|
|
|
Single molecule fluorescence spectroscopy for quantitative biological applications |
Ruchuan Liu1,Yuliang Li2,Liyu Liu1,2( ) |
1. College of Physics, Chongqing University, Chongqing 401331, China
2. Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract Single molecule techniques emerge as powerful and quantitative approaches for scientific investigations in last decades. Among them, single molecule fluorescence spectroscopy (SMFS) is able to non-invasively characterize and track samples at the molecular level. Here, applications of SMFS to fundamental biological questions have been briefly summarized in catalogues of single-molecule counting, distance measurements, force sensors, molecular tracking, and ultrafast dynamics. In these SMFS applications, statistics and physical laws are utilized to quantitatively analyze the behaviors of biomolecules in cellular signaling pathways and the mechanisms of biological functions. This not only deepens our understanding of bio-systems, but also provides a fresh angle to those fundamental questions, leading to a more quantitative thinking in life science.
|
| Author Summary
It is essential and fundamental to understand life science at the molecular level. Single molecule techniques are able to uncover the mystical insights of the biological systems and quantitatively measure the important parameters, and thus become extensively applied in biology. The unique advantage of fluorescence detection makes single molecule fluorescence spectroscopy (SMFS) especially suitable in this field, and plenty of applications of SMFS to locate and track biomolecules have supplied us tremendous new quantitative knowledge. Here, we summarize the applications in five catalogues to show that SMFS brings the new angle of view and more quantitative thinking to life science. |
| Keywords
single-molecule fluorescence spectroscopy
biomolecule detection
molecular tracking
molecular dynamics
molecular mechanism
|
|
|
| Fund: |
|
Corresponding Author(s):
Yuliang Li,Liyu Liu
|
|
Just Accepted Date: 13 July 2016
Online First Date: 29 August 2016
Issue Date: 07 September 2016
|
|
| 1 |
Hanoian, P., Liu, C. T., Hammes-Schiffer, S. and Benkovic, S. (2015) Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc. Chem. Res., 48, 482–489
https://doi.org/10.1021/ar500390e
pmid: 25565178
|
| 2 |
Liebherr, R. B. and Gorris, H. H. (2014) Enzyme molecules in solitary confinement. Molecules, 19, 14417–14445
https://doi.org/10.3390/molecules190914417
pmid: 25221867
|
| 3 |
Janssen, K. P. F., De Cremer, G., Neely, R. K., Kubarev, A. V., Van Loon, J., Martens, J. A., De Vos, D. E., Roeffaers, M. B. and Hofkens, J. (2014) Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chem. Soc. Rev., 43, 990–1006.
https://doi.org/10.1039/C3CS60245A
pmid: 24085063
|
| 4 |
Grima, R., Walter, N. G. and Schnell, S. (2014) Single-molecule enzymology à la Michaelis-Menten. FEBS J., 281, 518–530
https://doi.org/10.1111/febs.12663
pmid: 24289171
|
| 5 |
Puchner, E. M. and Gaub, H. E. (2012) Single-molecule mechanoenzymatics. ANN. REV. BIOPHYS., 41, 497–518
https://doi.org/10.1146/annurev-biophys-050511-102301
|
| 6 |
Xie, S. and Lu, H. P. (1999) Single-molecule enzymology. J. Biol. Chem., 274, 15967–15970
https://doi.org/10.1074/jbc.274.23.15967
pmid: 10347141
|
| 7 |
Xie, S. (2001) Single-molecule approach to enzymology. Single Mol., 2, 229–236
https://doi.org/10.1002/1438-5171(200112)2:4<229::AID-SIMO229>3.0.CO;2-9
|
| 8 |
Lu, H. P., Xun, L. and Xie, X. S. (1998) Single-molecule enzymatic dynamics. Science, 282, 1877–1882
https://doi.org/10.1126/science.282.5395.1877
pmid: 9836635
|
| 9 |
English, D. S., Furube, A. and Barbara, P. F. (2000) Single-molecule spectroscopy in oxygen-depleted polymer films. Chem. Phys. Lett., 324, 15–19
https://doi.org/10.1016/S0009-2614(00)00570-4
|
| 10 |
Oukhaled, G., Mathé, J., Biance, A. L., Bacri, L., Betton, J. M., Lairez, D., Pelta, J. and Auvray, L. (2007) Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett., 98, 158101
https://doi.org/10.1103/PhysRevLett.98.158101
pmid: 17501386
|
| 12 |
Kuzmenkina, E. V., Heyes, C. D. and Nienhaus, G. U. (2005) Single-molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions. Proc. Natl. Acad. Sci. USA, 102, 15471–15476
https://doi.org/10.1073/pnas.0507728102
pmid: 16221762
|
| 13 |
Okumus, B., Wilson, T. J., Lilley, D. M. and Ha, T. (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys. J., 87, 2798–2806.
https://doi.org/10.1529/biophysj.104.045971
pmid: 15454471
|
| 14 |
Brucale, M., Schuler, B. and Samorì, B. (2014) Single-molecule studies of intrinsically disordered proteins. Chem. Rev., 114, 3281–3317.
https://doi.org/10.1021/cr400297g
pmid: 24432838
|
| 15 |
Duzdevich, D., Redding, S. and Greene, E. C. (2014) DNA dynamics and single-molecule biology. Chem. Rev., 114, 3072–3086.
https://doi.org/10.1021/cr4004117
pmid: 24400809
|
| 16 |
Lu, H. P. (2014) Sizing up single-molecule enzymatic conformational dynamics. Chem. Soc. Rev., 43, 1118–1143.
https://doi.org/10.1039/C3CS60191A
pmid: 24306450
|
| 17 |
Sarkar, S. K., Andoy, N. M., Benítez, J. J., Chen, P. R., Kong, J. S., He, C. and Chen, P. (2007) Engineered holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator. J. Am. Chem. Soc., 129, 12461–12467.
https://doi.org/10.1021/ja072485y
pmid: 17880214
|
| 18 |
Weiss, S. (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol., 7, 724–729.
https://doi.org/10.1038/78941
pmid: 10966638
|
| 19 |
Pressé, S., Peterson, J., Lee, J., Elms, P., MacCallum, J. L., Marqusee, S., Bustamante, C. and Dill, K. (2014) Single molecule conformational memory extraction: p5ab RNA hairpin. J. Phys. Chem. B, 118, 6597–6603.
https://doi.org/10.1021/jp500611f
pmid: 24898871
|
| 20 |
Bavishi, K. and Hatzakis, N. S. (2014) Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules, 19, 19407–19434.
https://doi.org/10.3390/molecules191219407
pmid: 25429564
|
| 21 |
Hofmann, H. (2014) Single-molecule spectroscopy of unfolded proteins and chaperonin action. Biol. Chem., 395, 689–698.
https://doi.org/10.1515/hsz-2014-0132
pmid: 24620016
|
| 22 |
Lipman, E. A., Schuler, B., Bakajin, O. and Eaton, W. A. (2003) Single-molecule measurement of protein folding kinetics. Science, 301, 1233–1235.
https://doi.org/10.1126/science.1085399
pmid: 12947198
|
| 23 |
Schuler, B. and Eaton, W. A. (2008) Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol., 18, 16–26.
https://doi.org/10.1016/j.sbi.2007.12.003
pmid: 18221865
|
| 24 |
Borgia, A., Williams, P. M. and Clarke, J. (2008) Single-molecule studies of protein folding. Annu. Rev. Biochem., 77, 101–125.
https://doi.org/10.1146/annurev.biochem.77.060706.093102
pmid: 18412537
|
| 25 |
Kisley, L. and Landes, C. F. (2015) Molecular approaches to chromatography using single molecule spectroscopy. Anal. Chem., 87, 83–98.
https://doi.org/10.1021/ac5039225
pmid: 25396738
|
| 26 |
Zhang, H. and Guo, P. (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods, 67, 169–176.
https://doi.org/10.1016/j.ymeth.2014.01.010
pmid: 24440482
|
| 27 |
Bharill, S., Fu, Z., Palty, R. and Isacoff, E. Y. (2014) Stoichiometry and specific assembly of Best ion channels. Proc. Natl. Acad. Sci. USA, 111, 6491–6496.
https://doi.org/10.1073/pnas.1400248111
pmid: 24748110
|
| 28 |
Arant, R. J. and Ulbrich, M. H. (2014) Deciphering the subunit composition of multimeric proteins by counting photobleaching steps. ChemPhysChem, 15, 600–605.
https://doi.org/10.1002/cphc.201301092
pmid: 24481650
|
| 29 |
Bumb, A., Sarkar, S. K., Wu, X. S., Brechbiel, M. W. and Neuman, K. C. (2011) Quantitative characterization of fluorophores in multi-component nanoprobes by single-molecule fluorescence. Biomed. Opt. Express, 2, 2761–2769.
https://doi.org/10.1364/BOE.2.002761
pmid: 22025982
|
| 30 |
Kneipp, K., Kneipp, H. and Kneipp, J. (2015) Probing plasmonic nanostructures by photons and electrons. Chem. Sci. (Camb.), 6, 2721–2726.
https://doi.org/10.1039/C4SC03508A
|
| 31 |
Dutta Choudhury, S., Badugu, R. and Lakowicz, J. R. (2015) Directing fluorescence with plasmonic and photonic structures. Acc. Chem. Res., 48, 2171–2180.
https://doi.org/10.1021/acs.accounts.5b00100
pmid: 26168343
|
| 32 |
Zohar, N., Chuntonov, L. and Haran, G. (2014) The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J. Photochem. Photobiol. Photochem. Rev., 21, 26–39.
https://doi.org/10.1016/j.jphotochemrev.2014.10.002
|
| 33 |
Alemany, A., Mossa, A., Junier, I. and Ritort, F. (2012) Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nat. Phys., 8, 688–694.
https://doi.org/10.1038/nphys2375
|
| 34 |
Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2005) Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature, 437, 231–234.
https://doi.org/10.1038/nature04061
pmid: 16148928
|
| 35 |
Gieseler, J., Quidant, R., Dellago, C. and Novotny, L. (2014) Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol., 9, 358–364.
https://doi.org/10.1038/nnano.2014.40
pmid: 24681775
|
| 36 |
Seifert, U. (2012) Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75, 126001.
https://doi.org/10.1088/0034-4885/75/12/126001
pmid: 23168354
|
| 37 |
Gore, J., Ritort, F. and Bustamante, C. (2003) Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc. Natl. Acad. Sci. USA, 100, 12564–12569.
https://doi.org/10.1073/pnas.1635159100
pmid: 14528008
|
| 38 |
Jarzynski, C. (1997) Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78, 2690–2693.
https://doi.org/10.1103/PhysRevLett.78.2690
|
| 39 |
Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2002) Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science, 296, 1832–1835.
https://doi.org/10.1126/science.1071152
pmid: 12052949
|
| 40 |
Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. and Evans, D. J. (2002) Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett., 89, 050601.
https://doi.org/10.1103/PhysRevLett.89.050601
pmid: 12144431
|
| 41 |
Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2001) Reversible unfolding of single RNA molecules by mechanical force. Science, 292, 733–737.
https://doi.org/10.1126/science.1058498
pmid: 11326101
|
| 42 |
Margadant, F., Chew, L. L., Hu, X., Yu, H., Bate, N., Zhang, X. and Sheetz, M. (2011) Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol., 9, e1001223.
https://doi.org/10.1371/journal.pbio.1001223
pmid: 22205879
|
| 43 |
Yu, J., Xiao, J., Ren, X., Lao, K. and Xie, X. S. (2006) Probing gene expression in live cells, one protein molecule at a time. Science, 311, 1600–1603.
https://doi.org/10.1126/science.1119623
pmid: 16543458
|
| 44 |
Rasnik, I., McKinney, S. A. and Ha, T. (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods, 3, 891–893.
https://doi.org/10.1038/nmeth934
pmid: 17013382
|
| 45 |
Liu, R., Hu, D., Tan, X. and Lu, H. P. (2006) Revealing two-state protein-protein interactions of calmodulin by single-molecule spectroscopy. J. Am. Chem. Soc., 128, 10034–10042.
https://doi.org/10.1021/ja057005m
pmid: 16881631
|
| 46 |
Shao, L., Kner, P., Rego, E. H. and Gustafsson, M. G. (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044–1046.
https://doi.org/10.1038/nmeth.1734
pmid: 22002026
|
| 47 |
Eggeling, C., Willig, K. I. and Barrantes, F. J. (2013) STED microscopy of living cells—new frontiers in membrane and neurobiology. J. Neurochem., 126, 203–212.
https://doi.org/10.1111/jnc.12243
pmid: 23506404
|
| 48 |
Rust, M. J., Bates, M. and Zhuang, X. (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793–796.
https://doi.org/10.1038/nmeth929
pmid: 16896339
|
| 49 |
Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. and Hess, H. F. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645.
https://doi.org/10.1126/science.1127344
pmid: 16902090
|
| 50 |
Small, A. and Stahlheber, S. (2014) Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods, 11, 267–279.
https://doi.org/10.1038/nmeth.2844
pmid: 24577277
|
| 51 |
Vandenberg, W., Leutenegger, M., Lasser, T., Hofkens, J. and Dedecker, P. (2015) Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell Tissue Res., 360, 151–178.
https://doi.org/10.1007/s00441-014-2109-0
pmid: 25722085
|
| 52 |
Eggeling, C., Willig, K. I., Sahl, S. J. and Hell, S. W. (2015) Lens-based fluorescence nanoscopy. Q. Rev. Biophys., 48, 178–243.
https://doi.org/10.1017/S0033583514000146
pmid: 25998828
|
| 53 |
Shivanandan, A., Deschout, H., Scarselli, M. and Radenovic, A. (2014) Challenges in quantitative single molecule localization microscopy. FEBS Lett., 588, 3595–3602.
https://doi.org/10.1016/j.febslet.2014.06.014
pmid: 24928440
|
| 54 |
Horrocks, M. H., Palayret, M., Klenerman, D. and Lee, S. F. (2014) The changing point-spread function: single-molecule-based super-resolution imaging. Histochem. Cell Biol., 141, 577–585.
https://doi.org/10.1007/s00418-014-1186-1
pmid: 24509806
|
| 55 |
Jiang, D., Liu, C., Wang, L. and Jiang, W. (2010) Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling. Anal. Chim. Acta, 662, 170–176.
https://doi.org/10.1016/j.aca.2010.01.014
pmid: 20171316
|
| 56 |
Földes-Papp, Z. and Baumann, G. (2011) Fluorescence molecule counting for single-molecule studies in crowded environment of living cells without and with broken ergodicity. Curr. Pharm. Biotechnol., 12, 824–833.
https://doi.org/10.2174/138920111795470949
pmid: 21446904
|
| 57 |
Fricke, F., Beaudouin, J., Eils, R. and Heilemann, M. (2015) One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci. Rep., 5, 14072.
https://doi.org/10.1038/srep14072
pmid: 26358640
|
| 58 |
Durisic, N., Laparra-Cuervo, L., Sandoval-Álvarez, A., Borbely, J. S. and Lakadamyali, M. (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods, 11, 156–162.
https://doi.org/10.1038/nmeth.2784
pmid: 24390439
|
| 59 |
Lee, S. H., Shin, J. Y., Lee, A. and Bustamante, C. (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl. Acad. Sci. USA, 109, 17436–17441.
https://doi.org/10.1073/pnas.1215175109
pmid: 23045631
|
| 60 |
Lu, C., Wu, F., Qiu, W. and Liu, R. (2013) P130Cas substrate domain is intrinsically disordered as characterized by single-molecule force measurements. Biophys. Chem., 180–181, 37–43.
https://doi.org/10.1016/j.bpc.2013.06.008
pmid: 23827411
|
| 61 |
Yao, M., Qiu, W., Liu, R., Efremov, A. K., Cong, P., Seddiki, R., Payre, M., Lim, C. T., Ladoux, B., Mège, R. M., (2014) Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun., 5, 4525.
https://doi.org/10.1038/ncomms5525
pmid: 25077739
|
| 62 |
Grashoff, C., Hoffman, B. D., Brenner, M. D., Zhou, R., Parsons, M., Yang, M. T., McLean, M. A., Sligar, S. G., Chen, C. S., Ha, T., (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 466, 263–266.
https://doi.org/10.1038/nature09198
pmid: 20613844
|
| 63 |
del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J. M. and Sheetz, M. P. (2009) Stretching single talin rod molecules activates vinculin binding. Science, 323, 638–641.
https://doi.org/10.1126/science.1162912
pmid: 19179532
|
| 64 |
Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358–362.
https://doi.org/10.1038/nature04599
pmid: 16541077
|
| 65 |
Chong, S., Chen, C., Ge, H. and Xie, X. S. (2014) Mechanism of transcriptional bursting in bacteria. Cell, 158, 314–326.
https://doi.org/10.1016/j.cell.2014.05.038
pmid: 25036631
|
| 66 |
Elf, J., Li, G.-W. and Xie, X. S. (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316, 1191–1194.
https://doi.org/10.1126/science.1141967
pmid: 17525339
|
| 67 |
Zong, C., Lu, S., Chapman, A. R. and Xie, X. S. (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338, 1622–1626.
https://doi.org/10.1126/science.1229164
pmid: 23258894
|
| 68 |
Jensen, E. (2014) Technical review: colocalization of antibodies using confocal microscopy. Anat. Rec., 297, 183–187.
https://doi.org/10.1002/ar.22835
pmid: 24357430
|
| 69 |
Cordelières, F. P. and Bolte, S. (2014) Experimenters’ guide to colocalization studies: finding a way through indicators and quantifiers, in practice. Methods Cell Biol., 123, 395–408.
https://doi.org/10.1016/B978-0-12-420138-5.00021-5
pmid: 24974039
|
| 70 |
Zadran, S., Standley, S., Wong, K., Otiniano, E., Amighi, A. and Baudry, M. (2012) Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl. Microbiol. Biotechnol., 96, 895–902.
https://doi.org/10.1007/s00253-012-4449-6
pmid: 23053099
|
| 71 |
Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R. and Weiss, S. (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA, 93, 6264–6268.
https://doi.org/10.1073/pnas.93.13.6264
pmid: 8692803
|
| 72 |
Cornish, P. V. and Ha, T. (2007) A survey of single-molecule techniques in chemical biology. ACS Chem. Biol., 2, 53–61.
https://doi.org/10.1021/cb600342a
pmid: 17243783
|
| 73 |
Deniz, A. A., Mukhopadhyay, S. and Lemke, E. A. (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J. R. Soc. Interface, 5, 15–45.
https://doi.org/10.1098/rsif.2007.1021
pmid: 17519204
|
| 74 |
Slaughter, B. D., Unruh, J. R., Allen, M. W., Bieber Urbauer, R. J. and Johnson, C. K. (2005) Conformational substates of calmodulin revealed by single-pair fluorescence resonance energy transfer: influence of solution conditions and oxidative modification. Biochemistry, 44, 3694–3707.
https://doi.org/10.1021/bi048595o
pmid: 15751946
|
| 75 |
Hohng, S. and Ha, T. (2005) Single-molecule quantum-dot fluorescence resonance energy transfer. ChemPhysChem, 6, 956–960.
https://doi.org/10.1002/cphc.200400557
pmid: 15884082
|
| 76 |
Ha, T. (2001) Single-molecule fluorescence resonance energy transfer. Methods, 25, 78–86.
https://doi.org/10.1006/meth.2001.1217
pmid: 11558999
|
| 77 |
Hohng, S., Lee, S., Lee, J. and Jo, M. H. (2014) Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem. Soc. Rev., 43, 1007–1013.
https://doi.org/10.1039/C3CS60184F
pmid: 23970315
|
| 78 |
Masson, J.-B., Dionne, P., Salvatico, C., Renner, M., Specht, C. G., Triller, A. and Dahan, M. (2014) Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J., 106, 74–83.
https://doi.org/10.1016/j.bpj.2013.10.027
pmid: 24411239
|
| 79 |
Mazurkiewicz, J. E., Herrick-Davis, K., Barroso, M., Ulloa-Aguirre, A., Lindau-Shepard, B., Thomas, R. M. and Dias, J. A. (2015) Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor. Biol. Reprod., 92, 100.
https://doi.org/10.1095/biolreprod.114.125781
pmid: 25761594
|
| 80 |
Jurchenko, C. and Salaita, K. S. (2015) Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol., 35, 2570–2582.
https://doi.org/10.1128/MCB.00195-15
pmid: 26031334
|
| 81 |
Lu, H. P., Iakoucheva, L. M. and Ackerman, E. J. (2001) Single-molecule conformational dynamics of fluctuating noncovalent DNA-protein interactions in DNA damage recognition. J. Am. Chem. Soc., 123, 9184–9185.
https://doi.org/10.1021/ja0058942
pmid: 11552836
|
| 82 |
Tan, X., Nalbant, P., Toutchkine, A., Hu, D., Vorpagel, E. R., Hahn, K. M. and Lu, H. P. (2004) Single-molecule study of protein-protein interaction dynamics in a cell signaling system. J. Phys. Chem. B, 108, 737–744.
https://doi.org/10.1021/jp0306491
|
| 83 |
Borghi, N., Sorokina, M., Shcherbakova, O. G., Weis, W. I., Pruitt, B. L., Nelson, W. J. and Dunn, A. R. (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. USA, 109, 12568–12573.
https://doi.org/10.1073/pnas.1204390109
pmid: 22802638
|
| 84 |
Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. and Dunn, A. R. (2013) Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett., 13, 3985–3989.
https://doi.org/10.1021/nl4005145
pmid: 23859772
|
| 85 |
Suzuki, K. G., Fujiwara, T. K., Sanematsu, F., Iino, R., Edidin, M. and Kusumi, A. (2007) GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol., 177, 717–730.
https://doi.org/10.1083/jcb.200609174
pmid: 17517964
|
| 86 |
Suzuki, K. G., Fujiwara, T. K., Edidin, M. and Kusumi, A. (2007) Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol., 177, 731–742.
https://doi.org/10.1083/jcb.200609175
pmid: 17517965
|
| 87 |
Ha, T. and Tinnefeld, P. (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem., 63, 595–617.
https://doi.org/10.1146/annurev-physchem-032210-103340
pmid: 22404588
|
| 88 |
Tokunaga, M., Imamoto, N. and Sakata-Sogawa, K. (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods, 5, 159–161.
https://doi.org/10.1038/nmeth1171
pmid: 18176568
|
| 89 |
Nishimura, H., Ritchie, K., Kasai, R. S., Goto, M., Morone, N., Sugimura, H., Tanaka, K., Sase, I., Yoshimura, A., Nakano, Y., (2013) Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J. Cell Biol., 202, 967–983.
https://doi.org/10.1083/jcb.201301053
pmid: 24043702
|
| 90 |
Kusumi, A., Suzuki, K. G., Kasai, R. S., Ritchie, K. and Fujiwara, T. K. (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem. Sci., 36, 604–615.
https://doi.org/10.1016/j.tibs.2011.08.001
pmid: 21917465
|
| 91 |
Zhang, J., Campbell, R. E., Ting, A. Y. and Tsien, R. Y. (2002) Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol., 3, 906–918.
https://doi.org/10.1038/nrm976
pmid: 12461557
|
| 92 |
Zheng, Q., Juette, M. F., Jockusch, S., Wasserman, M. R., Zhou, Z., Altman, R. B. and Blanchard, S. C. (2014) Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev., 43, 1044–1056.
https://doi.org/10.1039/C3CS60237K
pmid: 24177677
|
| 93 |
Kusumi, A., Tsunoyama, T. A., Hirosawa, K. M., Kasai, R. S. and Fujiwara, T. K. (2014) Tracking single molecules at work in living cells. Nat. Chem. Biol., 10, 524–532.
https://doi.org/10.1038/nchembio.1558
pmid: 24937070
|
| 94 |
Huxley, A. F. (2000) Mechanics and models of the myosin motor. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 433–440.
https://doi.org/10.1098/rstb.2000.0584
pmid: 10836496
|
| 95 |
Svoboda, K., Schmidt, C. F., Schnapp, B. J. and Block, S. M. (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365, 721–727.
https://doi.org/10.1038/365721a0
pmid: 8413650
|
| 96 |
Block, S. M., Goldstein, L. S. and Schnapp, B. J. (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348, 348–352.
https://doi.org/10.1038/348348a0
pmid: 2174512
|
| 97 |
Yanagida, T., Esaki, S., Iwane, A. H., Inoue, Y., Ishijima, A., Kitamura, K., Tanaka, H. and Tokunaga, M. (2000) Single-motor mechanics and models of the myosin motor. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 441–447.
https://doi.org/10.1098/rstb.2000.0585
pmid: 10836497
|
| 98 |
Vale, R. D., Funatsu, T., Pierce, D. W., Romberg, L., Harada, Y. and Yanagida, T. (1996) Direct observation of single kinesin molecules moving along microtubules. Nature, 380, 451–453.
https://doi.org/10.1038/380451a0
pmid: 8602245
|
| 99 |
Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E. and Selvin, P. R. (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300, 2061–2065.
https://doi.org/10.1126/science.1084398
pmid: 12791999
|
| 100 |
Yildiz, A., Tomishige, M., Vale, R. D. and Selvin, P. R. (2004) Kinesin walks hand-over-hand. Science, 303, 676–678.
https://doi.org/10.1126/science.1093753
pmid: 14684828
|
| 101 |
Yildiz, A., Park, H., Safer, D., Yang, Z., Chen, L. Q., Selvin, P. R. and Sweeney, H. L. (2004) Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem., 279, 37223–37226.
https://doi.org/10.1074/jbc.C400252200
pmid: 15254036
|
| 102 |
Ökten, Z., Churchman, L. S., Rock, R. S. and Spudich, J. A. (2004) Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol., 11, 884–887.
https://doi.org/10.1038/nsmb815
pmid: 15286724
|
| 103 |
Alonso, M. C., Drummond, D. R., Kain, S., Hoeng, J., Amos, L. and Cross, R. A. (2007) An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science, 316, 120–123.
https://doi.org/10.1126/science.1136985
pmid: 17412962
|
| 104 |
Block, S. M. (2007) Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J., 92, 2986–2995.
https://doi.org/10.1529/biophysj.106.100677
pmid: 17325011
|
| 105 |
Yildiz, A., Tomishige, M., Gennerich, A. and Vale, R. D. (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell, 134, 1030–1041.
https://doi.org/10.1016/j.cell.2008.07.018
pmid: 18805095
|
| 106 |
Sielaff, H. and Borsch, M. (2013) Twisting and subunit rotation in single F0F1-ATP synthase. Phil. Trans. R. Soc. B 368, 20120024.
https://doi.org/10.1098/rstb.2012.0024
|
| 107 |
Tang, G. Q., Roy, R., Ha, T. and Patel, S. S. (2008) Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol. Cell, 30, 567–577.
https://doi.org/10.1016/j.molcel.2008.04.003
pmid: 18538655
|
| 108 |
Börsch, M., Diez, M., Zimmermann, B., Reuter, R. and Gräber, P. (2002) Stepwise rotation of the gamma-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett., 527, 147–152.
https://doi.org/10.1016/S0014-5793(02)03198-8
pmid: 12220651
|
| 109 |
Harada, Y., Ohara, O., Takatsuki, A., Itoh, H., Shimamoto, N. and Kinosita, K. Jr. (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature, 409, 113–115.
https://doi.org/10.1038/35051126
pmid: 11343125
|
| 110 |
Pilizota, T., Sowa, Y. and Berry, R. M. (2009) Single-Molecule Studies of Rotary Molecular Motors. In Handbook of Single-Molecule Biophysics, P. Hinterdorfer and A. Oijen, Editors. PP. 183–216. Publisher: Springer US.
|
| 111 |
Brinks, D., Hildner, R., van Dijk, E. M., Stefani, F. D., Nieder, J. B., Hernando, J. and van Hulst, N. F. (2014) Ultrafast dynamics of single molecules. Chem. Soc. Rev., 43, 2476–2491.
https://doi.org/10.1039/c3cs60269a
pmid: 24473271
|
| 112 |
Hildner, R., Brinks, D., Nieder, J. B., Cogdell, R. J. and van Hulst, N. F. (2013) Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science, 340, 1448–1451.
https://doi.org/10.1126/science.1235820
pmid: 23788794
|
| 113 |
Gösch, M. and Rigler, R. (2005) Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv. Drug Deliv. Rev., 57, 169–190.
https://doi.org/10.1016/j.addr.2004.07.016
pmid: 15518928
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|