Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.
LETTER
WATER POLLUTION AND AGRICULTURE: MULTI-POLLUTANT PERSPECTIVES
Mengru WANG1(), Qi ZHANG2,3, Yanan LI2,3, Mirjam P. BAK2, Sijie FENG2,3, Carolien KROEZE1, Fanlei MENG2,3, Ilaria MICELLA2, Vita STROKAL4, Aslıhan URAL-JANSSEN2, Maryna STROKAL2
1. Environmental Systems Analysis Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
2. Water Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
3. College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions (Ministry of Education), China Agricultural University, Beijing 100193, China
4. The National University of Life and Environmental Sciences of Ukraine, Kyiv 03041, Ukraine
 Download: PDF(1594 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Four highlights are identified for agriculture and water from the multi-pollutant perspective.

● Large variations in time and space for multiple pollutants in waters and their sources.

● Scientific agenda should account for multiple pollutants in agricultural strategies.

Agriculture is an important cause of multiple pollutants in water. With population growth and increasing food demand, more nutrients, plastics, pesticides, pathogens and antibiotics are expected to enter water systems in the 21st century. As a result, water science has been shifting from single-pollutant to multi-pollutant perspectives for large-scale water quality assessments. This perspective paper summarizes and discusses four main highlights related to water pollution and agriculture from the multi-pollutant perspective. These highlights reveal the spatial and temporal distribution and main sources of multiple pollutants in waters. Based on the highlights, a scientific agenda is proposed to prioritize solutions for sustainable agriculture (UN Sustainable Development Goal 2) and clean water (UN Sustainable Development Goals 6 and 14). This agenda points out that when formulating solutions for water pollution, it is essential to take into account multiple pollutants and their interactions beyond biogeochemistry.

Keywords water quality      agriculture      multi-pollutant assessment      hotspots      interactions     
Corresponding Author(s): Mengru WANG   
Online First Date: 01 December 2023   
 Cite this article:   
Mengru WANG,Qi ZHANG,Yanan LI, et al. WATER POLLUTION AND AGRICULTURE: MULTI-POLLUTANT PERSPECTIVES[J]. Front. Agr. Sci. Eng. , 01 December 2023. [Epub ahead of print] doi: 10.15302/J-FASE-2023527.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2023527
https://academic.hep.com.cn/fase/EN/Y/V/I/0
Fig.1  Concept model of multiple pollutant inputs to rivers from agricultural sources and non-agricultural areas. This concept model includes pollutants for which global or regional modeling approaches exist. Tab.1 summarizes the information from conceptual modeling approaches. Agricultural sources include pollutants from crop production and livestock production (yellow box). Pollution sources from non-agricultural areas include pollutants from mismanaged plastic waste and sewage systems (gray box). The blue box indicates all pollutants from agriculture sources and non-agricultural areas enter rivers. Sources: MARINA models (Model to Assess River Inputs of pollutaNts to seAs)[2,1315].
Fig.2  Multi-pollutant problems in river sub-basins associated with annual inputs of more than one pollutant to rivers from agricultural sources and non-agricultural areas in China in the 2010s. This figure shows the percentages of multiple pollutants to Chinese rivers from agricultural sources and non-agricultural areas, The data presented covers results from the MARINA models for 2013 and 2015. The annual inputs of pollutants to rivers are derived from the MARINA-Multi, MARINA-Nutrients, MARINA-Antibiotics and MARINA-Plastics[2,1315]. Six pollutants are considered: antibiotics, Cryptosporidium, diclofenac, triclosan, microplastics, macroplastics, total dissolved phosphorus (TDP), and total dissolved nitrogen (TDN).
N P Cryptosporidium Triclosan Diclofenac Antibiotics Plastics Pesticides
Crop production X X X X X X
Animal production X X X X
Sewage X X X X X X X
Model version a, b b, c c,d d e d, f g
Tab.1  Examples summarize the importance of agricultural activities in water pollution control, focusing on multi-pollutant perspectives
Characteristics Polluted sub-basins Percentages of the national value
Number of sub-basins 1072 11
Sub-basin area (million km2) 20 14
Total population (billion people per year) 5 67
Population connected to sewage systems (billion people per year) 2 79
Tab.2  Characteristics of sub-basins that receive inputs of more than four pollutants to rivers globally
Characteristics Polluted sub-basins Percentages of the national value
Number of sub-basins 59 15
Sub-basin area (million km2) 3.4 23
Total population (million people per year) 981 72
Population connected to sewage systems (million people per year) 541 79
Tab.3  Characteristics of sub-basins that receive inputs of more than four pollutants to rivers in China
1 R, Damania S, Desbureaux A S, Rodella J, Russ E Zaveri . Quality Unknown: the Invisible Water Crisis. Washington, DC: World Bank, 2019, 142
2 M, Strokal Z, Bai W, Franssen H, Nynke A A, Koelmans F, Ludwig L, Ma Puijenbroek P, Van J E, Spanier L C, Vermeulen Vliet M T H, Van Wijnen J, Van C Kroeze . Urbanization: an increasing source of multiple pollutants to rivers in the 21st century. npj Urban Sustainability, 2021, 1: 24
3 M, Wang A B G, Janssen J, Bazin M, Strokal L, Ma C Kroeze . Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China. Nature Communications, 2022, 13(1): 730
https://doi.org/10.1038/s41467-022-28351-3
4 M, Strokal J E, Spanier C, Kroeze A A, Koelmans M, Flörke W, Franssen N, Hofstra S, Langan T, Tang Vliet M T H, Van Y, Wada M, Wang Wijnen J, Van R Williams . Global multi-pollutant modelling of water quality: scientific challenges and future directions. Current Opinion in Environmental Sustainability, 2019, 36: 116–125
https://doi.org/10.1016/j.cosust.2018.11.004
5 C, Kroeze S, Gabbert N, Hofstra A A, Koelmans A, Li A, Löhr F, Ludwig M, Strokal C, Verburg L, Vermeulen Vliet M T H, Van Vries W, De M, Wang Wijnen J Van . Global modelling of surface water quality: a multi-pollutant approach. Current Opinion in Environmental Sustainability, 2016, 23: 35–45
https://doi.org/10.1016/j.cosust.2016.11.014
6 R, Oldenkamp A H, Beusen M A J Huijbregts . Aquatic risks from human pharmaceuticals—Modelling temporal trends of carbamazepine and ciprofloxacin at the global scale. Environmental Research Letters, 2019, 14(3): 034003
https://doi.org/10.1088/1748-9326/ab0071
7 V, Acuña F, Bregoli C, Font D, Barceló L L, Corominas A, Ginebreda M, Petrovic I, Rodríguez-Roda S, Sabater R Marcé . Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global change context. Environment International, 2020, 143: 105993
https://doi.org/10.1016/j.envint.2020.105993
8 Z, Wei Y, Wei H, Li D, Shi D, Yang J, Yin S, Zhou T, Chen J, Li M Jin . Emerging pollutant metformin in water promotes the development of multiple-antibiotic resistance in Escherichia coli via chromosome mutagenesis. Journal of Hazardous Materials, 2022, 430: 128474
https://doi.org/10.1016/j.jhazmat.2022.128474
9 Y, Huang Q, Liu W, Jia C, Yan J Wang . Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 2020, 260: 114096
https://doi.org/10.1016/j.envpol.2020.114096
10 A L P, Silva J C, Prata T R, Walker A C, Duarte W, Ouyang D, Barcelò T Rocha-Santos . Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chemical Engineering Journal, 2021, 405: 126683
https://doi.org/10.1016/j.cej.2020.126683
11 Emmerik T, Van A Schwarz . Plastic debris in rivers. WIREs. Water, 2020, 7(1): e1398
https://doi.org/10.1002/wat2.1398
12 Wijnen J, Van A M J, Ragas C Kroeze . River export of triclosan from land to sea: a global modelling approach. Science of the Total Environment, 2018, 621: 1280–1288
https://doi.org/10.1016/j.scitotenv.2017.10.100
13 Y, Li Q, Zhang J, Baartman Wijnen J, Van N, Beriot C, Kroeze M, Wang W, Xu L, Ma K, Wang F, Zhang M Strokal . The plastic age: river pollution in China from crop production and urbanization. Environmental Science & Technology, 2023, 57(32): 12019–12032
https://doi.org/10.1021/acs.est.3c03374
14 Y, Li M, Wang X, Chen S, Cui N, Hofstra C, Kroeze L, Ma W, Xu Q, Zhang F, Zhang M Strokal . Multi-pollutant assessment of river pollution from livestock production worldwide. Water Research, 2021, 209: 117906
https://doi.org/10.1016/j.watres.2021.117906
15 Q, Zhang C, Kroeze S, Cui Y, Li L, Ma V, Strokal P, Vriend M, Wang Wijnen J, Van W, Xu F, Zhang M Strokal . COVID-19 estimated to have increased plastics, diclofenac, and triclosan pollution in more than half of urban rivers worldwide. Cell Resports Sustainability, 2023 (in press)
16 R, Hurley J, Woodward J J Rothwell . Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nature Geoscience, 2018, 11(4): 251–257
https://doi.org/10.1038/s41561-018-0080-1
17 C T J, Roebroek S, Harrigan Emmerik T H M, Van C, Baugh D, Eilander C, Prudhomme F Pappenberger . Plastic in global rivers: are floods making it worse. Environmental Research Letters, 2021, 16(2): 025003
https://doi.org/10.1088/1748-9326/abd5df
18 Vliet M T H, Van J, Thorslund M, Strokal N, Hofstra M, Flörke Macedo H, Ehalt A, Nkwasa T, Tang S S, Kaushal R, Kumar Griensven A, Van L, Bouwman L M Mosley . Global river water quality under climate change and hydroclimatic extremes. Nature Reviews. Earth & Environment, 2023, 4(10): 687–702
https://doi.org/10.1038/s43017-023-00472-3
19 M, Wang C, Kroeze M, Strokal Vliet M T H, Van L Ma . Global change can make coastal eutrophication control in China more difficult. Earth’s Future, 2020, 8(4): e2019EF001280
20 Vliet M T H, Van E R, Jones M, Flörke W H P, Franssen N, Hanasaki Y, Wada J R Yearsley . Global water scarcity including surface water quality and expansions of clean water technologies. Environmental Research Letters, 2021, 16(2): 024020
https://doi.org/10.1088/1748-9326/abbfc3
21 R, Reinecke Schmied H, Müller T, Trautmann L S, Andersen P, Burek M, Flörke S N, Gosling M, Grillakis N, Hanasaki A, Koutroulis Y, Pokhrel W, Thiery Y, Wada S, Yusuke P Döll . Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study. Hydrology and Earth System Sciences, 2021, 25(2): 787–810
https://doi.org/10.5194/hess-25-787-2021
22 G, Pérez-Lucas N, Vela Aatik A, El S Navarro . Environmental risk of groundwater pollution by pesticide leaching through the soil profile. In: Larramendy M, Soloneski S, eds. Pesticides-use and Misuse and Their Impact in the Environment. IntechOpen, 2019, 1–28
23 M, Kumar R, Goswami A K, Patel M, Srivastava N Das . Scenario, perspectives and mechanism of arsenic and fluoride co-occurrence in the groundwater: a review. Chemosphere, 2020, 249: 126126
https://doi.org/10.1016/j.chemosphere.2020.126126
24 Q, Zhou N, Yang Y, Li B, Ren X, Ding H, Bian X Yao . Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 2020, 22: e00925
https://doi.org/10.1016/j.gecco.2020.e00925
25 J, Heino J, Alahuhta L M, Bini Y, Cai A S, Heiskanen S, Hellsten P, Kortelainen N, Kotamäki K T, Tolonen P, Vihervaara A, Vilmi D G Angeler . Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biological Reviews of the Cambridge Philosophical Society, 2021, 96(1): 89–106
https://doi.org/10.1111/brv.12647
26 L J J, Meijer Emmerik T, Van Der Ent R, Van C, Schmidt L Lebreton . More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Science Advances, 2021, 7(18): eaaz5803
https://doi.org/10.1126/sciadv.aaz5803
27 V, Geissen H, Mol E, Klumpp G, Umlauf M, Nadal Der Ploeg M, Van De Zee S E, Van C J Ritsema . Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 2015, 3(1): 57–65
https://doi.org/10.1016/j.iswcr.2015.03.002
28 M, Strokal P, Vriend M P, Bak C, Kroeze Wijnen J, Van Emmerik T Van . River export of macro- and microplastics to seas by sources worldwide. Nature Communications, 2023, 14(1): 4842
https://doi.org/10.1038/s41467-023-40501-9
29 V, Strokal E J, Kuiper M P, Bak P, Vriend M, Wang Wijnen J, Van M Strokal . Future microplastics in the Black Sea: river exports and reduction options for zero pollution. Marine Pollution Bulletin, 2022, 178: 113633
https://doi.org/10.1016/j.marpolbul.2022.113633
30 Wijnen J, Van A M J, Ragas C Kroeze . Modelling global river export of microplastics to the marine environment: sources and future trends. Science of the Total Environment, 2019, 673: 392–401
https://doi.org/10.1016/j.scitotenv.2019.04.078
31 C, Font F, Bregoli V, Acuña S, Sabater R Marcé . GLOBAL-FATE: a GIS-based model for assessing contaminants fate in the global river network. Geoscientific Model Development, 2019, 12(12): 5213–5228
https://doi.org/10.5194/gmd-12-5213-2019
32 Q, Yang Y, Gao J, Ke P L, Show Y, Ge Y, Liu R, Guo J Chen . Antibiotics: an overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered, 2021, 12(1): 7376–7416
https://doi.org/10.1080/21655979.2021.1974657
33 A, Ippolito M, Kattwinkel J J, Rasmussen R B, Schäfer R, Fornaroli M Liess . Modeling global distribution of agricultural insecticides in surface waters. Environmental Pollution, 2015, 198: 54–60
https://doi.org/10.1016/j.envpol.2014.12.016
34 Vliet M T H, Van M, Flörke J A, Harrison N, Hofstra V, Keller F, Ludwig J E, Spanier M, Strokal Y, Wada Y, Wen R J Williams . Model inter-comparison design for large-scale water quality models. Current Opinion in Environmental Sustainability, 2019, 36: 59–67
https://doi.org/10.1016/j.cosust.2018.10.013
35 A H W, Beusen J C, Doelman Beek L P H, Van Puijenbroek P J T M, Van J M, Mogollón Grinsven H J M, Van E, Stehfest Vuuren D P, Van A F Bouwman . Exploring river nitrogen and phosphorus loading and export to global coastal waters in the Shared Socio-economic pathways. Global Environmental Change, 2022, 72: 102426
https://doi.org/10.1016/j.gloenvcha.2021.102426
36 F, Huang Z, An M J, Moran F Liu . Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009−2019). Journal of Hazardous Materials, 2020, 399: 122813
https://doi.org/10.1016/j.jhazmat.2020.122813
37 H, Chen L, Jing Y, Teng J Wang . Multimedia fate modeling and risk assessment of antibiotics in a water-scarce megacity. Journal of Hazardous Materials, 2018, 348: 75–83
https://doi.org/10.1016/j.jhazmat.2018.01.033
38 C, Fu B, Xu H, Chen X, Zhao G, Li Y, Zheng W, Qiu C, Zheng L, Duan W Wang . Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong’an New Area, China, and their relationship with antibiotic resistance genes. Science of the Total Environment, 2022, 807(Part 2): 151011
39 P, Kay P A, Blackwell A B A Boxall . Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere, 2005, 59(7): 951–959
https://doi.org/10.1016/j.chemosphere.2004.11.055
40 F, Maggi F H M, Tang F N Tubiello . Agricultural pesticide land budget and river discharge to oceans. Nature, 2023, 620(7976): 1013–1017
https://doi.org/10.1038/s41586-023-06296-x
41 F H M, Tang F Maggi . Pesticide mixtures in soil: a global outlook. Environmental Research Letters, 2021, 16(4): 044051
https://doi.org/10.1088/1748-9326/abe5d6
42 G, Fink J, Alcamo M, Flörke K Reder . Phosphorus loadings to the world’s largest lakes: sources and trends. Global Biogeochemical Cycles, 2018, 32(4): 617–634
https://doi.org/10.1002/2017GB005858
43 L C, Vermeulen J, Benders G, Medema N Hofstra . Global Cryptosporidium loads from livestock manure. Environmental Science & Technology, 2017, 51(15): 8663–8671
https://doi.org/10.1021/acs.est.7b00452
44 E R, Jones M F P, Bierkens N, Wanders E H, Sutanudjaja Beek L P H, Van Vliet M T H Van . DynQual v1.0: a high-resolution global surface water quality model. Geoscientific Model Development, 2023, 16(15): 4481–4500
https://doi.org/10.5194/gmd-16-4481-2023
45 Y, Shao Y, Wang Y, Yuan Y Xie . A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Science of the Total Environment, 2021, 798: 149205
https://doi.org/10.1016/j.scitotenv.2021.149205
46 W, Zhang Y, Tian Z, Sun C Zheng . How does plastic film mulching affect crop water productivity in an arid river basin. Agricultural Water Management, 2021, 258: 107218
https://doi.org/10.1016/j.agwat.2021.107218
47 L C, Vermeulen Hengel M, Van C, Kroeze G, Medema J E, Spanier Vliet M T H, Van N Hofstra . Cryptosporidium concentrations in rivers worldwide. Water Research, 2019, 149: 202–214
https://doi.org/10.1016/j.watres.2018.10.069
48 X, You H, Li B, Pan M, You W Sun . Interactions between antibiotics and heavy metals determine their combined toxicity to Synechocystis sp. Journal of Hazardous Materials, 2022, 424(Part C): 127707
49 N, Gao L, Yang X, Lu Z, Duan L, Zhu J Feng . A review of interactions of microplastics and typical pollutants from toxicokinetics and toxicodynamics perspective. Journal of Hazardous Materials, 2022, 432: 128736
https://doi.org/10.1016/j.jhazmat.2022.128736
50 A, Li M, Strokal Z, Bai C, Kroeze L Ma . How to avoid coastal eutrophication—A back-casting study for the North China Plain. Science of the Total Environment, 2019, 692: 676–690
https://doi.org/10.1016/j.scitotenv.2019.07.306
51 N, Hofstra L C Vermeulen . Impacts of population growth, urbanisation and sanitation changes on global human Cryptosporidium emissions to surface water. International Journal of Hygiene and Environmental Health, 2016, 219(7 Pt A): 599−605
52 J, Liu X, Che X, Huang Y, Mo Y, Wen J, Jia H, Zhou B Yan . The interaction between biochars from distinct pyrolysis temperatures and multiple pollutants determines their combined cytotoxicity. Chemosphere, 2022, 296: 133999
https://doi.org/10.1016/j.chemosphere.2022.133999
53 M, Lefebvre R, Razakandrainibe I, Villena L, Favennec C Costaa . Cryptosporidium-biofilm interactions: a review. Applied and Environmental Microbiology, 2021, 87(3): e02483–20
https://doi.org/10.1128/AEM.02483-20
54 Pippo F, Di C, Venezia M, Sighicelli L, Pietrelli Vito S, Di S, Nuglio S Rossetti . Microplastic-associated biofilms in lentic Italian ecosystems. Water Research, 2020, 187: 116429
https://doi.org/10.1016/j.watres.2020.116429
55 E A, Wolyniak B R, Hargreaves K L Jellison . Seasonal retention and release of Cryptosporidium parvum oocysts by environmental biofilms in the laboratory. Applied and Environmental Microbiology, 2010, 76(4): 1021–1027
https://doi.org/10.1128/AEM.01804-09
56 X, Qiu Z, Qi Z, Ouyang P, Liu X Guo . Interactions between microplastics and microorganisms in the environment: modes of action and influencing factors. Gondwana Research, 2022, 108: 102–119
https://doi.org/10.1016/j.gr.2021.07.029
57 N B, Hartmann S, Rist J, Bodin L H, Jensen S N, Schmidt P, Mayer A, Meibom A Baun . Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integrated Environmental Assessment and Management, 2017, 13(3): 488–493
https://doi.org/10.1002/ieam.1904
58 S, Zhu L, Qin Z, Li X, Hu D Yin . Effects of nanoplastics and microplastics on the availability of pharmaceuticals and personal care products in aqueous environment. Journal of Hazardous Materials, 2023, 458: 131999
https://doi.org/10.1016/j.jhazmat.2023.131999
59 J, Martín J L, Santos I, Aparicio E Alonso . Microplastics and associated emerging contaminants in the environment: analysis, sorption mechanisms and effects of co-exposure. Trends in Environmental Analytical Chemistry, 2022, 35: e00170
https://doi.org/10.1016/j.teac.2022.e00170
60 M D, Sobsey J S Meschke . Virus survival in the environment with special attention to survival in sewage droplets and other environmental media of fecal or respiratory origin. Geneva: World Health Organization, 2003
61 S K, Malham P, Rajko-Nenow E, Howlett K E, Tuson T L, Perkins D W, Pallett H, Wang C F, Jago D L, Jones J E Mcdonald . The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters. Environmental Science. Processes & Impacts, 2014, 16(9): 2145–2155
https://doi.org/10.1039/C4EM00031E
62 D, Shelton Y, Pachepsky L, Kiefer R, Blaustein G, Mccarty T Dao . Response of coliform populations in streambed sediment and water column to changes in nutrient concentrations in water. Water Research, 2014, 59: 316–324
https://doi.org/10.1016/j.watres.2014.04.019
63 S, Lambert M Wagner . Microplastics are contaminants of emerging concern in freshwater environments: an overview. In: Wagner M, Lambert S, eds. Freshwater Microplastics. The handbook of Environmental Chemistry. Springer, 2018
64 A T N, Do Y, Ha J H Kwon . Leaching of microplastic-associated additives in aquatic environments: a critical review. Environmental Pollution, 2022, 305: 119258
https://doi.org/10.1016/j.envpol.2022.119258
65 S P, Seitzinger E, Mayorga A F, Bouwman C, Kroeze A H W, Beusen G, Billen Drecht G, Van E, Dumont B M, Fekete J, Garnier J A Harrison . Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochemical Cycles, 2010, 24(4): 2009GB003587
https://doi.org/10.1029/2009GB003587
66 J, Alcamo Vuuren D, Van W, Cramer J, Alder E, Bennett S, Carpenter V, Christensen J, Foley M, Maerker T Masui . Changes in ecosystem services and their drivers across the scenarios. In: Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Scenarios. Island Pess, 2005, 297–373
67 L, Jiang B C O’neill . Global urbanization projections for the Shared Socioeconomic Pathways. Global Environmental Change, 2017, 42: 193–199
https://doi.org/10.1016/j.gloenvcha.2015.03.008
68 Y, Weng W, Cai C Wang . The application and future directions of the Shared Socioeconomic Pathways (SSPs). Climate Change Research, 2020, 16(2): 215−222 (in Chinese)
69 L, Lassaletta F, Estellés A H W, Beusen L, Bouwman S, Calvet Grinsven H J M, Van J C, Doelman E, Stehfest A, Uwizeye H Westhoek . Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 2019, 665: 739–751
https://doi.org/10.1016/j.scitotenv.2019.02.079
70 M, Leimbach E, Kriegler N, Roming J Schwanitz . Future growth patterns of world regions—A GDP scenario approach. Global Environmental Change, 2017, 42: 215–225
https://doi.org/10.1016/j.gloenvcha.2015.02.005
[1] Sarah BUCKINGHAM, Cairistiona F. E. TOPP, Pete SMITH, Vera EORY, David R. CHADWICK, Christina K. BAXTER, Joanna M. CLOY, Shaun CONNOLLY, Emily C. COOLEDGE, Nicholas J. COWAN, Julia DREWER, Colm DUFFY, Naomi J. FOX, Asma JEBARI, Becky JENKINS, Dominika J. KROL, Karina A. MARSDEN, Graham A. MCAULIFFE, Steven J. MORRISON, Vincent O'FLAHERTY, Rachael RAMSEY, Karl G. RICHARDS, Rainer ROEHE, Jo SMITH, Kate SMITH, Taro TAKAHASHI, Rachel E. THORMAN, John WILLIAMS, Jeremy WILTSHIRE, Robert M. REES. GREENHOUSE GAS AND AMMONIA EMISSION MITIGATION PRIORITIES FOR UK POLICY TARGETS[J]. Front. Agr. Sci. Eng. , 2023, 10(2): 268-280.
[2] Yulong YIN, Kai HE, Zhong CHEN, Yangyang LI, Fengling REN, Zihan WANG, Yingcheng WANG, Haiqing GONG, Qichao ZHU, Jianbo SHEN, Xuejun LIU, Zhenling CUI. AGRICULTURAL GREEN DEVELOPMENT TO ACHIEVE FOOD SECURITY AND CARBON REDUCTION IN THE CONTEXT OF CHINA’S DUAL CARBON GOALS[J]. Front. Agr. Sci. Eng. , 2023, 10(2): 262-267.
[3] Yifeng ZHANG, Chunfang YANG, Bright OBUOBI, Martin Kobby GRANT. ENTREPRENEURIAL OPPORTUNITY, VALUE EVOLUTION, AND ORGANIZATIONAL INTEGRATION OF PROFESSIONAL FARMER ENTREPRENEURSHIP: A MULTI-CASE COMPARISON IN CHINA[J]. Front. Agr. Sci. Eng. , 2023, 10(1): 135-148.
[4] Xiaoxia GUO, Chong WANG, Fusuo ZHANG. CONSTRUCTION OF AN INDEX SYSTEM FOR SUSTAINABILITY ASSESSMENT IN SMALLHOLDER FARMING SYSTEMS[J]. Front. Agr. Sci. Eng. , 2022, 9(4): 511-522.
[5] Yajuan LI, Qianni HUANG. SMALLHOLDER ADOPTION OF GREEN PRODUCTION TECHNOLOGIES ON THE NORTH CHINA PLAIN: EVIDENCE FROM SCIENCE AND TECHNOLOGY BACKYARDS[J]. Front. Agr. Sci. Eng. , 2022, 9(4): 536-546.
[6] Xin ZHANG, Yanyu WANG, Lena SCHULTE-UEBBING, Wim DE VRIES, Tan ZOU, Eric A. DAVIDSON. SUSTAINABLE NITROGEN MANAGEMENT INDEX: DEFINITION, GLOBAL ASSESSMENT AND POTENTIAL IMPROVEMENTS[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 356-365.
[7] Xiuwei GUO, Manoj Kumar SHUKLA, Di WU, Shichao CHEN, Donghao LI, Taisheng DU. PLANT DENSITY, IRRIGATION AND NITROGEN MANAGEMENT: THREE MAJOR PRACTICES IN CLOSING YIELD GAPS FOR AGRICULTURAL SUSTAINABILITY IN NORTH-WEST CHINA[J]. Front. Agr. Sci. Eng. , 2021, 8(4): 525-544.
[8] Wen-Feng CONG, Chaochun ZHANG, Chunjie LI, Guangzhou WANG, Fusuo ZHANG. DESIGNING DIVERSIFIED CROPPING SYSTEMS IN CHINA: THEORY, APPROACHES AND IMPLEMENTATION[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 362-372.
[9] Eric JUSTES, Laurent BEDOUSSAC, Christos DORDAS, Ela FRAK, Gaetan LOUARN, Simon BOUDSOCQ, Etienne-Pascal JOURNET, Anastasios LITHOURGIDIS, Chrysanthi PANKOU, Chaochun ZHANG, Georg CARLSSON, Erik Steen JENSEN, Christine WATSON, Long LI. THE 4C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 387-399.
[10] Hao YANG, Weiping ZHANG, Long LI. INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 373-386.
[11] Qi WANG, Zhanxiang SUN, Wei BAI, Dongsheng ZHANG, Yue ZHANG, Ruonan WANG, Wopke VAN DER WERF, Jochem B. EVERS, Tjeerd-Jan STOMPH, Jianping GUO, Lizhen ZHANG. LIGHT INTERCEPTION AND USE EFFICIENCY DIFFER WITH MAIZE PLANT DENSITY IN MAIZE-PEANUT INTERCROPPING[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 432-446.
[12] Fujiang HOU, Qianmin JIA, Shanning LOU, Chuntao YANG, Jiao NING, Lan LI, Qingshan FAN. GRASSLAND AGRICULTURE IN CHINA—A REVIEW[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 35-44.
[13] Maryna STROKAL, Annette B.G. JANSSEN, Xinping CHEN, Carolien KROEZE, Fan LI, Lin MA, Huirong YU, Fusuo ZHANG, Mengru WANG. GREEN AGRICULTURE AND BLUE WATER IN CHINA: REINTEGRATING CROP AND LIVESTOCK PRODUCTION FOR CLEAN WATER[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 72-80.
[14] Antonius G. T. SCHUT, Emily C. COOLEDGE, Marc MORAINE, Gerrie W. J. VAN DE VEN, Davey L. JONES, David R. CHADWICK. REINTEGRATION OF CROP-LIVESTOCK SYSTEMS IN EUROPE: AN OVERVIEW[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 111-129.
[15] Andreas BUERKERT, Eva SCHLECHT. Toward sustainable intensification of agriculture in sub-Saharan Africa[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 401-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed