Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 464-473    https://doi.org/10.1007/s11783-012-0430-y
RESEARCH ARTICLE
Removal of elemental mercury with Mn/Mo/Ru/Al2O3 membrane catalytic system
Yongfu GUO1,2, Naiqiang YAN1(), Ping LIU1, Shijian YANG1, Juan WANG1, Zan QU1
1. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
 Download: PDF(404 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, a catalytic membrane using Mn/Mo/Ru/Al2O3 as the catalyst was employed to remove elemental mercury (Hg0) from flue gas at low temperature. Compared with traditional catalytic oxidation (TCO) mode, Mn/Al2O3 membrane catalytic system had much higher removal efficiency of Hg0. After the incorporation of Mo and Ru, the production of Cl2 from the Deacon reaction and the retainability for oxidants over Mn/Al2O3 membrane were greatly enhanced. As a result, the oxidization of Hg0 over Mn/Al2O3 membrane was obviously promoted due to incorporation of Mo and Ru. In the presence of 8 ppmv HCl, the removal efficiency of Hg0 by Mn/Mo/Ru/Al2O3 membrane reached 95% at 423 K. The influence of NO and SO2 on Hg0 removal were insignificant even if 200 ppmv NO and 1000 ppmv SO2 were used. Moreover, compared with the TCO mode, the Mn/Mo/Ru/Al2O3 membrane catalytic system could remarkably reduce the demanded amount of oxidants for Hg0 removal. Therefore, the Mn/Mo/Ru/Al2O3 membrane catalytic system may be a promising technology for the control of Hg0 emission.

Keywords flue gas      elemental mercury      membrane      catalysis      transition metal     
Corresponding Author(s): YAN Naiqiang,Email:nqyan@sjtu.edu.cn   
Issue Date: 01 June 2013
 Cite this article:   
Yongfu GUO,Naiqiang YAN,Ping LIU, et al. Removal of elemental mercury with Mn/Mo/Ru/Al2O3 membrane catalytic system[J]. Front Envir Sci Eng, 0, (): 464-473.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0430-y
https://academic.hep.com.cn/fese/EN/Y0/V/I/464
Fig.1  Experimental scheme of the MCs
Fig.2  X-ray diffraction patterns (a) Mn catalyst and (b) Mn-Mo-Ru catalyst
catalystsSBET/(m2·g-1)surface atom concentrations obtained by AAS or EDX/%pore diameter/μm
ClOMnMoRuO/Mn
virgin tube4.1-46.2----4.7
Mn1.4-40.88.1--5.01.9
Mn-Mo1.5-41.08.01.75-5.11.6
Mn-Ru2.1NA41.28.1-0.95.11.7
Mn-Mo-Ru1.3NA41.98.01.640.85.31.3
Tab.1  Composition and properties of different catalysts
Fig.3  Adsorption curves of Hg with catalysts doped with various transition metals, at 423 K, [HCl] = [SO] = 0, was about 24 ppbv, air was used as carrier gas except Mn/N with N as carrier gas
Fig.4  Removal efficiencies of Hg with the catalysts doped with various transition metals, at 423 K, [HCl] = 8 ppmv, [SO] = 0, was about 23.5 ppbv, and air was used as carrier gas
Fig.5  Influence of Cl on Hg removal with Mn-Mo-Ru catalyst, at 423 K, air as carrier gas, was about 23 ppbv, [Cl] = 0.5 ppmv, [SO] = [HCl] = 0
Fig.6  Influence on Hg removal with intermittent injection of HCl in the MCs and the TCO mode, [HCl] = 8 ppmv, was about 23 ppbv, air as carrier gas, [SO] = 0, Mn-Mo-Ru as catalyst, = 423 K
Fig.7  Influence of SO on the removal for Hg, was about 23 ppbv, air as carrier gas, = 423 K
Fig.8  Influence on Hg removal with various concentration of SO (a, [HCl] = [NO] = 0; b, [HCl] = 0, [NO] = 100 ppmv; c, [HCl] = 8 ppmv, [NO] = 0; d, [HCl] = 8 ppmv, [NO] = 100 ppmv; and e, [HCl] = 8 ppmv, [NO] = 200 ppmv. Air was used as carrier gas, Mn-Mo-Ru as catalyst, = 423 K, was about 23.2 ppbv)
concentration of SO2removal efficiencies of Hg0/%
[NO] = 0[NO] = 100 ppmv[NO] = 200 ppmv
50088.991.795.3
100080.583.386.8
150070.971.972.6
Tab.2  Influence of NO on sulfur-tolerance with Mn-Mo-Ru catalyst and 8 ppmv HCl
Fig.9  TPR profiles and the peak results (a) Mn catalyst, (b) Mn-Mo-Ru catalyst (dash is fitted results), symbol denotes the area of corresponding reduction peak
catalystsmaximum reduction temperature/Kratio of Mn4+/Mn3+ of TPR dataratio of Mn4+/Mn3+ of XPS data
MnO2→Mn2O3Mn2O3→Mn3O4MoO3→MoO2RuO2→Ru
Mn638739--1.771.63
Mn-Mo-Ru6607808405202.792.52
Tab.3  Results of H2-TPR profiles of Mn and Mn-Mo-Ru catalysts
Fig.10  XPS spectroscopes of Mn 2p, Mo 3d, Ru 3d, Hg 4f and S 2P (dash is fitted results) (a) Mn 2p, N as carrier gas; (b) Mn 2p, air as carrier gas; (c) S 2p, air as carrier gas; (d) Mo 3d, air as carrier gas; (e) Ru 3d, air as carrier gas; (f) Hg 4f, air as carrier gas. Mn-Mo-Ru catalyst was used, was about 15-20 ppbv, [HCl] = 8 ppmv, [SO] = 1000 ppmv
Fig.11  Mercury speciation results of three replicate tests, Mn-Mo-Ru was used as catalyst, was about 23 ppbv, [HCl] = 8 ppmv, [SO] = 0, = 423 K
1 Liu Y, Kelly D J A, Yang H Q, Lin C C H, Kuznicki S M, Xu Z G. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant. Environmental Science & Technology , 2008, 42(16): 6205–6210
doi: 10.1021/es800532b pmid:18767688
2 Li Y, Murphy P D, Wu C Y, Powers K W, Bonzongo J C J. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. Environmental Science & Technology , 2008, 42(14): 5304–5309
doi: 10.1021/es8000272 pmid:18754385
3 Guo Y F, Yan N Q, Yang S J, Qu Z, Wu Z B, Liu Y, Liu P, Jia J P. Conversion of elemental mercury with a novel membrane delivery catalytic oxidation system (MDCOs). Environmental Science & Technology , 2011, 45(2): 706–711
doi: 10.1021/es1020586 pmid:21158439
4 Niksa S, Fujiwara N. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations. Journal of the Air & Waste Management Association , 2005, 55(7): 970–977
pmid:16111136
5 Kim M H, Ham S W, Lee J B. Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl2/TiO2-based catalysts in SCR process. Applied Catalysis B: Environmental , 2010, 99(1-2): 272–278
doi: 10.1016/j.apcatb.2010.06.032
6 Lee W J, Bae G N. Removal of elemental mercury (Hg(O)) by nanosized V2O5/TiO2 catalysts. Environmental Science & Technology , 2009, 43(5): 1522–1527
doi: 10.1021/es802456y PMID:19350929
7 He S, Zhou J, Zhu Y, Luo Z, Ni M, Cen K. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst. Energy & Fuels , 2009, 23(1): 253–259
doi: 10.1021/ef800730f
8 Kamata H, Ueno S, Sato N, Naito T. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas. Fuel Processing Technology , 2009, 90(7-8): 947–951
doi: 10.1016/j.fuproc.2009.04.010
9 Straube S, Hahn T, Koeser H. Adsorption and oxidation of mercury in tail-end SCR-DeNOx plants—bench scale investigations and speciation experiments. Applied Catalysis B: Environmental , 2008, 79(3): 286–295
doi: 10.1016/j.apcatb.2007.10.031
10 Liu F D, He H, Ding Y, Zhang C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental , 2009, 93(1-2): 194–204
doi: 10.1016/j.apcatb.2009.09.029
11 Jing G H, Li J H, Yang D, Hao J M. Promotional mechanism of tungstation on selective catalytic reduction of NOx by methane over In/WO3/ZrO2. Applied Catalysis B: Environmental , 2009, 91(1-2): 123–134
doi: 10.1016/j.apcatb.2009.05.015
12 Presto A A, Granite E J. Noble metal catalysts for mercury oxidation in utility flue gas gold, palladium and platinum formulations. Platinum Metals Review , 2008, 52(3): 144–154
doi: 10.1595/147106708X319256
13 Poulston S, Granite E J, Pennline H W, Myers C R, Stanko D P, Hamilton H, Rowsell L, Smith A W J, Ilkenhans T, Chu W. Metal sorbents for high temperature mercury capture from fuel gas. Fuel , 2007, 86(14): 2201–2203
doi: 10.1016/j.fuel.2007.05.015
14 Li J F, Yan N Q, Qu Z, Qiao S H, Yang S J, Guo Y F, Liu P, Jia J P. Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures. Environmental Science & Technology , 2010, 44(1): 426–431
doi: 10.1021/es9021206 pmid:19950921
15 Qiao S H, Chen J, Li J F, Qu Z, Liu P, Yan N Q, Jia J P. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina. Industrial & Engineering Chemistry Research , 2009, 48(7): 3317–3322
doi: 10.1021/ie801478w
16 Zhao Y C, Zhang J Y, Liu J, Diaz-Somoano M, Martinez-Tarazona M R, Zheng C G. Study on mechanism of mercury oxidation by fly ash from coal combustion. Chinese Science Bulletin , 2010, 55(2): 163–167
