Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2016, Vol. 4 Issue (3) : 177-191    https://doi.org/10.1007/s40484-016-0083-0
REVIEW
Single molecule fluorescence spectroscopy for quantitative biological applications
Ruchuan Liu1,Yuliang Li2,Liyu Liu1,2()
1. College of Physics, Chongqing University, Chongqing 401331, China
2. Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(1847 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Single molecule techniques emerge as powerful and quantitative approaches for scientific investigations in last decades. Among them, single molecule fluorescence spectroscopy (SMFS) is able to non-invasively characterize and track samples at the molecular level. Here, applications of SMFS to fundamental biological questions have been briefly summarized in catalogues of single-molecule counting, distance measurements, force sensors, molecular tracking, and ultrafast dynamics. In these SMFS applications, statistics and physical laws are utilized to quantitatively analyze the behaviors of biomolecules in cellular signaling pathways and the mechanisms of biological functions. This not only deepens our understanding of bio-systems, but also provides a fresh angle to those fundamental questions, leading to a more quantitative thinking in life science.

Author Summary   

It is essential and fundamental to understand life science at the molecular level. Single molecule techniques are able to uncover the mystical insights of the biological systems and quantitatively measure the important parameters, and thus become extensively applied in biology. The unique advantage of fluorescence detection makes single molecule fluorescence spectroscopy (SMFS) especially suitable in this field, and plenty of applications of SMFS to locate and track biomolecules have supplied us tremendous new quantitative knowledge. Here, we summarize the applications in five catalogues to show that SMFS brings the new angle of view and more quantitative thinking to life science.

Keywords single-molecule fluorescence spectroscopy      biomolecule detection      molecular tracking      molecular dynamics      molecular mechanism     
PACS:     
Fund: 
Corresponding Author(s): Yuliang Li,Liyu Liu   
Just Accepted Date: 13 July 2016   Online First Date: 29 August 2016    Issue Date: 07 September 2016
 Cite this article:   
Ruchuan Liu,Yuliang Li,Liyu Liu. Single molecule fluorescence spectroscopy for quantitative biological applications[J]. Quant. Biol., 2016, 4(3): 177-191.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-016-0083-0
https://academic.hep.com.cn/qb/EN/Y2016/V4/I3/177
Fig.1  Scheme of Single-molecule fluorescence.

(A) An energy level diagram of a fluorescent molecule and (B) a trajectory of a single fluorescent molecule showing the intensity decrement in one step.

Fig.2  Magnetic tweezers used to measure the binding events.

The Ni-NTA (labeled N) grafted slides containing the talin rod fixed through its 6×His N terminus (labeled H) to the glass and with the avidinated magnetic bead bound to its biotinylated C terminus (labeled B) was placed over the objective. Alexa 488–vinculin head was added to the slides for the period of the incubation. The talin rod and vinculin head structures are represented in green and yellow, respectively. The arrow shows the direction of the movement of the beads when they are pulled using the magnetic tweezers.

Fig.3  Diagram of photobleaching events of Alexa 488-vinculin head bound to (A) talin rod, (B) dimeric tandem talin rod, and (C) α-actinin.

Histograms show the number of beads per photobleaching event. In all cases, blue, gray, and green colors correspond with no force, 2-pN force, and 12-pN force applied, respectively. The talin rod, talin dimeric tandem (positive control), and α-actinin (negative control) showed maximally 1 and 3, 2 and 6, and 1 and 1 photobleaching events (black arrows) when no force and 12 pN force, respectively, was applied.

Fig.4  EGFP-Talin1-mCherry as a tool to measure talin 1 length.

(A) Schematic of stretching of labeled talin molecules: unfolding from a 51 nm length in the relaxed state. This can be measured in focal adhesions under stretch where the separation of the termini is apparent in two channel TIRF microscopy. Using the same edge detector criterion for both the GFP and mCherry signal reveals the dislocation of the ensemble. (B) Verification that EGFP-Talin1-mCherry distributes as expected for talin. Distribution of EGFP, mCherry, and antibody (alexa 647) staining shows colocalization of the modified and the endogenous talin (green for EGFP, red for mCherry, and blue for alexa 647 in the superposition panel) (this is under conditions of high expression but the same colocalization is observed at low expression). The image was adapted from [42] with permission.

Fig.5  Displacements after suppression.

(A) Time evolution of the stretching after adding Blebbastatin or Y-27632, respectively. The total displacement and the amplitude of the stretching are decreased very noticeably. Even though for the Y-27632, it is still clearly larger than the error of observation. (B) Vinculin head added: The vinculin head construct stretched out the talin molecule and left it stretched. There are still observable oscillations in stretching, but the amplitude of change is dramatically suppressed. The image was adapted from [42] with permission.

Fig.6  A scheme of two-state interaction model of binding of calmodulin and C28W and single-molecule FRET results.

(A) calmodulin bind with C28W in two states: the C-terminal of calmodulin binds to the N-terminal domain of C28W; calmodulin tightly binds to C28W through both domains. (B) distributions of single-molecule FRET efficiency; and (C) calculated relative donor-acceptor distance (R/R0). The blue and red curves are the Gaussian components used to fit the distributions, and the black curve is fitted results. Reprinted with permission from Ref. [44]. Copyright 2006 American Chemical Society.

Fig.7  The cartoon of molecular tension sensor and the force calibration.

The sensor consists of mTFP1, elastic linker (GPGGA)8 and venus (A) without force and (B) once a force is applied the extension of the linker can lower the FRET efficiency. (C) The force is calibrated as a function of FRET efficiency. The image was adapted from [62] with permission

Fig.8  Time schedule of various molecular process (Reproduced from Ref. [111] with permission from The Royal Society of Chemistry).
Fig.9  Two color fs phase control of individual LH2 complexes at room temperature. with permission (The image was adapted from [113])
SMFS,single-molecule fluorescence spectroscopy
APD,avalanche photodiode
PMT,photomultiplier tube
EMCCD,electron-multiplying charge-coupled device
GFP,green fluorescent protein
EGFP,enhanced green fluorescent protein
NTA,Nitrilotriacetic acid
PALM,photo-activated localization microscopy
PSF,point spread function
E. coli,Escherichia coli
FRET,Förster Resonance Energy Transfer
smFRET,single-molecule FRET
TSMod,tension sensor module
mTFP,Clavularia teal fluorescent protein
SMT,single-molecule tracking
HoH,hand-over-hand
LH2,light harvesting 2
Tab.1  
1 Hanoian, P., Liu, C. T., Hammes-Schiffer, S. and Benkovic, S. (2015) Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc. Chem. Res., 48, 482–489
https://doi.org/10.1021/ar500390e pmid: 25565178
2 Liebherr, R. B. and Gorris, H. H. (2014) Enzyme molecules in solitary confinement. Molecules, 19, 14417–14445
https://doi.org/10.3390/molecules190914417 pmid: 25221867
3 Janssen, K. P. F., De Cremer, G., Neely, R. K., Kubarev, A. V., Van Loon, J., Martens, J. A., De Vos, D. E., Roeffaers, M. B. and Hofkens, J. (2014) Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chem. Soc. Rev., 43, 990–1006.
https://doi.org/10.1039/C3CS60245A pmid: 24085063
4 Grima, R., Walter, N. G. and Schnell, S. (2014) Single-molecule enzymology à la Michaelis-Menten. FEBS J., 281, 518–530
https://doi.org/10.1111/febs.12663 pmid: 24289171
5 Puchner, E. M. and Gaub, H. E. (2012) Single-molecule mechanoenzymatics. ANN. REV. BIOPHYS., 41, 497–518
https://doi.org/10.1146/annurev-biophys-050511-102301
6 Xie, S. and Lu, H. P. (1999) Single-molecule enzymology. J. Biol. Chem., 274, 15967–15970
https://doi.org/10.1074/jbc.274.23.15967 pmid: 10347141
7 Xie, S. (2001) Single-molecule approach to enzymology. Single Mol., 2, 229–236
https://doi.org/10.1002/1438-5171(200112)2:4<229::AID-SIMO229>3.0.CO;2-9
8 Lu, H. P., Xun, L. and Xie, X. S. (1998) Single-molecule enzymatic dynamics. Science, 282, 1877–1882
https://doi.org/10.1126/science.282.5395.1877 pmid: 9836635
9 English, D. S., Furube, A. and Barbara, P. F. (2000) Single-molecule spectroscopy in oxygen-depleted polymer films. Chem. Phys. Lett., 324, 15–19
https://doi.org/10.1016/S0009-2614(00)00570-4
10 Oukhaled, G., Mathé, J., Biance, A. L., Bacri, L., Betton, J. M., Lairez, D., Pelta, J. and Auvray, L. (2007) Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett., 98, 158101
https://doi.org/10.1103/PhysRevLett.98.158101 pmid: 17501386
12 Kuzmenkina, E. V., Heyes, C. D. and Nienhaus, G. U. (2005) Single-molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions. Proc. Natl. Acad. Sci. USA, 102, 15471–15476
https://doi.org/10.1073/pnas.0507728102 pmid: 16221762
13 Okumus, B., Wilson, T. J., Lilley, D. M. and Ha, T. (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys. J., 87, 2798–2806.
https://doi.org/10.1529/biophysj.104.045971 pmid: 15454471
14 Brucale, M., Schuler, B. and Samorì, B. (2014) Single-molecule studies of intrinsically disordered proteins. Chem. Rev., 114, 3281–3317.
https://doi.org/10.1021/cr400297g pmid: 24432838
15 Duzdevich, D., Redding, S. and Greene, E. C. (2014) DNA dynamics and single-molecule biology. Chem. Rev., 114, 3072–3086.
https://doi.org/10.1021/cr4004117 pmid: 24400809
16 Lu, H. P. (2014) Sizing up single-molecule enzymatic conformational dynamics. Chem. Soc. Rev., 43, 1118–1143.
https://doi.org/10.1039/C3CS60191A pmid: 24306450
17 Sarkar, S. K., Andoy, N. M., Benítez, J. J., Chen, P. R., Kong, J. S., He, C. and Chen, P. (2007) Engineered holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator. J. Am. Chem. Soc., 129, 12461–12467.
https://doi.org/10.1021/ja072485y pmid: 17880214
18 Weiss, S. (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol., 7, 724–729.
https://doi.org/10.1038/78941 pmid: 10966638
19 Pressé, S., Peterson, J., Lee, J., Elms, P., MacCallum, J. L., Marqusee, S., Bustamante, C. and Dill, K. (2014) Single molecule conformational memory extraction: p5ab RNA hairpin. J. Phys. Chem. B, 118, 6597–6603.
https://doi.org/10.1021/jp500611f pmid: 24898871
20 Bavishi, K. and Hatzakis, N. S. (2014) Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules, 19, 19407–19434.
https://doi.org/10.3390/molecules191219407 pmid: 25429564
21 Hofmann, H. (2014) Single-molecule spectroscopy of unfolded proteins and chaperonin action. Biol. Chem., 395, 689–698.
https://doi.org/10.1515/hsz-2014-0132 pmid: 24620016
22 Lipman, E. A., Schuler, B., Bakajin, O. and Eaton, W. A. (2003) Single-molecule measurement of protein folding kinetics. Science, 301, 1233–1235.
https://doi.org/10.1126/science.1085399 pmid: 12947198
23 Schuler, B. and Eaton, W. A. (2008) Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol., 18, 16–26.
https://doi.org/10.1016/j.sbi.2007.12.003 pmid: 18221865
24 Borgia, A., Williams, P. M. and Clarke, J. (2008) Single-molecule studies of protein folding. Annu. Rev. Biochem., 77, 101–125.
https://doi.org/10.1146/annurev.biochem.77.060706.093102 pmid: 18412537
25 Kisley, L. and Landes, C. F. (2015) Molecular approaches to chromatography using single molecule spectroscopy. Anal. Chem., 87, 83–98.
https://doi.org/10.1021/ac5039225 pmid: 25396738
26 Zhang, H. and Guo, P. (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods, 67, 169–176.
https://doi.org/10.1016/j.ymeth.2014.01.010 pmid: 24440482
27 Bharill, S., Fu, Z., Palty, R. and Isacoff, E. Y. (2014) Stoichiometry and specific assembly of Best ion channels. Proc. Natl. Acad. Sci. USA, 111, 6491–6496.
https://doi.org/10.1073/pnas.1400248111 pmid: 24748110
28 Arant, R. J. and Ulbrich, M. H. (2014) Deciphering the subunit composition of multimeric proteins by counting photobleaching steps. ChemPhysChem, 15, 600–605.
https://doi.org/10.1002/cphc.201301092 pmid: 24481650
29 Bumb, A., Sarkar, S. K., Wu, X. S., Brechbiel, M. W. and Neuman, K. C. (2011) Quantitative characterization of fluorophores in multi-component nanoprobes by single-molecule fluorescence. Biomed. Opt. Express, 2, 2761–2769.
https://doi.org/10.1364/BOE.2.002761 pmid: 22025982
30 Kneipp, K., Kneipp, H. and Kneipp, J. (2015) Probing plasmonic nanostructures by photons and electrons. Chem. Sci. (Camb.), 6, 2721–2726.
https://doi.org/10.1039/C4SC03508A
31 Dutta Choudhury, S., Badugu, R. and Lakowicz, J. R. (2015) Directing fluorescence with plasmonic and photonic structures. Acc. Chem. Res., 48, 2171–2180.
https://doi.org/10.1021/acs.accounts.5b00100 pmid: 26168343
32 Zohar, N., Chuntonov, L. and Haran, G. (2014) The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J. Photochem. Photobiol. Photochem. Rev., 21, 26–39.
https://doi.org/10.1016/j.jphotochemrev.2014.10.002
33 Alemany, A., Mossa, A., Junier, I. and Ritort, F. (2012) Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nat. Phys., 8, 688–694.
https://doi.org/10.1038/nphys2375
34 Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2005) Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature, 437, 231–234.
https://doi.org/10.1038/nature04061 pmid: 16148928
35 Gieseler, J., Quidant, R., Dellago, C. and Novotny, L. (2014) Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol., 9, 358–364.
https://doi.org/10.1038/nnano.2014.40 pmid: 24681775
36 Seifert, U. (2012) Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75, 126001.
https://doi.org/10.1088/0034-4885/75/12/126001 pmid: 23168354
37 Gore, J., Ritort, F. and Bustamante, C. (2003) Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc. Natl. Acad. Sci. USA, 100, 12564–12569.
https://doi.org/10.1073/pnas.1635159100 pmid: 14528008
38 Jarzynski, C. (1997) Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78, 2690–2693.
https://doi.org/10.1103/PhysRevLett.78.2690
39 Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2002) Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science, 296, 1832–1835.
https://doi.org/10.1126/science.1071152 pmid: 12052949
40 Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. and Evans, D. J. (2002) Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett., 89, 050601.
https://doi.org/10.1103/PhysRevLett.89.050601 pmid: 12144431
41 Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. Jr and Bustamante, C. (2001) Reversible unfolding of single RNA molecules by mechanical force. Science, 292, 733–737.
https://doi.org/10.1126/science.1058498 pmid: 11326101
42 Margadant, F., Chew, L. L., Hu, X., Yu, H., Bate, N., Zhang, X. and Sheetz, M. (2011) Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol., 9, e1001223.
https://doi.org/10.1371/journal.pbio.1001223 pmid: 22205879
43 Yu, J., Xiao, J., Ren, X., Lao, K. and Xie, X. S. (2006) Probing gene expression in live cells, one protein molecule at a time. Science, 311, 1600–1603.
https://doi.org/10.1126/science.1119623 pmid: 16543458
44 Rasnik, I., McKinney, S. A. and Ha, T. (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods, 3, 891–893.
https://doi.org/10.1038/nmeth934 pmid: 17013382
45 Liu, R., Hu, D., Tan, X. and Lu, H. P. (2006) Revealing two-state protein-protein interactions of calmodulin by single-molecule spectroscopy. J. Am. Chem. Soc., 128, 10034–10042.
https://doi.org/10.1021/ja057005m pmid: 16881631
46 Shao, L., Kner, P., Rego, E. H. and Gustafsson, M. G. (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044–1046.
https://doi.org/10.1038/nmeth.1734 pmid: 22002026
47 Eggeling, C., Willig, K. I. and Barrantes, F. J. (2013) STED microscopy of living cells—new frontiers in membrane and neurobiology. J. Neurochem., 126, 203–212.
https://doi.org/10.1111/jnc.12243 pmid: 23506404
48 Rust, M. J., Bates, M. and Zhuang, X. (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793–796.
https://doi.org/10.1038/nmeth929 pmid: 16896339
49 Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. and Hess, H. F. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645.
https://doi.org/10.1126/science.1127344 pmid: 16902090
50 Small, A. and Stahlheber, S. (2014) Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods, 11, 267–279.
https://doi.org/10.1038/nmeth.2844 pmid: 24577277
51 Vandenberg, W., Leutenegger, M., Lasser, T., Hofkens, J. and Dedecker, P. (2015) Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell Tissue Res., 360, 151–178.
https://doi.org/10.1007/s00441-014-2109-0 pmid: 25722085
52 Eggeling, C., Willig, K. I., Sahl, S. J. and Hell, S. W. (2015) Lens-based fluorescence nanoscopy. Q. Rev. Biophys., 48, 178–243.
https://doi.org/10.1017/S0033583514000146 pmid: 25998828
53 Shivanandan, A., Deschout, H., Scarselli, M. and Radenovic, A. (2014) Challenges in quantitative single molecule localization microscopy. FEBS Lett., 588, 3595–3602.
https://doi.org/10.1016/j.febslet.2014.06.014 pmid: 24928440
54 Horrocks, M. H., Palayret, M., Klenerman, D. and Lee, S. F. (2014) The changing point-spread function: single-molecule-based super-resolution imaging. Histochem. Cell Biol., 141, 577–585.
https://doi.org/10.1007/s00418-014-1186-1 pmid: 24509806
55 Jiang, D., Liu, C., Wang, L. and Jiang, W. (2010) Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling. Anal. Chim. Acta, 662, 170–176.
https://doi.org/10.1016/j.aca.2010.01.014 pmid: 20171316
56 Földes-Papp, Z. and Baumann, G. (2011) Fluorescence molecule counting for single-molecule studies in crowded environment of living cells without and with broken ergodicity. Curr. Pharm. Biotechnol., 12, 824–833.
https://doi.org/10.2174/138920111795470949 pmid: 21446904
57 Fricke, F., Beaudouin, J., Eils, R. and Heilemann, M. (2015) One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci. Rep., 5, 14072.
https://doi.org/10.1038/srep14072 pmid: 26358640
58 Durisic, N., Laparra-Cuervo, L., Sandoval-Álvarez, A., Borbely, J. S. and Lakadamyali, M. (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods, 11, 156–162.
https://doi.org/10.1038/nmeth.2784 pmid: 24390439
59 Lee, S. H., Shin, J. Y., Lee, A. and Bustamante, C. (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl. Acad. Sci. USA, 109, 17436–17441.
https://doi.org/10.1073/pnas.1215175109 pmid: 23045631
60 Lu, C., Wu, F., Qiu, W. and Liu, R. (2013) P130Cas substrate domain is intrinsically disordered as characterized by single-molecule force measurements. Biophys. Chem., 180–181, 37–43.
https://doi.org/10.1016/j.bpc.2013.06.008 pmid: 23827411
61 Yao, M., Qiu, W., Liu, R., Efremov, A. K., Cong, P., Seddiki, R., Payre, M., Lim, C. T., Ladoux, B., Mège, R. M., (2014) Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun., 5, 4525.
https://doi.org/10.1038/ncomms5525 pmid: 25077739
62 Grashoff, C., Hoffman, B. D., Brenner, M. D., Zhou, R., Parsons, M., Yang, M. T., McLean, M. A., Sligar, S. G., Chen, C. S., Ha, T., (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 466, 263–266.
https://doi.org/10.1038/nature09198 pmid: 20613844
63 del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J. M. and Sheetz, M. P. (2009) Stretching single talin rod molecules activates vinculin binding. Science, 323, 638–641.
https://doi.org/10.1126/science.1162912 pmid: 19179532
64 Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358–362.
https://doi.org/10.1038/nature04599 pmid: 16541077
65 Chong, S., Chen, C., Ge, H. and Xie, X. S. (2014) Mechanism of transcriptional bursting in bacteria. Cell, 158, 314–326.
https://doi.org/10.1016/j.cell.2014.05.038 pmid: 25036631
66 Elf, J., Li, G.-W. and Xie, X. S. (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316, 1191–1194.
https://doi.org/10.1126/science.1141967 pmid: 17525339
67 Zong, C., Lu, S., Chapman, A. R. and Xie, X. S. (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338, 1622–1626.
https://doi.org/10.1126/science.1229164 pmid: 23258894
68 Jensen, E. (2014) Technical review: colocalization of antibodies using confocal microscopy. Anat. Rec., 297, 183–187.
https://doi.org/10.1002/ar.22835 pmid: 24357430
69 Cordelières, F. P. and Bolte, S. (2014) Experimenters’ guide to colocalization studies: finding a way through indicators and quantifiers, in practice. Methods Cell Biol., 123, 395–408.
https://doi.org/10.1016/B978-0-12-420138-5.00021-5 pmid: 24974039
70 Zadran, S., Standley, S., Wong, K., Otiniano, E., Amighi, A. and Baudry, M. (2012) Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl. Microbiol. Biotechnol., 96, 895–902.
https://doi.org/10.1007/s00253-012-4449-6 pmid: 23053099
71 Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R. and Weiss, S. (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA, 93, 6264–6268.
https://doi.org/10.1073/pnas.93.13.6264 pmid: 8692803
72 Cornish, P. V. and Ha, T. (2007) A survey of single-molecule techniques in chemical biology. ACS Chem. Biol., 2, 53–61.
https://doi.org/10.1021/cb600342a pmid: 17243783
73 Deniz, A. A., Mukhopadhyay, S. and Lemke, E. A. (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J. R. Soc. Interface, 5, 15–45.
https://doi.org/10.1098/rsif.2007.1021 pmid: 17519204
74 Slaughter, B. D., Unruh, J. R., Allen, M. W., Bieber Urbauer, R. J. and Johnson, C. K. (2005) Conformational substates of calmodulin revealed by single-pair fluorescence resonance energy transfer: influence of solution conditions and oxidative modification. Biochemistry, 44, 3694–3707.
https://doi.org/10.1021/bi048595o pmid: 15751946
75 Hohng, S. and Ha, T. (2005) Single-molecule quantum-dot fluorescence resonance energy transfer. ChemPhysChem, 6, 956–960.
https://doi.org/10.1002/cphc.200400557 pmid: 15884082
76 Ha, T. (2001) Single-molecule fluorescence resonance energy transfer. Methods, 25, 78–86.
https://doi.org/10.1006/meth.2001.1217 pmid: 11558999
77 Hohng, S., Lee, S., Lee, J. and Jo, M. H. (2014) Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem. Soc. Rev., 43, 1007–1013.
https://doi.org/10.1039/C3CS60184F pmid: 23970315
78 Masson, J.-B., Dionne, P., Salvatico, C., Renner, M., Specht, C. G., Triller, A. and Dahan, M. (2014) Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J., 106, 74–83.
https://doi.org/10.1016/j.bpj.2013.10.027 pmid: 24411239
79 Mazurkiewicz, J. E., Herrick-Davis, K., Barroso, M., Ulloa-Aguirre, A., Lindau-Shepard, B., Thomas, R. M. and Dias, J. A. (2015) Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor. Biol. Reprod., 92, 100.
https://doi.org/10.1095/biolreprod.114.125781 pmid: 25761594
80 Jurchenko, C. and Salaita, K. S. (2015) Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol., 35, 2570–2582.
https://doi.org/10.1128/MCB.00195-15 pmid: 26031334
81 Lu, H. P., Iakoucheva, L. M. and Ackerman, E. J. (2001) Single-molecule conformational dynamics of fluctuating noncovalent DNA-protein interactions in DNA damage recognition. J. Am. Chem. Soc., 123, 9184–9185.
https://doi.org/10.1021/ja0058942 pmid: 11552836
82 Tan, X., Nalbant, P., Toutchkine, A., Hu, D., Vorpagel, E. R., Hahn, K. M. and Lu, H. P. (2004) Single-molecule study of protein-protein interaction dynamics in a cell signaling system. J. Phys. Chem. B, 108, 737–744.
https://doi.org/10.1021/jp0306491
83 Borghi, N., Sorokina, M., Shcherbakova, O. G., Weis, W. I., Pruitt, B. L., Nelson, W. J. and Dunn, A. R. (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. USA, 109, 12568–12573.
https://doi.org/10.1073/pnas.1204390109 pmid: 22802638
84 Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. and Dunn, A. R. (2013) Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett., 13, 3985–3989.
https://doi.org/10.1021/nl4005145 pmid: 23859772
85 Suzuki, K. G., Fujiwara, T. K., Sanematsu, F., Iino, R., Edidin, M. and Kusumi, A. (2007) GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol., 177, 717–730.
https://doi.org/10.1083/jcb.200609174 pmid: 17517964
86 Suzuki, K. G., Fujiwara, T. K., Edidin, M. and Kusumi, A. (2007) Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol., 177, 731–742.
https://doi.org/10.1083/jcb.200609175 pmid: 17517965
87 Ha, T. and Tinnefeld, P. (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem., 63, 595–617.
https://doi.org/10.1146/annurev-physchem-032210-103340 pmid: 22404588
88 Tokunaga, M., Imamoto, N. and Sakata-Sogawa, K. (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods, 5, 159–161.
https://doi.org/10.1038/nmeth1171 pmid: 18176568
89 Nishimura, H., Ritchie, K., Kasai, R. S., Goto, M., Morone, N., Sugimura, H., Tanaka, K., Sase, I., Yoshimura, A., Nakano, Y., (2013) Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J. Cell Biol., 202, 967–983.
https://doi.org/10.1083/jcb.201301053 pmid: 24043702
90 Kusumi, A., Suzuki, K. G., Kasai, R. S., Ritchie, K. and Fujiwara, T. K. (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem. Sci., 36, 604–615.
https://doi.org/10.1016/j.tibs.2011.08.001 pmid: 21917465
91 Zhang, J., Campbell, R. E., Ting, A. Y. and Tsien, R. Y. (2002) Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol., 3, 906–918.
https://doi.org/10.1038/nrm976 pmid: 12461557
92 Zheng, Q., Juette, M. F., Jockusch, S., Wasserman, M. R., Zhou, Z., Altman, R. B. and Blanchard, S. C. (2014) Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev., 43, 1044–1056.
https://doi.org/10.1039/C3CS60237K pmid: 24177677
93 Kusumi, A., Tsunoyama, T. A., Hirosawa, K. M., Kasai, R. S. and Fujiwara, T. K. (2014) Tracking single molecules at work in living cells. Nat. Chem. Biol., 10, 524–532.
https://doi.org/10.1038/nchembio.1558 pmid: 24937070
94 Huxley, A. F. (2000) Mechanics and models of the myosin motor. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 433–440.
https://doi.org/10.1098/rstb.2000.0584 pmid: 10836496
95 Svoboda, K., Schmidt, C. F., Schnapp, B. J. and Block, S. M. (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365, 721–727.
https://doi.org/10.1038/365721a0 pmid: 8413650
96 Block, S. M., Goldstein, L. S. and Schnapp, B. J. (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348, 348–352.
https://doi.org/10.1038/348348a0 pmid: 2174512
97 Yanagida, T., Esaki, S., Iwane, A. H., Inoue, Y., Ishijima, A., Kitamura, K., Tanaka, H. and Tokunaga, M. (2000) Single-motor mechanics and models of the myosin motor. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 441–447.
https://doi.org/10.1098/rstb.2000.0585 pmid: 10836497
98 Vale, R. D., Funatsu, T., Pierce, D. W., Romberg, L., Harada, Y. and Yanagida, T. (1996) Direct observation of single kinesin molecules moving along microtubules. Nature, 380, 451–453.
https://doi.org/10.1038/380451a0 pmid: 8602245
99 Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E. and Selvin, P. R. (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300, 2061–2065.
https://doi.org/10.1126/science.1084398 pmid: 12791999
100 Yildiz, A., Tomishige, M., Vale, R. D. and Selvin, P. R. (2004) Kinesin walks hand-over-hand. Science, 303, 676–678.
https://doi.org/10.1126/science.1093753 pmid: 14684828
101 Yildiz, A., Park, H., Safer, D., Yang, Z., Chen, L. Q., Selvin, P. R. and Sweeney, H. L. (2004) Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem., 279, 37223–37226.
https://doi.org/10.1074/jbc.C400252200 pmid: 15254036
102 Ökten, Z., Churchman, L. S., Rock, R. S. and Spudich, J. A. (2004) Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol., 11, 884–887.
https://doi.org/10.1038/nsmb815 pmid: 15286724
103 Alonso, M. C., Drummond, D. R., Kain, S., Hoeng, J., Amos, L. and Cross, R. A. (2007) An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science, 316, 120–123.
https://doi.org/10.1126/science.1136985 pmid: 17412962
104 Block, S. M. (2007) Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J., 92, 2986–2995.
https://doi.org/10.1529/biophysj.106.100677 pmid: 17325011
105 Yildiz, A., Tomishige, M., Gennerich, A. and Vale, R. D. (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell, 134, 1030–1041.
https://doi.org/10.1016/j.cell.2008.07.018 pmid: 18805095
106 Sielaff, H. and Borsch, M. (2013) Twisting and subunit rotation in single F0F1-ATP synthase. Phil. Trans. R. Soc. B 368, 20120024.
https://doi.org/10.1098/rstb.2012.0024
107 Tang, G. Q., Roy, R., Ha, T. and Patel, S. S. (2008) Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol. Cell, 30, 567–577.
https://doi.org/10.1016/j.molcel.2008.04.003 pmid: 18538655
108 Börsch, M., Diez, M., Zimmermann, B., Reuter, R. and Gräber, P. (2002) Stepwise rotation of the gamma-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett., 527, 147–152.
https://doi.org/10.1016/S0014-5793(02)03198-8 pmid: 12220651
109 Harada, Y., Ohara, O., Takatsuki, A., Itoh, H., Shimamoto, N. and Kinosita, K. Jr. (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature, 409, 113–115.
https://doi.org/10.1038/35051126 pmid: 11343125
110 Pilizota, T., Sowa, Y. and Berry, R. M. (2009) Single-Molecule Studies of Rotary Molecular Motors. In Handbook of Single-Molecule Biophysics, P. Hinterdorfer and A. Oijen, Editors. PP. 183–216. Publisher: Springer US.
111 Brinks, D., Hildner, R., van Dijk, E. M., Stefani, F. D., Nieder, J. B., Hernando, J. and van Hulst, N. F. (2014) Ultrafast dynamics of single molecules. Chem. Soc. Rev., 43, 2476–2491.
https://doi.org/10.1039/c3cs60269a pmid: 24473271
112 Hildner, R., Brinks, D., Nieder, J. B., Cogdell, R. J. and van Hulst, N. F. (2013) Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science, 340, 1448–1451.
https://doi.org/10.1126/science.1235820 pmid: 23788794
113 Gösch, M. and Rigler, R. (2005) Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv. Drug Deliv. Rev., 57, 169–190.
https://doi.org/10.1016/j.addr.2004.07.016 pmid: 15518928
[1] Krishna Choudhary, Fei Deng, Sharon Aviran. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions[J]. Quant. Biol., 2017, 5(1): 3-24.
[2] Yijun Guo, Bing Wei, Shiyan Xiao, Dongbao Yao, Hui Li, Huaguo Xu, Tingjie Song, Xiang Li, Haojun Liang. Recent advances in molecular machines based on toehold-mediated strand displacement reaction[J]. Quant. Biol., 2017, 5(1): 25-41.
[3] Russell Brown, Andreas Lengeling, Baojun Wang. Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages[J]. Quant. Biol., 2017, 5(1): 42-54.
[4] Mehdi Sadeghpour, Alan Veliz-Cuba, Gábor Orosz, Krešimir Josić, Matthew R. Bennett. Bistability and oscillations in co-repressive synthetic microbial consortia[J]. Quant. Biol., 2017, 5(1): 55-66.
[5] Jingwen Guan, Xu Shi, Roberto Burgos, Lanying Zeng. Visualization of phage DNA degradation by a type I CRISPR-Cas system at the single-cell level[J]. Quant. Biol., 2017, 5(1): 67-75.
[6] Keith C. Heyde, MaryJoe K. Rice, Sung-Ho Paek, Felicia Y. Scott, Ruihua Zhang, Warren C. Ruder. Modeling information exchange between living and artificial cells[J]. Quant. Biol., 2017, 5(1): 76-89.
[7] Hailin Meng, Yingfei Ma, Guoqin Mai, Yong Wang, Chenli Liu. Construction of precise support vector machine based models for predicting promoter strength[J]. Quant. Biol., 2017, 5(1): 90-98.
[8] Weizhong Tu, Shaozhen Ding, Ling Wu, Zhe Deng, Hui Zhu, Xiaotong Xu, Chen Lin, Chaonan Ye, Minlu Han, Mengna Zhao, Juan Liu, Zixin Deng, Junni Chen, Dong-Qing Wei, Qian-Nan Hu. SynBioEcoli: a comprehensive metabolism network of engineered E. coli in three dimensional visualization[J]. Quant. Biol., 2017, 5(1): 99-104.
[9] Bingxiang Xu, Zhihua Zhang. Computational inference of physical spatial organization of eukaryotic genomes[J]. Quant. Biol., 2016, 4(4): 302-309.
[10] Guanghui Zhu, Xing-Ming Zhao, Jun Wu. A survey on biomarker identification based on molecular networks[J]. Quant. Biol., 2016, 4(4): 310-319.
[11] Yasen Jiao, Pufeng Du. Performance measures in evaluating machine learning based bioinformatics predictors for classifications[J]. Quant. Biol., 2016, 4(4): 320-330.
[12] Zhun Miao, Xuegong Zhang. Differential expression analyses for single-cell RNA-Seq: old questions on new data[J]. Quant. Biol., 2016, 4(4): 243-260.
[13] Petr Kloucek, Armin von Gunten. On the possibility of identifying human subjects using behavioural complexity analyses[J]. Quant. Biol., 2016, 4(4): 261-269.
[14] Sebastián Torcida, Paula Gonzalez, Federico Lotto. A resistant method for landmark-based analysis of individual asymmetry in two dimensions[J]. Quant. Biol., 2016, 4(4): 270-282.
[15] Jing Qin, Bin Yan, Yaohua Hu, Panwen Wang, Junwen Wang. Applications of integrative OMICs approaches to gene regulation studies[J]. Quant. Biol., 2016, 4(4): 283-301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed