Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2018, Vol. 9 Issue (2) : 207-215    https://doi.org/10.1007/s13238-017-0442-2
REVIEW
The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control
Ruo-Ran Wang1, Ran Pan1, Wenjing Zhang1, Junfen Fu2, Jiandie D. Lin3, Zhuo-Xian Meng1,3()
1. Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou 310058, China
2. Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
3. Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
 Download: PDF(747 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.

Keywords BAF60a      BAF60b      BAF60c      chromatinremodeling      SWI/SNF      energy metabolism      nutrient sensing      glucose      lipid      skeletal muscle      liver     
Corresponding Author(s): Zhuo-Xian Meng   
Issue Date: 22 March 2018
 Cite this article:   
Ruo-Ran Wang,Ran Pan,Wenjing Zhang, et al. The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control[J]. Protein Cell, 2018, 9(2): 207-215.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0442-2
https://academic.hep.com.cn/pac/EN/Y2018/V9/I2/207
1 Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265
https://doi.org/10.1152/physrev.2000.80.3.1215
2 Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461:193–198
https://doi.org/10.1038/nature08450
3 Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, Stevenson SC, Rangwala SM (2008) Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104:1304–1312
https://doi.org/10.1152/japplphysiol.01231.2007
4 Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966
https://doi.org/10.1194/jlr.R900010-JLR200
5 Cotton P, Soulard A, Wesolowski-Louvel M, Lemaire M (2012) The SWI/SNF KlSnf2 subunit controls the glucose signaling pathway to coordinate glycolysis and glucose transport in Kluyveromyces lactis. Eukaryot Cell 11:1382–1390
https://doi.org/10.1128/EC.00210-12
6 Debril MB, Gelman L, Fayard E, Annicotte JS, Rocchi S, Auwerx J (2004) Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J Biol Chem 279:16677–16686
https://doi.org/10.1074/jbc.M312288200
7 DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163
https://doi.org/10.2337/dc09-S302
8 Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J,Kaul Ret al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
https://doi.org/10.1038/nature11247
9 Elfring LK, Deuring R, McCallum CM, Peterson CL, Tamkun JW (1994) Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol 14:2225–2234
https://doi.org/10.1128/MCB.14.4.2225
10 Euskirchen GM, Auerbach RK, Davidov E, Gianoulis TA, Zhong G, Rozowsky J, Bhardwaj N,Gerstein MB, Snyder M (2011) Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS genetics 7: e1002008
https://doi.org/10.1371/journal.pgen.1002008
11 Ferrannini E, Simonson DC, Katz LD, Reichard G Jr, Bevilacqua S, Barrett EJ, Olsson M, DeFronzo RA (1988) The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 37:79–85
https://doi.org/10.1016/0026-0495(88)90033-9
12 Flajollet S, Lefebvre B, Cudejko C, Staels B, Lefebvre P (2007) The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Mol Cell Endocrinol 270:23–32
https://doi.org/10.1016/j.mce.2007.02.004
13 Gaster M, Staehr P, Beck-Nielsen H, Schroder HD, Handberg A (2001) GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes 50:1324–1329
https://doi.org/10.2337/diabetes.50.6.1324
14 Gatfield D, Le Martelot G,Vejnar CE, Gerlach D, Schaad O,Fleury-Olela F, Ruskeepaa AL, Oresic M, Esau CC, Zdobnov EMet al.(2009) Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23:1313–1326
https://doi.org/10.1101/gad.1781009
15 Glass CK, Witztum JL (2001) Atherosclerosis the road ahead. Cell 104:503–516
https://doi.org/10.1016/S0092-8674(01)00238-0
16 Goldstein JL, Brown MS (2015) A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161:161–172
https://doi.org/10.1016/j.cell.2015.01.036
17 Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Ann Rev Immunol 29:415–445
https://doi.org/10.1146/annurev-immunol-031210-101322
18 Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr,Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr,Stone NJ (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110:227–239
https://doi.org/10.1161/01.CIR.0000133317.49796.0E
19 Hardie DG, Ashford ML (2014) AMPK: regulating energy balance at the cellular and whole body levels. Physiology 29:99–107
https://doi.org/10.1152/physiol.00050.2013
20 Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420
https://doi.org/10.1038/cr.2011.32
21 He J,Watkins S,Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50:817–823
https://doi.org/10.2337/diabetes.50.4.817
22 Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G,Yoon C, Puigserver Pet al. (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183
https://doi.org/10.1038/35093131
23 Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484
https://doi.org/10.1038/nature08911
24 Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80
https://doi.org/10.4161/epi.1.2.2762
25 Hsiao PW, Fryer CJ, Trotter KW, Wang W, Archer TK (2003) BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol Cell Biol 23:6210–6220
https://doi.org/10.1128/MCB.23.17.6210-6220.2003
26 Izumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J, Hamilton JA, Ouchi N, LeBrasseur NK, Walsh K (2008) Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 7:159–172
https://doi.org/10.1016/j.cmet.2007.11.003
27 Kadoch C,Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, Crabtree GR (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45:592–601
https://doi.org/10.1038/ng.2628
28 Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett D, Li Y, Tanaka Tet al. (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41:56–65
https://doi.org/10.1038/ng.291
29 Keating ST, El-Osta A (2015) Epigenetics and metabolism. Circ Res 116:715–736
https://doi.org/10.1161/CIRCRESAHA.116.303936
30 Kotronen A, Yki-Jarvinen H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28:27–38
https://doi.org/10.1161/ATVBAHA.107.147538
31 Lal S, Alam MM, Hooda J, Shah A, Cao TM, Xuan Z, Zhang L (2016) The Swi3 protein plays a unique role in regulating respiration in eukaryotes. Biosci Rep 36:e00350
https://doi.org/10.1042/BSR20160083
32 Lamba DA, Hayes S, Karl MO, Reh T (2008) Baf60c is a component of the neural progenitor-specific BAF complex in developing retina. Dev Dyn 237:3016–3023
https://doi.org/10.1002/dvdy.21697
33 Latasa MJ, Griffin MJ, Yang SM, Kang C, Sul HS (2003) Occupancy and function of the −150 sterol regulatory element and −65 E-box in nutritional regulation of the fatty acid synthase gene in living animals. Mol Cell Biol 23:5896–5907
https://doi.org/10.1128/MCB.23.16.5896-5907.2003
34 Lee YS, Sohn DH, Han D,Lee HW, Seong RH, Kim JB (2007) Chromatin remodeling complex interacts with ADD1/SREBP1c to mediate insulin-dependent regulation of gene expression. Mol Cell Biol 27:438–452
https://doi.org/10.1128/MCB.00490-06
35 Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856
https://doi.org/10.1172/JCI10268
36 Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, Pawlik TM, Daniel HD, Kannangai R, Offerhaus GJet al. (2011) Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet 43:828–829
https://doi.org/10.1038/ng.903
37 Li S, Liu C, Li N, Hao T, Han T, Hill DE, Vidal M, Lin JD (2008) Genome-wide coactivation analysis of PGC-1 alpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metabolism 8:105–117
https://doi.org/10.1016/j.cmet.2008.06.013
38 Li T, Chiang JY (2013) Nuclear receptors in bile acid metabolism. Drug Metab Rev 45:145–155
https://doi.org/10.3109/03602532.2012.740048
39 Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432:107–112
https://doi.org/10.1038/nature03071
40 Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson ENet al. (2002) Transcriptional coactivator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801
https://doi.org/10.1038/nature00904
41 Liu C,Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481
https://doi.org/10.1038/nature05767
42 Masliah-Planchon J, Bieche I, Guinebretiere JM, Bourdeaut F, Delattre O (2015) SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 24(10):145–171
https://doi.org/10.1146/annurev-pathol-012414-040445
43 Meng ZX,Gong J, Chen Z,Sun J,Xiao Y,Wang L, Li Y,Liu J,Xu XZS, Lin JD (2017) Glucose sensing by skeletal myocytes couples nutrient signaling to systemic homeostasis. Mol Cell 66(332–344):e334
44 Meng ZX, Li S, Wang L, Ko HJ, Lee Y, Jung DY, Okutsu M, Yan Z, Kim JK, Lin JD (2013) Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nat Med 19:640–645
https://doi.org/10.1038/nm.3144
45 Meng ZX, Wang L, Chang L, Sun J, Bao J, Li Y, Chen YE, Lin JD (2015) A diet-sensitive BAF60a-mediated pathway links hepatic bile acid metabolism to cholesterol absorption and atherosclerosis. Cell Rep 13:1658–1669
https://doi.org/10.1016/j.celrep.2015.10.033
46 Meng ZX, Wang L, Xiao Y, Lin JD (2014) The Baf60c/Deptor pathway links skeletal muscle inflammation to glucose homeostasis in obesity. Diabetes 63:1533–1545
https://doi.org/10.2337/db13-1061
47 Michel BC, Kadoch C (2017) A SMARCD2-containing mSWI/SNF complex is required for granulopoiesis. Nat Genet 49:655–657
https://doi.org/10.1038/ng.3853
48 Mogensen M, Sahlin K,Fernstrom M, Glintborg D, Vind BF, Beck-Nielsen H, Hojlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599
https://doi.org/10.2337/db06-0981
49 Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W, Altshuler D, Puigserver P, Patterson Net al. (2004) Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A 101:6570–6575
https://doi.org/10.1073/pnas.0401401101
50 Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S,Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila Eet al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273
https://doi.org/10.1038/ng1180
51 Nader GA, Esser KA (2001) Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90:1936–1942
https://doi.org/10.1152/jappl.2001.90.5.1936
52 Neigeborn L, Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858
53 Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R, Schon MR, Bluher M, Punkt K (2006) Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care 29:895–900
https://doi.org/10.2337/diacare.29.04.06.dc05-1854
54 Oh J, Sohn DH, Ko M, Chung H, Jeon SH, Seong RH (2008) BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem 283:11924–11934
https://doi.org/10.1074/jbc.M705401200
55 Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363–374
https://doi.org/10.1038/nm.2627
56 Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P (2008) The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 48:1–32
https://doi.org/10.1146/annurev.pharmtox.47.120505.105349
57 Peterson CL, Herskowitz I (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583
https://doi.org/10.1016/0092-8674(92)90192-F
58 Priam P, Krasteva V, Rousseau P, D’Angelo G, Gaboury L, Sauvageau G, Lessard JA (2017) SMARCD2 subunit of SWI/SNF chromatinremodeling complexes mediates granulopoiesis through a CEBP varepsilon dependent mechanism. Nat Genet 49:753–764
https://doi.org/10.1038/ng.3812
59 Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809
https://doi.org/10.1038/362801a0
60 Rutter J, Reick M, McKnight SL (2002) Metabolism and the control of circadian rhythms. Annu Rev Biochem 71:307–331
https://doi.org/10.1146/annurev.biochem.71.090501.142857
61 Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A, Pollack JR (2012) Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci USA 109:E252–E259
https://doi.org/10.1073/pnas.1114817109
62 Shain AH, Pollack JR (2013) The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8:e55119
https://doi.org/10.1371/journal.pone.0055119
63 Simoneau JA, Kelley DE (1997) Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol 83:166–171
https://doi.org/10.1152/jappl.1997.83.1.166
64 Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926–1933
https://doi.org/10.2337/diabetes.54.7.1926
65 Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nature medicine 8:1211–1217
https://doi.org/10.1038/nm1102-1211
66 Sudarsanam P, Winston F (2000) The SWI/SNF family nucleosomeremodeling complexes and transcriptional control. Trends Genet 16:345–351
https://doi.org/10.1016/S0168-9525(00)02060-6
67 Surabhi RM, Daly LD, Cattini PA (1999) Evidence for evolutionary conservation of a physical linkage between the human BAF60b, a subunit of SWI/SNF complex, and thyroid hormone receptor interacting protein-1 genes on chromosome 17. Genome 42:545–549
68 Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K, Hamada H, Yost HJ, Rossant J, Bruneau BG (2007) Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci U S A 104:846–851
https://doi.org/10.1073/pnas.0608118104
69 Tao W, Chen S, Shi G, Guo J, Xu Y, Liu C (2011) SWItch/sucrose nonfermentable (SWI/SNF) complex subunit BAF60a integrates hepatic circadian clock and energy metabolism. Hepatology 54:1410–1420
https://doi.org/10.1002/hep.24514
70 Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP (1982) The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31:957–963
https://doi.org/10.2337/diacare.31.11.957
71 Varela I, Tarpey P, Raine K,Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague Jet al. (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469:539–542
https://doi.org/10.1038/nature09639
72 Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR (1996) Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev 10:2117–2130
https://doi.org/10.1101/gad.10.17.2117
73 Wang Y, Wong RH, Tang T, Hudak CS, Yang D, Duncan RE, Sul HS (2013) Phosphorylation and recruitment of BAF60c in chromatin remodeling for lipogenesis in response to insulin. Mol Cell 49:283–297
https://doi.org/10.1016/j.molcel.2012.10.028
74 Waters DD, Brotons C, Chiang CW, Ferrieres J, Foody J, Jukema JW, Santos RD, Verdejo J,Messig M, McPherson Ret al. (2009) Lipid treatment assessment project 2: a multinational survey to evaluate the proportion of patients achieving low-density lipoprotein cholesterol goals. Circulation 120:28–34
https://doi.org/10.1161/CIRCULATIONAHA.108.838466
75 Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SEet al.(2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363:1532–1543
https://doi.org/10.1056/NEJMoa1008433
76 Wijnen H, Young MW (2006) Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet 40:409–448
https://doi.org/10.1146/annurev.genet.40.110405.090603
77 Wilson BG, Roberts CWM (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11:481–492
https://doi.org/10.1038/nrc3068
78 Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T, Rohlfs M, Puchalka J, Mertes C, Gagneur J, Ziegenhain Cet al. (2017) Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat Genet 49:742–752
https://doi.org/10.1038/ng.3833
79 Wu JI, Lessard J, Crabtree GR (2009) Understanding the words of chromatin regulation. Cell 136:200–206
https://doi.org/10.1016/j.cell.2009.01.009
80 Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RCet al. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124
https://doi.org/10.1016/S0092-8674(00)80611-X
81 Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS (1993) SREBP-1, a basic-helix-loophelix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75:187–197
https://doi.org/10.1016/S0092-8674(05)80095-9
82 Yoon JC, Puigserver P,Chen G, Donovan J, Wu Z,Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DKet al. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138
https://doi.org/10.1038/35093050
83 Zhang P, Li L, Bao Z, Huang F (2016) Role of BAF60a/BAF60c in chromatin remodeling and hepatic lipid metabolism. Nutr Metab 13:30
https://doi.org/10.1186/s12986-016-0090-1
[1] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[2] Xu Zhang, Xuetao Ji, Qian Wang, John Zhong Li. New insight into inter-organ crosstalk contributing to the pathogenesis of nonalcoholic fatty liver disease (NAFLD)[J]. Protein Cell, 2018, 9(2): 164-177.
[3] John M. Dean, Irfan J. Lodhi. Structural and functional roles of ether lipids[J]. Protein Cell, 2018, 9(2): 196-206.
[4] Jihong Lian, Randal Nelson, Richard Lehner. Carboxylesterases in lipid metabolism: from mouse to human[J]. Protein Cell, 2018, 9(2): 178-195.
[5] Xuejiao Liu, Christopher Cervantes, Feng Liu. Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity[J]. Protein Cell, 2017, 8(6): 446-454.
[6] Yuewen Tang, Lin Cheng. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury[J]. Protein Cell, 2017, 8(4): 273-283.
[7] Sensen Zhang, Ningning Li, Wenwen Zeng, Ning Gao, Maojun Yang. Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism[J]. Protein Cell, 2017, 8(11): 834-847.
[8] Congyan Zhang, Pingsheng Liu. The lipid droplet: A conserved cellular organelle[J]. Protein Cell, 2017, 8(11): 796-800.
[9] Xuelin Zhang,Yang Wang,Pingsheng Liu. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease[J]. Protein Cell, 2017, 8(1): 4-13.
[10] Zhan-Qi Cao,Xiu-Li Guo. The role of galectin-4 in physiology and diseases[J]. Protein Cell, 2016, 7(5): 314-324.
[11] Qun Zhang,Wenhua Zhang. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells[J]. Protein Cell, 2016, 7(2): 81-88.
[12] Chenxia Hu,Lanjuan Li. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration[J]. Protein Cell, 2015, 6(8): 562-574.
[13] Shujing Wang,Huiqin Liu,Xinyi Zhang,Feng Qian. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies[J]. Protein Cell, 2015, 6(7): 480-503.
[14] Minghao Dang,Xiangxi Wang,Quan Wang,Yaxin Wang,Jianping Lin,Yuna Sun,Xuemei Li,Liguo Zhang,Zhiyong Lou,Junzhi Wang,Zihe Rao. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71[J]. Protein Cell, 2014, 5(9): 692-703.
[15] Peng Jiang,Wenjing Du,Mian Wu. Regulation of the pentose phosphate pathway in cancer[J]. Protein Cell, 2014, 5(8): 592-602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed