Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (3) : 314-322    https://doi.org/10.1007/s11706-019-0466-z
RESEARCH ARTICLE
Preparation and optimization of freestanding GaN using low-temperature GaN layer
Yuan TIAN1,2,3, Yongliang SHAO1(), Xiaopeng HAO1, Yongzhong WU1, Lei ZHANG1, Yuanbin DAI1, Qin HUO1, Baoguo ZHANG1, Haixiao HU1
1. State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
2. Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education), Taiyuan University of Technology, Taiyuan 030024, China
3. College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
 Download: PDF(2154 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, a method to acquire freestanding GaN by using low temperature (LT)-GaN layer was put forward. To obtain porous structure and increase the crystallinity, LT-GaN layers were annealed at high temperature. The morphology of LT-GaN layers with different thickness and annealing temperature before and after annealing was analyzed. Comparison of GaN films using different LT-GaN layers was made to acquire optimal LT-GaN process. According to HRXRD and Raman results, GaN grown on 800 nm LT-GaN layer which was annealed at 1090 °C has good crystal quality and small stress. The GaN film was successfully separated from the substrate after cooling down. The self-separation mechanism of this method was discussed. Cross-sectional EBSD mapping measurements were carried out to investigate the effect of LT-buffer layer on improvement of crystal quality and stress relief. The optical property of the obtained freestanding GaN film was also determined by PL measurement.

Keywords GaN      self-separation      low-temperature      annealing     
Corresponding Author(s): Yongliang SHAO   
Online First Date: 03 July 2019    Issue Date: 29 September 2019
 Cite this article:   
Yuan TIAN,Yongliang SHAO,Xiaopeng HAO, et al. Preparation and optimization of freestanding GaN using low-temperature GaN layer[J]. Front. Mater. Sci., 2019, 13(3): 314-322.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0466-z
https://academic.hep.com.cn/foms/EN/Y2019/V13/I3/314
Fig.1  (a)(b)(c) Plan-view SEM images of the morphology of LT-GaN as a function of the LT-GaN thickness after annealing at 1090 °C. (d)(e)(f) Plan-view and (g)(h)(i) cross-section SEM images of the GaN film grown on LT-GaN with different thickness.
Fig.2  (a)(b)(c) Plan-view SEM images of the morphology of LT-GaN as a function of the LT-GaN annealing temperature with a thickness of 800 nm. (d)(e)(f) Plan-view and (g)(h)(i) cross-section SEM images of the GaN film grown on LT-GaN under different annealing temperatures.
Fig.3  The FWHM change trend of GaN film as a function of the LT-GaN thickness from (a) the symmetric (0 0 2) plane and (b) the asymmetric (1 0 2) plane. The FWHM change trend of GaN film as a function of the annealing temperature from (c) the symmetric (0 0 2) plane and (d) the asymmetric (1 0 2) plane.
Fig.4  Raman spectra of GaN films grown on annealed LT-GaN with different (a) thickness and (b) annealing temperature.
Fig.5  The FWHM of GaN film grown on the MOCVD-GaN layer and the annealed LT-GaN layer from (a) symmetric (0 0 2) plane and (b) asymmetric (1 0 2) plane.
Fig.6  Raman spectra of GaN films grown on the MOCVD-GaN layer and the annealed LT-GaN layer.
Fig.7  A photo of 2 inch freestanding GaN grown under the best process condition.
Fig.8  PL spectrum of the GaN film grown on LT-GaN which was annealed at 1090 °C with a thickness of 800 nm.
Fig.9  Cross-section SEM image of 200 μm GaN film grown on 800 nm LT-GaN annealed at 1090 °C.
Fig.10  (a) EBSD Kikuchi pattern, (b) pole figures and (c) texture component result detected in cross-sectional GaN.
1 V Darakchieva, T Paskova, P P Paskov, et al.. Residual strain in HVPE GaN free-standing and re-grown homoepitaxial layers. Physica Status Solidi A: Applied Research, 2003, 195(3): 516–522
https://doi.org/10.1002/pssa.200306145
2 E Richter, M Gründer, B Schineller, et al.. GaN boules grown by high rate HVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8(5): 1450–1454
https://doi.org/10.1002/pssc.201000901
3 W Luo, X Wang, H Xiao, et al.. Growth and fabrication of AlGaN/GaN HEMT based on Si (111) substrates by MOCVD. Microelectronics Journal, 2008, 39(9): 1108–1111
https://doi.org/10.1016/j.mejo.2008.01.083
4 Y Cui, L Li. Evolution of spirals during molecular beam epitaxy of GaN on 6H-SiC (0001). Physical Review B: Condensed Matter, 2002, 66(15): 155330
https://doi.org/10.1103/PhysRevB.66.155330
5 S I Cho, K Chang, M S Kwon. Strain analysis of a GaN epilayer grown on a c-plane sapphire substrate with different growth times. Journal of Materials Science, 2007, 42(10): 3569–3572
https://doi.org/10.1007/s10853-007-1562-5
6 W Qian, M Skowronski, M De Graef, et al.. Microstructural characterization of α-GaN films grown on sapphire by organometallic vapor phase epitaxy. Applied Physics Letters, 1995, 66(10): 1252–1254
https://doi.org/10.1063/1.113253
7 H M Kim, J E Oh, T W Kang. Preparation of large area free-standing GaN substrates by HVPE using mechanical polishing liftoff method. Materials Letters, 2001, 47(4‒5): 276–280
https://doi.org/10.1016/S0167-577X(00)00249-4
8 M K Kelly, R P Vaudo, V M Phanse, et al.. Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 3A): L217–L219
https://doi.org/10.1143/JJAP.38.L217
9 Y Oshima, T Eri, M Shibata, et al.. Fabrication of freestanding GaN wafers by hydride vapor-phase epitaxy with void-assisted separation. Physica Status Solidi, 2002, 194(2): 554–558
https://doi.org/10.1002/1521-396X(200212)194:2<554::AID-PSSA554>3.0.CO;2-B
10 Y Oshima, T Eri, M Shibata, et al.. Preparation of freestanding GaN wafers by hydride vapor phase epitaxy with void-assisted separation. Japanese Journal of Applied Physics, 2003, 42(Part 2, No.1A/B): L1–L3
https://doi.org/10.1143/JJAP.42.L1
11 C L Chao, C H Chiu, Y J Lee, et al.. Freestanding high quality GaN substrate by associated GaN nanorods self-separated hydride vapor-phase epitaxy. Applied Physics Letters, 2009, 95(5): 051905
https://doi.org/10.1063/1.3195684
12 K Motoki, T Okahisa, S Nakahata, et al.. Preparation of large GaN substrates. Materials Science and Engineering B, 2002, 93(1‒3): 123–130
https://doi.org/10.1016/S0921-5107(02)00048-X
13 L Zhang, Y Shao, X Hao, et al.. Improvement of crystal quality HVPE grown GaN on an H3PO4 etched template. CrystEngComm, 2011, 13(15): 5001–5004
https://doi.org/10.1039/c1ce05147d
14 L Zhang, Y Dai, Y Wu, et al.. Epitaxial growth of a self-separated GaN crystal by using a novel high temperature annealing porous template. CrystEngComm, 2014, 16(38): 9063–9068
https://doi.org/10.1039/C4CE01188K
15 D Gogova, A Kasic, H Larsson, et al.. Strain-free bulk-like GaN grown by hydride-vapor-phase-epitaxy on two-step epitaxial lateral overgrown GaN template. Journal of Applied Physics, 2004, 96(1): 799–806
https://doi.org/10.1063/1.1753073
16 B Gibart, P Beaumont, P Vennegues. Nitride semiconductors. In: P Ruterana, M Albrecht, J Neugebauer, eds. Handbook on Materials and Devices. Weinheim, Germany: Wiley-VCH, 2003, 45
17 Y Tian, Y Shao, Y Wu, et al.. Direct growth of freestanding GaN on C-face SiC by HVPE. Scientific Reports, 2015, 5(1): 10748
https://doi.org/10.1038/srep10748 pmid: 26034939
18 S Tripathy, S J Chua, P Chen, et al.. Micro-Raman investigation of strain in GaN and AlxGa1−xN/GaN heterostructures grown on Si(111). Journal of Applied Physics, 2002, 92(7): 3503–3510
https://doi.org/10.1063/1.1502921
19 C Kisielowski, J Krüger, S Ruvimov, et al.. Strain-related phenomena in GaN thin films. Physical Review B: Condensed Matter, 1996, 54(24): 17745–17753
https://doi.org/10.1103/PhysRevB.54.17745 pmid: 9985904
20 P Boguslawski, E L Briggs, J Bernholc. Native defects in gallium nitride. Physical Review B, 1995, 51(23): 17255–17258
https://doi.org/10.1103/PhysRevB.51.17255 pmid: 9978750
21 F J Xu, B Shen, L Lu, et al.. Different origins of the yellow luminescence in as-grown high-resistance GaN and unintentional-doped GaN films. Journal of Applied Physics, 2010, 107(2): 023528
https://doi.org/10.1063/1.3294965
22 J L Lyons, A Janotti, C G Van de Walle. Carbon impurities and the yellow luminescence in GaN. Applied Physics Letters, 2010, 97(15): 152108
https://doi.org/10.1063/1.3492841
23 O Ambacher, M S Brandt, R Dimitrov, et al.. Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition. Journal of Vacuum Science & Technology B, 1996, 14(6): 3532–3542
https://doi.org/10.1116/1.588793
24 A Rebey, T Boufaden, B El Jani. In situ optical monitoring of the decomposition of GaN thin films. Journal of Crystal Growth, 1999, 203(1‒2): 12–17
https://doi.org/10.1016/S0022-0248(99)00081-0
25 B V L’vov. Kinetics and mechanism of thermal decomposition of GaN. Thermochimica Acta, 2000, 360(1): 85–91
https://doi.org/10.1016/S0040-6031(00)00558-X
26 Y Shao, L Zhang, X Hao, et al.. Large area stress distribution in crystalline materials calculated from lattice deformation identified by electron backscatter diffraction. Scientific Reports, 2014, 4: 5934 (5 pages)
https://doi.org/10.1038/srep05934 pmid: 25091314
27 Y Shao, Y Dai, X Hao, et al.. EBSD crystallographic orientation research on strain distribution in hydride vapor phase epitaxy GaN grown on patterned substrate. CrystEngComm, 2013, 15(39): 7965–7969
https://doi.org/10.1039/c3ce40802g
28 A J Wilkinson, P B Hirsh. Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron, 1997, 28: 279–308
29 N Stanford, D Dunne, M Ferry. Deformation and annealing of (011)[011] oriented Al single crystals. Acta Materialia, 2003, 51(3): 665–676
https://doi.org/10.1016/S1359-6454(02)00445-7
[1] Wei WANG, Jinhui GONG, Siyu GUO, Lin JIANG, Shaochao LIU, Li WANG. Synthesis of halide perovskite microwires via methylammonium cations reaction[J]. Front. Mater. Sci., 2020, 14(3): 332-340.
[2] Baolin ZHAO, Mikhail FEOFANOV, Dominik LUNGERICH, Hyoungwon PARK, Tobias REJEK, Judith WITTMANN, Marco SARCLETTI, Konstantin AMSHAROV, Marcus HALIK. Non-substituted fused bis-tetracene based thin-film transistor with self-assembled monolayer hybrid dielectrics[J]. Front. Mater. Sci., 2020, 14(3): 314-322.
[3] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[4] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[5] Rui ZHU, Feiyang LIU, Zixing WANG, Bin WEI, Guo CHEN. Investigation of post-thermal annealing-induced enhancement in photovoltaic performance for squaraine-based organic solar cells[J]. Front. Mater. Sci., 2020, 14(1): 81-88.
[6] Honghong ZOU, Lei WANG, Chenghui ZENG, Xiaolei GAO, Qingqing WANG, Shengliang ZHONG. Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications[J]. Front. Mater. Sci., 2018, 12(4): 327-347.
[7] Pengpeng ZHANG, Zhitian LING, Guo CHEN, Bin WEI. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye[J]. Front. Mater. Sci., 2018, 12(2): 139-146.
[8] Jingling CHEN, Rong PENG, Xiaonong CHEN. Hydrophobic interaction membrane chromatography for bioseparation and responsive polymer ligands involved[J]. Front. Mater. Sci., 2017, 11(3): 197-214.
[9] Somdutta SINGHA, Swapankumar GHOSH. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline[J]. Front. Mater. Sci., 2017, 11(3): 276-283.
[10] Guo CHEN, Changfeng SI, Pengpeng ZHANG, Kunping GUO, Saihu PAN, Wenqing ZHU, Bin WEI. Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer[J]. Front. Mater. Sci., 2017, 11(3): 233-240.
[11] Wei GUO,Li MENG,Hongcai WANG,Guochun YAN,Weimin MAO. Early-stage nucleation of manganese sulfide particle and its processing evolution in Fe--3wt.%Si alloys[J]. Front. Mater. Sci., 2016, 10(1): 66-72.
[12] Xiangcang REN,Chuanjin TIAN,Sa LI,Yucheng ZHAO,Chang-An WANG. Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes[J]. Front. Mater. Sci., 2015, 9(3): 234-240.
[13] Bing TENG,Weijin KONG,Ke FENG,Fei YOU,Lifeng CAO,Degao ZHONG,Lun HAO,Qing SUN,Sander van SMAALEN,Wenhui GONG. Synthesis, crystal structure and thermal analysis of a new stilbazolium salt crystal[J]. Front. Mater. Sci., 2015, 9(2): 147-150.
[14] Meng-Chang LIN,Shang-Qiu LIN,Jun-Yen UAN. Effect of annealing temperature on the microstructure and mechanical properties of an as-rolled Mg--9wt.%Li--3wt.%Al--1wt.%Zn alloy sheet[J]. Front. Mater. Sci., 2014, 8(3): 271-280.
[15] Zai-Feng LI, Yuan WU, Fu-Tao ZHANG, Yu-Yang CAO, Shou-Peng WU, Ting WANG. Preparation and properties of poly HTBN-based urethane--urea/organo reactive montmorillonite nanocomposites[J]. Front Mater Sci, 2012, 6(4): 338-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed