Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    0, Vol. Issue () : 53-61    https://doi.org/10.15302/J-FASE-2014006
RESEARCH ARTICLE
Managing nutrient for both food security and environmental sustainability in China: an experiment for the world
Fusuo ZHANG(),Zhenling CUI,Weifeng ZHANG
Center for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China
 Download: PDF(985 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The challenges of how to simultaneously ensure global food security, improve nitrogen use efficiency (NUE) and protect the environment have received increasing attention. However, the dominant agricultural paradigm still considers high yield and reducing environmental impacts to be in conflict with one another. Here we examine a Three-Step-Strategy of past 20 years to produce more with less in China, showing that tremendous progress has been made to reduce N fertilizer input without sacrificing crop yield. The first step is to use technology for in-season root-zone nutrient management to significantly increase NUE. The second is to use technology for integrated nutrient management to increase both yield and NUE by 15%–20%. The third step is to use technology for integrated soil-crop system management to increase yield and NUE by 30%–50% simultaneously. These advances can thus be considered an effective agricultural paradigm to ensure food security, while increasing NUE and improving environmental quality.

Keywords integrated nutrient management      integrated soil-crop system management      environmental protection      food security      resource use efficiency     
Corresponding Author(s): Fusuo ZHANG   
Issue Date: 22 May 2014
 Cite this article:   
Fusuo ZHANG,Zhenling CUI,Weifeng ZHANG. Managing nutrient for both food security and environmental sustainability in China: an experiment for the world[J]. Front. Agr. Sci. Eng. , 0, (): 53-61.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014006
https://academic.hep.com.cn/fase/EN/Y0/V/I/53
Fig.1  Conceptual framework for nutrient management development with Three-Step Strategy to synchronously increase crop productivity, improve resource use efficiency, and protect the environment. (1)Reducing input without sacrificing yield by in-season root-zone nutrient management; (2) increasing yield and NUE significantly by 15%–20% by integrated nutrient management; (3) maximizing the productivity and sustainability at the same time to increase yield and NUE by 30%–50% by integrated soil-crop system management. The red dot means current farming practice.
Fig.2  Schematic of in-season root-zone N management for maize production in China, and performance of IRNM for wheat and maize on the North China Plain. Mean N rate, grain yield, N balance, recovery N efficiency (REN) and Nr losses intensity. Modified from Cui et al. [19,20]
Fig.3  Performance of INM in China. (a) 158 locations (red dots) for INM dissemination in China; (b) increased yield, reduced N fertilizer rate, and increased net income of INM for different crops including wheat, maize, rice, vegetable, fruit, rape, and cotton, compared farmers’ practice. Δyield, N fertilizer, and net income mean the different yields, N fertilizer rate, and net income between INM and farmer’s practice. Modified from Zhang et al. [45]
Fig.4  Conceptual framework for the ISSM approach. Using the Hybrid-Maize model [29] (1), we selected the most appropriate combination of planting date, crop maturity, and crop variety to optimize capture of radiation and favorable growing conditions at a given site. Using an IRNM strategy [32, 33] (2), we managed total N supply to match high-yielding crop N requirements in time, space, and quantity. The Table includes mean maize grain yield and modeled yield potential, N balance (fertilizer inputs-harvest outputs), and N applied per unit of grain produced for different management systems. Modified from Chen et al. (2011) [9]
Fig.5  The trends in (a) grain production and chemical nitrogen fertilizer inputs for cereal production in China from 2003 to 2012, and (b) the difference of REN between 2001–2005 and 2011–2012 for rice, wheat and maize. Source data: cereal production comes from FAO; nitrogen fertilizer consumption comes from China’s report of development and research on fertilizer; NUE comes from the Ministry of Agriculture of China.
1 Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671–677
https://doi.org/10.1038/nature01014 pmid: 12167873
2 Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockstr?m J, Sheehan J, Siebert S, Tilman D, Zaks D P. Solutions for a cultivated planet. Nature, 2011, 478(7369): 337–342
https://doi.org/10.1038/nature10452 pmid: 21993620
3 Burney J A, Davis S J, Lobell D B. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 12052–12057
https://doi.org/10.1073/pnas.0914216107 pmid: 20551223
4 Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260–20264
https://doi.org/10.1073/pnas.1116437108 pmid: 22106295
5 IFA. 2013. IFADATA–International Fertilizer Industry Association. www.fertilizer.org/ifa/HomePage/STATISTICS, 2013–<month>11</month>–<day>04</day>
6 Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008–1010
https://doi.org/10.1126/science.1182570 pmid: 20150447
7 Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459–462
https://doi.org/10.1038/nature11917 pmid: 23426264
8 Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, SmithJ. Greenhouse gas mitigation in agriculture. Philosophical Transactions, 2008, 363(1492): 789–813
https://doi.org/10.1098/rstb.2007.2184 pmid: 17827109
9 Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S, Meng Q F, Hou P, Yue S C, R?mheld V, Zhang F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6399–6404
https://doi.org/10.1073/pnas.1101419108 pmid: 21444818
10 Fan M, Shen J, Yuan L, Jiang R, Chen X, Davies W J, Zhang F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 2012, 63(1): 13–24
https://doi.org/10.1093/jxb/err248 pmid: 21963614
11 Le C, Zha Y, Li Y, Sun D, Lu H, Yin B. Eutrophication of lake waters in China: cost, causes, and control. Environmental Management, 2010, 45(4): 662–668
https://doi.org/10.1007/s00267-010-9440-3 pmid: 20177679
12 Zheng X, Han S, Huang Y, Wang Y, Wang M. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 2004, 18(2): GB2018
https://doi.org/10.1029/2003GB002167
13 FAO. FAOSTAT Database. Rome: agriculture production. Food and Agriculture Organization of the United Nations. http://www.fao.org/home/en/, 2014-03-07
14 Cui Z, Chen X, Zhang F. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. Ambio, 2010, 39(5–6): 376–384
https://doi.org/10.1007/s13280-010-0076-6 pmid: 21053721
15 Peng S B, Huang J L, Zhong X H. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Scientia Agricultura Sinica, 2002, 35: 1095–1103 (In Chinese)
16 Zhao R F, Chen X P, Zhang F S, Zhang H, Schroder J, Roemheld V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy Journal, 2006, 98(4): 938–945
https://doi.org/10.2134/agronj2005.0157
17 Dobermann A, Witt C, Dawe D, Abdulrachman S, Gines H C, Nagarajan R, Satawathananont S, Son T T, Tan P S, Wang G H, Chien N V, Thoa V T K, Phung C V, Stalin P, Muthukrishnan P, Ravi V, Babu M, Chatuporn S, Sookthongsa J, Sun Q, Fu R, Simbahan G, Adviento M A A. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 2002, 74(1): 37–66
https://doi.org/10.1016/S0378-4290(01)00197-6
18 Liu X, Ju X, Zhang F, Pan J, Christie P. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain. Field Crops Research, 2003, 83(2): 111–124
https://doi.org/10.1016/S0378-4290(03)00068-6
19 Cui Z L, Chen X P, Miao Y X, Zhang F S, Sun Q P, Schroder J, Zhang H L, Li J L, Shi L W, Xu J F, Ye Y L, Liu C S, Yang Z P, Zhang Q, Huang S M, Bao D J. On-farm evaluation of the improved soil Nmin-based nitrogen management for summer maize in North China Plain. Agronomy Journal, 2008, 100(3): 517–525
https://doi.org/10.2134/agronj2007.0194
20 Cui Z L, Zhang F S, Chen X P, Miao Y X, Li J L, Shi L W, Xu J F, Ye Y L, Liu C S, Yang Z P, Qiang Z, Huang S M, Bao D J. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research, 2008, 105(1–2): 48–55
https://doi.org/10.1016/j.fcr.2007.07.008
21 Cui Z L, Chen X P, Zhang F S. Development of regional nitrogen rate guidelines for intensive cropping systems in China. Agronomy Journal, 2013, 105(5): 1411–1416
https://doi.org/10.2134/agronj2012.0398
22 Zhu Z L. The status, problems and countermeasures of nitrogen fertilizer application in China. In: Li Q K, Zhu Z L, Yu T R, eds. Fertilizer issues of sustainable agriculture development in China. Nanjing: Jiangsu Science and Technology Press, 1998
23 Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45: 915–924 (In Chinese)
24 Dobermann A. Nutrient use efficiency-measurement and management. In: IFA International Workshop on Fertilizer Best Management Practices. Paris: International Fertilizer Industry Association, 2007
25 Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999, 91(3): 357–363
https://doi.org/10.2134/agronj1999.00021962009100030001x
26 Chinese Ministry of Environmental Protection. http://www.gov.cn/jrzg/2010–02/10/content_1532174.htm, http://www.fao.org/home/en/, 2014-03-07
27 Liu X J, Ju X T, Zhang Y, He C, Kopsch J, Zhang F S. Nitrogen deposition in agroecosystems in the Beijing area. Agriculture, Ecosystems & Environment, 2006, 113(1-4): 370–377
https://doi.org/10.1016/j.agee.2005.11.002
28 He C E, Liu X, Fangmeier A, Zhang F. Quantifying the total airborne nitrogen input into agroecosystems in the North China Plain. Agriculture, Ecosystems & Environment, 2007, 121(4): 395–400
https://doi.org/10.1016/j.agee.2006.12.016
29 Shen J L, Tang A H, Liu X J, Fangmeier A, Goulding K T W, Zhang F S. High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain. Environmental Pollution, 2009, 157(11): 3106–3113
https://doi.org/10.1016/j.envpol.2009.05.016 pmid: 19482395
30 Zhang Y, Liu X J, Fangmeier A, Goulding K T W, Zhang F S. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmospheric Environment, 2008, 42(7): 1436–1448
https://doi.org/10.1016/j.atmosenv.2007.11.002
31 Goulding K W T, Bailey N J, Bradbury N J, Hargreaves P, Howe M, Murphy D V, Poulton P R, Willison T W. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist, 1998, 139(1): 49–58
https://doi.org/10.1046/j.1469-8137.1998.00182.x
32 Fahey T J, Williams C J, Rooney-Varga J N, Cleveland C C, Postek K M, Smith S, Bouldin D R. DBouldin D R. Nitrogen deposition in and around an intensive agricultural district in central New York. Journal of Environmental Quality, 1999, 28(5): 1585–1600
https://doi.org/10.2134/jeq1999.00472425002800050025x
33 Zhang W F, Dou Z X, He P, Ju X T, Powlson D, Chadwick D, Norse D, Lu Y L, Zhang Y, Wu L, Chen X P, Cassman K G, Zhang F S. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375–8380
https://doi.org/10.1073/pnas.1210447110 pmid: 23671096
34 Cassman K G. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 5952–5959
https://doi.org/10.1073/pnas.96.11.5952 pmid: 10339523
35 Swaminathan M S. An evergreen revolution. Biologist, 2000, 47(2): 85–89
pmid: 11190235
36 Keating B A, Carberry P S, Bindraban P S, Asseng S, Meinke H, Dixon J. Eco-efficient agriculture: concepts, challenges, and opportunities. Crop Science, 2010, 50(Supplement 1): S-109–S-119
https://doi.org/10.2135/cropsci2009.10.0594
37 Carberry P S, Liang W L, Twomlow S, Holzworth D P, Dimes J P, McClelland T, Huth N I, Chen F, Hochman Z, Keating B A. Scope for improved eco-efficiency varies among diverse cropping systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8381–8386
https://doi.org/10.1073/pnas.1208050110 pmid: 23671071
38 Drinkwater L E, Snapp S S. Nutrients in agroecosystems: rethinking the management paradigm. Advances in Agronomy, 2007, 92: 163–186
https://doi.org/10.1016/S0065-2113(04)92003-2
39 Ju X T, Christie P. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: a case study on the North China Plain. Field Crops Research, 2011, 124(3): 450–458
https://doi.org/10.1016/j.fcr.2011.08.002
40 Robertson G P, Vitousek P M. Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources, 2009, 34(1): 97–125
https://doi.org/10.1146/annurev.environ.032108.105046
41 Vitousek P M, Naylor R, Crews T, David M B, Drinkwater L E, Holland E, Johnes P J, Katzenberger J, Martinelli L A, Matson P A, Nziguheba G, Ojima D, Palm C A, Robertson G P, Sanchez P A, Townsend A R, Zhang F S. Agriculture. Nutrient imbalances in agricultural development. Science, 2009, 324(5934): 1519–1520
https://doi.org/10.1126/science.1170261 pmid: 19541981
42 Chen X, Zhang F, Romheld V, Horlacher D, Schulz R, Boning-Zilkens M, Wang P, Claupein W. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutrient Cycling in Agroecosystems, 2006, 74(2): 91–98
https://doi.org/10.1007/s10705-005-1701-9
43 Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang W, Cui Z, Shen J, Chen X, Jiang R, Zhang F. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil, 2011, 349(1-2): 157–167
https://doi.org/10.1007/s11104-011-0909-5
44 Wang X, Cao Y, Zhang F S, Chen X P. Application of building-up and maintenance approach in agriculture. Plant Nutrition and Fertilizer Science, 1995, 1: 59–63 (in Chinese)
45 Zhang F S, Cui Z L, Chen X P, Ju X T, Shen J B, Chen Q, Liu X J, Zhang W F, Mi G H, Fan M S, Jiang R F. Integrated nutrient management for food security and environmental quality in china. Advances in Agronomy, 2012, 116: 1–40
https://doi.org/10.1016/B978-0-12-394277-7.00001-4
46 Cassman K G, Dobermann A, Walters D T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio, 2002, 31(2): 132–140
pmid: 12078002
47 Dobermann A, Cassman K G. Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption. Science in China. Series C: Life Sciences, 2005, 48: 745–758
48 Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041–3046
https://doi.org/10.1073/pnas.0813417106 pmid: 19223587
49 Cui Z L, Chen X P, Miao Y X, Li F, Zhang F S, Li J L, Ye Y L, Yang Z P, Zhang Q, Liu C S. On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal, 2008, 100(6): 1527–1534
https://doi.org/10.2134/agronj2008.0005
50 Cui Z L, Zhang F S, Miao Y X, Sun Q P, Li F, Chen X P, Li J L, Ye Y L, Yang Z P, Zhang Q, Liu C S. Soil nitrate-N levels required for high yield maize production in the North China Plain. Nutrient Cycling in Agroecosystems, 2008, 82(2): 187–196
https://doi.org/10.1007/s10705-008-9180-4
51 Ju X T, Liu X J, Zhang F S, Roelcke M. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. Ambio, 2004, 33(6): 300–305
pmid: 15387063
52 Ju X T, Kou C L, Zhang F S, Christie P. Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143(1): 117–125
https://doi.org/10.1016/j.envpol.2005.11.005 pmid: 16364521
53 Cassman K G, Dobermann A, Walters D T, Yang H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources, 2003, 28(1): 315–358
https://doi.org/10.1146/annurev.energy.28.040202.122858
54 Lobell D B, Cassman K G, Field C B. Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 2009, 34(1): 179–204
https://doi.org/10.1146/annurev.environ.041008.093740
55 Barning R. Economic evaluation of nitrogen application in the North China Plain. Dissertation for the Doctoral Degree. Stuttgart: Hohenheim University, 2008
56 Huang J K, Hu R F, Cao J M, Rozelle S. Training programs and in-the-field guidance to reduce China's overuse of fertilizer without hurting profitability. Journal of Soil and Water Conservation, 2008, 63(5): 165A–167A
https://doi.org/10.2489/jswc.63.5.165A
57 Shen J B, Cui Z L, Miao Y X, Mi G, Zhang H Y, Fan M S, Zhang C C, Jiang R F, Zhang W F, Li H G, Chen X P, Li X L, Zhang F S. Transforming agriculture in China: from solely high yield to both high yield and high resource use efficiency. Global Food Security, 2013, 2(1): 1–8
https://doi.org/10.1016/j.gfs.2012.12.004
58 Cui Z L, Dou Z X, Chen X P, Ju X T, Zhang F S. Managing agricultural nutrients for food security in china: past, present, and future. Agronomy Journal, 2013, 106(1): 191–198
https://doi.org/10.2134/agronj2013.0381
59 Cui Z L, Yue S C, Wang G L, Meng Q F, Wu L, Yang Z P, Zhang Q, Li S Q, Zhang F S, Chen X P. Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology, 2013, 19(8): 2467–2477
https://doi.org/10.1111/gcb.12213 pmid: 23553871
60 Zhang F S, Chen X P, Vitousek P. Chinese agriculture: an experiment for the world. Nature, 2013, 497(7447): 33–35
https://doi.org/10.1038/497033a pmid: 23636381
61 Matson P A, Naylor R, Ortiz-Monasterio I. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science, 1998, 280(5360): 112–115
https://doi.org/10.1126/science.280.5360.112 pmid: 9525856
[1] Yulong YIN, Kai HE, Zhong CHEN, Yangyang LI, Fengling REN, Zihan WANG, Yingcheng WANG, Haiqing GONG, Qichao ZHU, Jianbo SHEN, Xuejun LIU, Zhenling CUI. AGRICULTURAL GREEN DEVELOPMENT TO ACHIEVE FOOD SECURITY AND CARBON REDUCTION IN THE CONTEXT OF CHINA’S DUAL CARBON GOALS[J]. Front. Agr. Sci. Eng. , 2023, 10(2): 262-267.
[2] Ting MENG, Shenggen FAN. TRANSFORMING CHINESE FOOD AND AGRICULTURE: A SYSTEMS PERSPECTIVE[J]. Front. Agr. Sci. Eng. , 2023, 10(1): 4-15.
[3] Yu GUO, Ran LI, Peng NING, Xiaoqiang JIAO. A WAY TO SUSTAINABLE CROP PRODUCTION THROUGH SCIENTIST−FARMER ENGAGEMENT[J]. Front. Agr. Sci. Eng. , 2022, 9(4): 577-587.
[4] Hans LAMBERS, Wen-Feng CONG. CHALLENGES PROVIDING MULTIPLE ECOSYSTEM BENEFITS FOR SUSTAINABLE MANAGED SYSTEMS[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 170-176.
[5] Jeroen C. J. GROOT, Xiaolin YANG. TRADE-OFFS IN THE DESIGN OF SUSTAINABLE CROPPING SYSTEMS AT A REGIONAL LEVEL: A CASE STUDY ON THE NORTH CHINA PLAIN[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 295-308.
[6] Bing-Xin WANG, Anouschka R. HOF, Chun-Sen MA. IMPACTS OF CLIMATE CHANGE ON CROP PRODUCTION, PESTS AND PATHOGENS OF WHEAT AND RICE[J]. Front. Agr. Sci. Eng. , 2022, 9(1): 4-18.
[7] Fujiang HOU, Qianmin JIA, Shanning LOU, Chuntao YANG, Jiao NING, Lan LI, Qingshan FAN. GRASSLAND AGRICULTURE IN CHINA—A REVIEW[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 35-44.
[8] Jianbo SHEN, Qichao ZHU, Xiaoqiang JIAO, Hao YING, Hongliang WANG, Xin WEN, Wen XU, Tingyu LI, Wenfeng CONG, Xuejun LIU, Yong HOU, Zhenling CUI, Oene OENEMA, William J. DAVIES, Fusuo ZHANG. Agriculture Green Development: a model for China and the world[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 5-13.
[9] William J. DAVIES, Susan E. WARD, Alan WILSON. Can crop science really help us to produce more better-quality food while reducing the world-wide environmental footprint of agriculture?[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 28-44.
[10] Zhenling CUI, Zhengxia DOU, Hao YING, Fusuo ZHANG. Producing more with less: reducing environmental impacts through an integrated soil-crop system management approach[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 14-20.
[11] Huilong LIN, Ruichao LI, Yifan LIU, Jingrong ZHANG, Jizhou REN. Allocation of grassland, livestock and arable based on the spatial and temporal analysis for food demand in China[J]. Front. Agr. Sci. Eng. , 2017, 4(1): 69-80.
[12] Yuanmei ZUO, Zhenjiao ZHANG, Caihong LIU, Weina ZHANG. Achieving food security and high production of bioenergy crops through intercropping with efficient resource use in China[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 134-143.
[13] Zheng RUAN, Shumei MI, Yan ZHOU, Zeyuan DENG, Xiangfeng KONG, Tiejun LI, Yulong YIN. Protein security and food security in China[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 144-151.
[14] Lin MA, Wei QIN, Tara GARNETT, Fusuo ZHANG. Review on drivers, trends and emerging issues of the food wastage in China[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 159-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed