P. Jauho A., Quantum Kinetics in Transport and Optics of Semiconductors, 2nd Ed., Springer-Verlag, 2008
|
64 |
Eckhardt W.. Macroscopic theory of electromagnetic fluctuations and stationary radiative heat transfer. Phys. Rev. A, 1984, 29(4): 1991
https://doi.org/10.1103/PhysRevA.29.1991
|
65 |
V. Keldysh L.. Diagram technique for nonequilibrium processes. Sov. Phys. JETP, 1965, 20: 1018
|
66 |
S. Wang J., K. Agarwalla B., Li H., Thingna J.. Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys., 2014, 9(6): 673
https://doi.org/10.1007/s11467-013-0340-x
|
67 |
D. Mahan G.. Tunneling of heat between metals. Phys. Rev. B, 2017, 95(11): 115427
https://doi.org/10.1103/PhysRevB.95.115427
|
68 |
D. Jackson J., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999
|
69 |
Smolić I., Klajn B.. Capacitance matrix revisited. Prog. Electromagn. Res. B Pier B, 2021, 92: 1
https://doi.org/10.2528/PIERB21011501
|
70 |
S. Wang J., Q. Zhang Z., T. Lü J.. Coulomb-force-mediated heat transfer in the near field: Geometric effect. Phys. Rev. E, 2018, 98(1): 012118
https://doi.org/10.1103/PhysRevE.98.012118
|
71 |
Kubo R.Toda M.Hashitsume N., Statistical Physics II — Nonequilibrium Statistical Mechanics, 2nd Ed., Springer, 1991
|
72 |
F. Giuliani G.Vignale G., Quantum Theory of the Electron Liquid, Cambridge Univ. Press, 2005
|
73 |
Yu R., Manjavacas A., J. García de Abajo F.. Ultrafast radiative heat transfer. Nat. Commun., 2017, 8(1): 2
https://doi.org/10.1038/s41467-016-0013-x
|
74 |
Landauer R.. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM J. Res. Develop., 1957, 1(3): 223
https://doi.org/10.1147/rd.13.0223
|
75 |
Caroli C., Combescot R., Nozieres P., Saint-James D.. Direct calculation of the tunneling current. J. Phys. C, 1971, 4(8): 916
https://doi.org/10.1088/0022-3719/4/8/018
|
76 |
S. Wang J., Peng J.. Capacitor physics in ultra-near-field heat transfer. Europhys. Lett., 2017, 118(2): 24001
https://doi.org/10.1209/0295-5075/118/24001
|
77 |
H. Jiang J., S. Wang J.. Caroli formalism in near-field heat transfer between parallel graphene sheets. Phys. Rev. B, 2017, 96(15): 155437
https://doi.org/10.1103/PhysRevB.96.155437
|
78 |
Zhu T., S. Wang J.. Generalized first-principles method to study near-field heat transfer mediated by Coulomb interaction. Phys. Rev. B, 2021, 104(12): L121409
https://doi.org/10.1103/PhysRevB.104.L121409
|
79 |
Meir Y., S. Wingreen N.. Landauer formula for the current through an interacting electron region. Phys. Rev. Lett., 1992, 68(16): 2512
https://doi.org/10.1103/PhysRevLett.68.2512
|
80 |
P. Jauho A., S. Wingreen N., Meir Y.. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B, 1994, 50(8): 5528
https://doi.org/10.1103/PhysRevB.50.5528
|
81 |
Stefanucci G.van Leeuwen R., Nonequilibrium Many-Body Theory of Quantum Systems, Cambridge Univ. Press, 2013
|
82 |
C. Langreth D., in: Linear and Nonlinear Electron Transport in Solids, NATO Advanced Study Institute Series, Vol. 17, edited by J. T. Devreese and V. E. van Doren, Springer, Boston, MA, 1976, p. 3
|
83 |
T. Lü J., S. Wang J.. Coupled electron and phonon transport in one-dimensional atomic junctions. Phys. Rev. B, 2007, 76(16): 165418
https://doi.org/10.1103/PhysRevB.76.165418
|
84 |
Bohm D.Pines D., A collective description of electron interactions (III): Coulomb interactions in a degenerate electron gas, Phys. Rev. 92(3), 609 (1953)
|
85 |
Paulsson M.Frederiksen T.Brandbyge M., Modeling inelastic phonon scattering in atomic- and molecular-wire junctions, Phys. Rev. B 72, 201101(R) (2005)
|
86 |
K. Dash L., Ness H., W. Godby R.. Nonequilibrium electronic structure of interacting single-molecule nanojunctions: Vertex corrections and polarization effects for the electron−vibron coupling. J. Chem. Phys., 2010, 132(10): 104113
https://doi.org/10.1063/1.3339390
|
87 |
A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971
|
88 |
W. Ford G., Kac M., Mazur P.. Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys., 1965, 6(4): 504
https://doi.org/10.1063/1.1704304
|
89 |
J. Peng and J. S. Wang, Current-induced heat transfer in double-layer graphene, arXiv: 1805.09493 (2019)
|
90 |
Q. Zhang Z., T. Lü J., S. Wang J.. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling. Phys. Rev. B, 2018, 97(19): 195450
https://doi.org/10.1103/PhysRevB.97.195450
|
91 |
Büttiker M.. Symmetry of electrical conduction. IBM J. Res. Develop., 1988, 32(3): 317
https://doi.org/10.1147/rd.323.0317
|
92 |
Hedin L.. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev., 1965, 139(3A): A796
https://doi.org/10.1103/PhysRev.139.A796
|
93 |
R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons, Cambridge Univ. Press, 2016
|
94 |
G. D. Mahan, Many-Particle Physics, 3rd Ed., Kluwer Academic, 2000
|
95 |
J. Peng, H. H. Yap, G. Zhang, and J. S. Wang, A scalar photon theory for near-field radiative heat transfer, arXiv: 1703.07113 (2017)
|
96 |
S. Weinberg, The Quantum Theory of Fields, Volume 1: Foundations, Cambridge Univ. Press, 2005
|
97 |
J. Glauber R.. Attenuators, and Schrödinger’s Cat. Ann. N. Y. Acad. Sci., 1986, 480(1): 336
https://doi.org/10.1111/j.1749-6632.1986.tb12437.x
|
98 |
R. A. Jishi, Feynman Diagram Techniques in Condensed Matter Physics, Cambridge Univ. Press, 2013
|
99 |
J. Rammer, Quantum Field Theory of Non-equilibrium States, Cambridge Univ. Press, 2007
|
100 |
H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, Oxford Univ. Press, 2004
|
101 |
Datta S.. Nanoscale device modeling: The Green’s function method. Superlattices Microstruct., 2000, 28(4): 253
https://doi.org/10.1006/spmi.2000.0920
|
102 |
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, W. A. Benjamin, Inc, 1962
|
103 |
J. M. Ziman, Electrons and Phonons, Clarendon Press, Oxford, 1960
|
104 |
van Duppen B., Tomadin A., N. Grigorenko A., Polini M.. Current-induced birefringent absorption and non-reciprocal plasmons in grapheme. 2D Mater., 2016, 3: 015011
https://doi.org/10.1088/2053-1583/3/1/015011
|
105 |
Svintsov D., Ryzhii V.. Comment on “Negative Landau damping in bilayer graphene”. Phys. Rev. Lett., 2019, 123(21): 219401
https://doi.org/10.1103/PhysRevLett.123.219401
|
106 |
A. Morgado T., G. Silveirinha M.. Negative Landau damping in bilayer graphene. Phys. Rev. Lett., 2017, 119(13): 133901
https://doi.org/10.1103/PhysRevLett.119.133901
|
107 |
Shapiro B.. Fluctuation-induced forces in the presence of mobile carrier drift. Phys. Rev. B, 2017, 96(7): 075407
https://doi.org/10.1103/PhysRevB.96.075407
|
108 |
Ilic O., Jablan M., D. Joannopoulos J., Celanovic I., Buljan H., Soljačić M.. Near-field thermal radiation transfer controlled by plasmons in graphene. Phys. Rev. B, 2012, 85(15): 155422
https://doi.org/10.1103/PhysRevB.85.155422
|
109 |
B. Pendry J.. Radiative exchange of heat between nanostructures. J. Phys.: Condens. Matter, 1999, 11(35): 6621
https://doi.org/10.1088/0953-8984/11/35/301
|
110 |
Herz F., Kathmann C., A. Biehs S.. General trace formula for heat flux fluctuations. Europhys. Lett., 2020, 130(4): 44003
https://doi.org/10.1209/0295-5075/130/44003
|
111 |
L. Wise J., Roubinowitz N., Belzig W., M. Basko D.. Signature of resonant modes in radiative heat current noise spectrum. Phys. Rev. B, 2022, 106(16): 165407
https://doi.org/10.1103/PhysRevB.106.165407
|
112 |
S. Wang J., K. Agarwalla B., Li H.. Transient behavior of full counting statistics in thermal transport. Phys. Rev. B, 2011, 84(15): 153412
https://doi.org/10.1103/PhysRevB.84.153412
|
113 |
Tang G., S. Wang J.. Heat transfer statistics in extreme-near-field radiation. Phys. Rev. B, 2018, 98(12): 125401
https://doi.org/10.1103/PhysRevB.98.125401
|
114 |
Campisi M., Hänggi P., Talkner P.. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys., 2011, 83(3): 771
https://doi.org/10.1103/RevModPhys.83.771
|
115 |
K. Agarwalla B., Li B., S. Wang J.. Full-counting statistics of heat transport in harmonic junctions: Transient, steady states, and fluctuation theorems. Phys. Rev. E, 2012, 85(5): 051142
https://doi.org/10.1103/PhysRevE.85.051142
|
116 |
S. Levitov L., B. Lesovik G.. Charge distribution in quantum shot noise. JETP Lett., 1993, 58(3): 230
|
117 |
Tang G., H. Yap H., Ren J., S. Wang J.. Anomalous near-field heat transfer in carbon-based nanostructures with edge states. Phys. Rev. Appl., 2019, 11(3): 031004
https://doi.org/10.1103/PhysRevApplied.11.031004
|
118 |
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press, 1989
|
119 |
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976
|
120 |
L. Adler S.. Quantum theory of the dielectric constant in real solids. Phys. Rev., 1962, 126(2): 413
https://doi.org/10.1103/PhysRev.126.413
|
121 |
Wiser N.. Dielectric constant with local field effects included. Phys. Rev., 1963, 129(1): 62
https://doi.org/10.1103/PhysRev.129.62
|
122 |
S. Hybertsen M., G. Louie S.. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B, 1986, 34(8): 5390
https://doi.org/10.1103/PhysRevB.34.5390
|
123 |
Deslippe J., Samsonidze G., A. Strubbe D., Jain M., L. Cohen M., G. Louie S.. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun., 2012, 183(6): 1269
https://doi.org/10.1016/j.cpc.2011.12.006
|
124 |
Xuan F., Chen Y., Y. Quek S.. Quasiparticle levels at large interface systems from many-body perturbation theory: The XAF-GW method. J. Chem. Theory Comput., 2019, 15(6): 3824
https://doi.org/10.1021/acs.jctc.9b00229
|
125 |
F. A. Rasmussen, First Principles Calculations of Electronic Excitations in 2D Materials, Ph. D. thesis, Technical University of Denmark, 2016
|
126 |
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd Ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999
|
127 |
Zhu T., Q. Zhang Z., Gao Z., S. Wang J.. First-principles method to study near-field radiative heat transfer. Phys. Rev. Appl., 2020, 14(2): 024080
https://doi.org/10.1103/PhysRevApplied.14.024080
|
128 |
Zhu T., Antezza M., S. Wang J.. Dynamical polarizability of graphene with spatial dispersion. Phys. Rev. B, 2021, 103(12): 125421
https://doi.org/10.1103/PhysRevB.103.125421
|
129 |
Giannozzi P., Baroni S., Bonini N., Calandra M., Car R.. et al.. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 2009, 21(39): 395502
https://doi.org/10.1088/0953-8984/21/39/395502
|
130 |
Giannozzi P., Andreussi O., Brumme T., Bunau O., B. Nardelli M.. et al.. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter, 2017, 29(46): 465901
https://doi.org/10.1088/1361-648X/aa8f79
|
131 |
Troullier N., L. Martins J.. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 1991, 43(3): 1993
https://doi.org/10.1103/PhysRevB.43.1993
|
132 |
P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
133 |
J. Monkhorst H., D. Pack J.. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
|
134 |
Zhu T., E. Trevisanutto P., C. Asmara T., Xu L., P. Feng Y., Rusydi A.. Generation of multiple plasmons in strontium niobates mediated by local field effects. Phys. Rev. B, 2018, 98(23): 235115
https://doi.org/10.1103/PhysRevB.98.235115
|
135 |
O. Chapuis P., Volz S., Henkel C., Joulain K., J. Greffet J.. Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces. Phys. Rev. B, 2008, 77(3): 035431
https://doi.org/10.1103/PhysRevB.77.035431
|
136 |
Rodriguez-López P., Tse W.-K., A. R. Dalvit D.. Radiative heat transfer in 2D dirac materials. J. Phys. :Condens. Matter, 2015, 27: 214019
https://doi.org/10.1088/0953-8984/27/21/214019
|
137 |
Peierls R.. Zur Theorie des Diamagnetismus von Leitungselektronen. Eur. Phys. J. A, 1933, 80(11−12): 763
https://doi.org/10.1007/BF01342591
|
138 |
Graf M., Vogl P.. Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B, 1995, 51(8): 4940
https://doi.org/10.1103/PhysRevB.51.4940
|
139 |
Li J., Golez D., Mazza G., J. Millis A., Georges A., Eckstein M.. Electromagnetic coupling in tight-binding models for strongly correlated light and matter. Phys. Rev. B, 2020, 101(20): 205140
https://doi.org/10.1103/PhysRevB.101.205140
|
140 |
P. G. de Gennes, Superconductivity of Metals and Alloys, CRC Press, 1999
|
141 |
R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford Univ. Press, 2000
|
142 |
G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, 7th Ed., Academic Press, 2013
|
143 |
O. Keller, Quantum Theory of Near-Field Electrodynamics, Springer, Berlin, 2011
|
144 |
J. S. Wang and J. Peng, A microscopic theory for ultra-near-field radiation, arXiv: 1607.02840 (2016)
|
145 |
D. J. Griffiths, Introduction to Electrodynamics, 4th Ed., Cambridge Univ. Press, 2017
|
146 |
N. N. Bogoliubov and D. V. Shirkov, Quantum Fields, Addison-Wesley, 1982
|
147 |
S. Agarwal G.. Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A Gen. Phys., 1975, 11(1): 230
https://doi.org/10.1103/PhysRevA.11.230
|
148 |
Zhang Z.-Q.Lü J.-T.Wang J.-S., Angular momentum radiation from current-carrying molecular junctions, Phys. Rev. B 101, 161406(R) (2020)
|
149 |
Kuhnke K., Große C., Merino P., Kern K.. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev., 2017, 117(7): 5174
https://doi.org/10.1021/acs.chemrev.6b00645
|
150 |
Q. Zhang Z., S. Wang J.. Electroluminescence and thermal radiation from metallic armchair carbon nanotubes with defects. Phys. Rev. B, 2021, 104(8): 085422
https://doi.org/10.1103/PhysRevB.104.085422
|
151 |
Weisskopf V., Wigner E.. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Eur. Phys. J. A, 1930, 63(1−2): 54
https://doi.org/10.1007/BF01336768
|
152 |
Heisenberg W., Pauli W.. Zur Quantentheorie der Wellenfelder II. Eur. Phys. J. A, 1930, 59(3−4): 168
https://doi.org/10.1007/BF01341423
|
153 |
Creutz M.. Quantum electrodynamics in the temporal gauge. Ann. Phys., 1979, 117(2): 471
https://doi.org/10.1016/0003-4916(79)90365-8
|
154 |
E. Fradkin, Quantum Field Theory: An Integrated Approach, Princeton Univ. Press, 2021
|
155 |
L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd Ed., Cambridge Univ. Press, 2012
|
156 |
M. Barnett S.. Optical angular-momentum flux. J. Opt. B, 2002, 4(2): S7
https://doi.org/10.1088/1464-4266/4/2/361
|
157 |
M. Barnett S., Allen L., P. Cameron R., R. Gilson C., J. Padgett M., C. Speirits F., M. Yao A.. On the natures of the spin and orbital parts of optical angular momentum. J. Opt., 2016, 18(6): 064004
https://doi.org/10.1088/2040-8978/18/6/064004
|
158 |
M. Zhang Y., Zhu T., Q. Zhang Z., S. Wang J.. Microscopic theory of photon-induced energy, momentum, and angular momentum transport in the nonequilibrium regime. Phys. Rev. B, 2022, 105(20): 205421
https://doi.org/10.1103/PhysRevB.105.205421
|
159 |
M. Abraham Ekeroth R., García-Martín A., C. Cuevas J.. Thermal discrete dipole approximation for the description of thermal emission and radiative heat transfer of magneto-optical systems. Phys. Rev. B, 2017, 95(23): 235428
https://doi.org/10.1103/PhysRevB.95.235428
|
160 |
Zhu L., Fan S.. Persistent directional current at equilibrium in nonreciprocal many-body near field electromagnetic heat transfer. Phys. Rev. Lett., 2016, 117(13): 134303
https://doi.org/10.1103/PhysRevLett.117.134303
|
161 |
Latella I., Ben-Abdallah P.. Giant thermal magnetoresistance in plasmonic structures. Phys. Rev. Lett., 2017, 118(17): 173902
https://doi.org/10.1103/PhysRevLett.118.173902
|
162 |
G. Aslamazov L., I. Larkin A.. Effect of fluctuations on the properties of a superconductor above the critical temperature. Sov. Phys. Solid State., 1968, 10: 875
https://doi.org/10.1142/9789814317344_0004
|
163 |
H. A. Lorentz, Het theorema van Poynting over de energie in het electromagnetisch veld en een paar algemeene stellingen over de voortplanting van het licht, Verslagen der Afdeeling Natuurkunde van de Koninklijke Akademie van Wetenschappen 4, 176 (1895)
|
164 |
Strekha B., Molesky S., Chao P., Krüger M., W. Rodriguez A.. Trace expressions and associated limits for nonequilibrium Casimir torque. Phys. Rev. A, 2022, 106(4): 042222
https://doi.org/10.1103/PhysRevA.106.042222
|
165 |
Khrapko R.. Unknown spin radiation. J. Phys. Conf. Ser., 2019, 1172(1): 012055
https://doi.org/10.1088/1742-6596/1172/1/012055
|
166 |
M. Zhang Y., S. Wang J.. Far-field heat and angular momentum radiation of the Haldane model. J. Phys.: Condens. Matter, 2021, 33(5): 055301
https://doi.org/10.1088/1361-648X/abbe7c
|
167 |
V. Kibis O., R. da Costa M., E. Portnoi M.. Generation of terahertz radiation by hot electrons in carbon nanotubes. Nano Lett., 2007, 7(11): 3414
https://doi.org/10.1021/nl0718418
|
168 |
V. Dolgov O., G. Maksimov E.. The dielectric function of crystalline systems. Modern Problems in Condensed Matter Sciences, 1989, 24: 221
https://doi.org/10.1016/B978-0-444-87366-8.50010-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|