doi: 10.1007/s11434-009-0567-7
17 Li J H, Liang X, Xu S C, Hao J M. Catalytic performance of manganese cobalt oxides on methane combustion at low temperature. Applied Catalysis B: Environmental , 2009, 90(1-2): 307–312
doi: 10.1016/j.apcatb.2009.03.027
18 Galbreath K C, Zygarlicke C J. Mercury transformations in coal combustion flue gas. Fuel Processing Technology , 2000, 65-66: 289–310
doi: 10.1016/S0378-3820(99)00102-2
19 Pan H Y, Minet R G, Benson S W, Tsotsis T T. Process for converting hydrogen chloride to chlorine. Industrial & Engineering Chemistry Research , 1994, 33(12): 2996–3003
doi: 10.1021/ie00036a014
20 Li Y, Murphy P, Wu C Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Processing Technology , 2008, 89(6): 567–573
doi: 10.1016/j.fuproc.2007.10.009
21 Cao Y, Chen B, Wu J, Cui H, Smith J, Chen C K, Chu P, Pan W P. Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal. Energy & Fuels , 2007, 21(1): 145–156
doi: 10.1021/ef0602426
22 Lindbauer R L, Wurst F, Prey T. Combustion dioxin suppression in municipal solid-waste incineration with sulfur additives. Chemosphere , 1992, 25(7-10): 1409–1414
doi: 10.1016/0045-6535(92)90162-K
23 Norton G A, Yang H Q, Brown R C, Laudal D L, Dunham G E, Erjavec J. Heterogeneous oxidation of mercury in simulated post combustion conditions. Fuel , 2003, 82(2): 107–116
doi: 10.1016/S0016-2361(02)00254-5
24 Zhao Y X, Mann M D, Olson E S, Pavlish J H, Dunham G E. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions. Journal of the Air & Waste Management Association (1995) , 2006, 56(5): 628–635
pmid:16739799
25 Krishnakumar B, Helble J J. Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms. Environmental Science & Technology , 2007, 41(22): 7870–7875
doi: 10.1021/es071087s pmid:18075101
26 Niksa S, Helble J J, Fujiwara N. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems. Environmental Science & Technology , 2001, 35(18): 3701–3706
doi: 10.1021/es010728v pmid:11783648
27 Agarwal H, Stenger H G, Wu S, Fan Z. Effects of H2O, SO2, and NO on homogeneous Hg oxidation by Cl2. Energy & Fuels , 2006, 20(3): 1068–1075
doi: 10.1021/ef050388p
28 Hall B, Schager P, Lindqvist O. Chemical reactions of mercury on combustion flue gases. Water, Air, and Soil Pollution , 1991, 56(1): 3–14
doi: 10.1007/BF00342256
29 Hrdlicka J A, Seames W S, Mann M D, Muggli D S, Horabik C A. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters. Environmental Science & Technology , 2008, 42(17): 6677–6682
doi: 10.1021/es8001844 pmid:18800548
30 álvarez-Galván M C, de la Pe?a O’Shea V A, Fierro J L G, Arias P L. Alumina-supported manganese- and manganese-palladium oxide catalysts for VOCs combustion. Catalysis Communications , 2003, 4(5): 223–228
doi: 10.1016/S1566-7367(03)00037-2
31 Ji L, Sreekanth P M, Smirniotis P G, Thiel S W, Pinto N G. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energy & Fuels , 2008, 22(4): 2299–2306
doi: 10.1021/ef700533q
32 Liu H, Xu Y. H2-TPR study on Mo/HZSM-5 catalyst for CH4 dehydroaromatization. Chinese Journal of Catalysis , 2006, 27(4): 319–323
doi: 10.1016/S1872-2067(06)60020-X
33 Mazzieri V, Coloma-Pascual F, Arcoya A, L'Argentière P, Fígoli N S. XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Applied Surface Science , 2003, 210(3-4): 222–230
doi: 10.1016/S0169-4332(03)00146-6
34 Bianchi C L. TPR and XPS investigations of Co/Al2O3 catalysts promoted with Ru, Ir and Pt. Catalysis Letters , 2001, 76(3-4): 155–159
doi: 10.1023/A:1012289211065
35 NIST XPS Database. http://srdata.nist.gov/xps/.accessed August, 2007
36 López N, Gómez-Segura J, Marín R P, Pérez-Ramírez J. Mechanism of HCl oxidation (Deacon process) over RuO2. Journal of Catalysis , 2008, 255(1): 29–39
doi: 10.1016/j.jcat.2008.01.020
[1] Yang Yu, Changchun Xin, Yuxiang Liu, Fei Gao, Lei Zhang, Hui Jia, Jie Wang. Portable fluorescence instrument for detecting membrane integrity in membrane bioreactor (MBR)[J]. Front. Environ. Sci. Eng., 2024, 18(2): 23-.
[2] Huijuan Xie, Haiguang Zhang, Xu Wang, Gaoliang Wei, Shuo Chen, Xie Quan. Conductive and stable polyphenylene/CNT composite membrane for electrically enhanced membrane fouling mitigation[J]. Front. Environ. Sci. Eng., 2024, 18(1): 3-.
[3] Manshu Zhao, Xinhua Wang, Shuguang Wang, Mingming Gao. Cr-containing wastewater treatment based on Cr self-catalysis: a critical review[J]. Front. Environ. Sci. Eng., 2024, 18(1): 1-.
[4] Zhou Zhang, Kai Huo, Tingxuan Yan, Xuwen Liu, Maocong Hu, Zhenhua Yao, Xuguang Liu, Tao Ye. Mechanistic insights into the selective photocatalytic degradation of dyes over TiO2/ZSM-11[J]. Front. Environ. Sci. Eng., 2023, 17(8): 101-.
[5] Chenglin Cai, Juexiu Li, Yi He, Jinping Jia. Target the neglected VOCs emission from iron and steel industry in China for air quality improvement[J]. Front. Environ. Sci. Eng., 2023, 17(8): 95-.
[6] Yuxin Lu, Xiang Li, Cagnetta Giovanni, Bo Wang. Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water[J]. Front. Environ. Sci. Eng., 2023, 17(7): 89-.
[7] Huan Xi, Fanlu Min, Zhanhu Yao, Jianfeng Zhang. Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters[J]. Front. Environ. Sci. Eng., 2023, 17(6): 71-.
[8] Qian Li, Zhaoyang Hou, Xingyuan Huang, Shuming Yang, Jinfan Zhang, Jingwei Fu, Yu-You Li, Rong Chen. Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification and Anammox[J]. Front. Environ. Sci. Eng., 2023, 17(6): 68-.
[9] Haiguang Zhang, Lei Du, Jiajian Xing, Gaoliang Wei, Xie Quan. Electro-conductive crosslinked polyaniline/carbon nanotube nanofiltration membrane for electro-enhanced removal of bisphenol A[J]. Front. Environ. Sci. Eng., 2023, 17(5): 59-.
[10] Jie Liu, Junjun Ma, Weizhang Zhong, Jianrui Niu, Zaixing Li, Xiaoju Wang, Ge Shen, Chun Liu. Penicillin fermentation residue biochar as a high-performance electrode for membrane capacitive deionization[J]. Front. Environ. Sci. Eng., 2023, 17(4): 51-.
[11] Zhijun Liu, Xi Luo, Senlin Shao, Xue Xia. Electrocatalytic reduction of nitrate using Pd-Cu modified carbon nanotube membranes[J]. Front. Environ. Sci. Eng., 2023, 17(4): 40-.
[12] Shuang Zhang, Shuai Liang, Yifan Gao, Yang Wu, Xia Huang. Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment[J]. Front. Environ. Sci. Eng., 2023, 17(3): 30-.
[13] Hanqing Fan, Yuxuan Huang, Ngai Yin Yip. Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities[J]. Front. Environ. Sci. Eng., 2023, 17(2): 25-.
[14] Mourin Jarin, Zeou Dou, Haiping Gao, Yongsheng Chen, Xing Xie. Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water[J]. Front. Environ. Sci. Eng., 2023, 17(2): 16-.
[15] Jiaheng Teng, Ying Deng, Xiaoni Zhou, Wenfa Yang, Zhengyi Huang, Hanmin Zhang, Meijia Zhang, Hongjun Lin. A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process[J]. Front. Environ. Sci. Eng., 2023, 17(10): 129-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed