Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (2) : 139-155    https://doi.org/10.1007/s11705-022-2217-4
RESEARCH ARTICLE
Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni–Sn intermetallic compounds with methanol as hydrogen donor
Haonan Shi, Xiaoyu Gu, Yinteng Shi, Dandan Wang, Sihao Shu, Zhongze Wang, Jixiang Chen()
Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
 Download: PDF(15569 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Porous carbon-encapsulated Ni and Ni–Sn intermetallic compound catalysts were prepared by the one-pot extended Stöber method followed by carbonization and tested for in-situ hydrothermal deoxygenation of methyl palmitate with methanol as the hydrogen donor. During the catalyst preparation, Sn doping reduces the size of carbon spheres, and the formation of Ni–Sn intermetallic compounds restrain the graphitization, contributing to larger pore volume and pore diameter. Consequently, a more facile mass transfer occurs in carbon-encapsulated Ni–Sn intermetallic compound catalysts than in carbon-encapsulated Ni catalysts. During the in-situ hydrothermal deoxygenation, the synergism between Ni and Sn favors palmitic acid hydrogenation to a highly reactive hexadecanal that easily either decarbonylate to n-pentadecane or is hydrogenated to hexadecanol. At high reaction temperature, hexadecanol undergoes dehydrogenation–decarbonylation, generating n-pentadecane. Also, the C–C bond hydrolysis and methanation are suppressed on Ni–Sn intermetallic compounds, favorable for increasing the carbon yield and reducing the H2 consumption. The n-pentadecane and n-hexadecane yields reached 88.1% and 92.8% on carbon-encapsulated Ni3Sn2 intermetallic compound at 330 °C. After washing and H2 reduction, the carbon-encapsulated Ni3Sn2 intermetallic compound remains stable during three recycling cycles. This is ascribed to the carbon confinement that effectively suppresses the sintering and loss of metal particles under harsh hydrothermal conditions.

Keywords extended Stöber method      carbon encapsulated Ni–Sn intermetallic compounds      confinement      in-situ hydrothermal deoxygenation      hydrogenation      decarbonylation     
Corresponding Author(s): Jixiang Chen   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Online First Date: 12 December 2022    Issue Date: 27 February 2023
 Cite this article:   
Haonan Shi,Xiaoyu Gu,Yinteng Shi, et al. Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni–Sn intermetallic compounds with methanol as hydrogen donor[J]. Front. Chem. Sci. Eng., 2023, 17(2): 139-155.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2217-4
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I2/139
  Scheme1 Preparation of carbon-encapsulated Ni–Sn IMC catalysts via one-pot extended St?ber method.
Fig.1  SEM images of fresh (a) Ni@C, (b) Ni–Sn(3/1)@C, (c) Ni–Sn(3/1.8)@C and (d) Ni–Sn(3/4)@C.
Fig.2  XRD patterns of Ni@C and Ni–Sn(3/1)@C before and after in-situ HTDO at 330 °C for 6 h. (a) Ni@C; (b) Ni–Sn(3/1)@C.
Fig.3  XRD patterns of Ni–Sn(x/y)@C(x/y = 1.7–3/4) before and after in-situ HTDO at 330 °C for 6 h. (a) Fresh catalysts; (b) used catalysts.
Fig.4  Raman spectra of RF derived carbon (C), Ni@C and Ni–Sn(x/y)@C.
Fig.5  TEM and HRTEM images of (a) fresh Ni@C, (b) fresh Ni–Sn(3/1.8)@C and (c) used Ni–Sn(3/1.8)@C and (d) TEM-EDS images of fresh Ni–Sn(3/1.8)@C.
CatalystSBET/(m2·g–1)Smic/(m2·g–1)Sext/(m2·g–1)Vmic/(cm3·g–1)Vmes/(cm3·g–1)dmic/nmdmes/nm
Ni@C14562830.0670.1190.485.3
Ni–Sn(3/1)@C293233590.1450.1250.418.5
Ni–Sn(3/1.8)@C354288660.1770.1480.408.4
Ni–Sn(1/1)@@C349286630.1740.1770.4010.7
Ni–Sn(3/1.8)@C-useda)6317460.0280.1350.6210.6
Tab.1  Textural properties of Ni@C and Ni–Sn(x/y)@C
Fig.6  N2 adsorption–desorption isotherms of Ni@C and Ni–Sn(x/y)@C.
Fig.7  XPS spectra of (a) Ni 2p and (b) Sn 3d in Ni@C, Ni–Sn(3/1)@C, Ni–Sn(3/1.8)@C and Ni–Sn(1/1)@C.
  Scheme2 In-situ HTDO pathways of methyl palmitate with methanol as hydrogen donor.
Fig.8  In-situ HTDO performance of Ni@C and Ni–Sn(x/y)@C. (a) Conversions of methanol and methyl palmitate, yields of products and carbon balance; (b) moles of gas phase products (reaction condition: 330 °C, 4 g methyl palmitate, 3 g methanol, 8 g water, 0.4 g catalyst, 6 h).
Fig.9  In-situ HTDO performance of Ni–Sn(3/1.8)@C with varied reaction time. (a) Conversions of methanol and methyl palmitate, yields of products and carbon balance; (b) moles of gas phase products (reaction conditions: 330 °C, 4 g methyl palmitate, 3 g methanol, 8 g water, 0.4 g catalyst, 0–6 h).
EntrySolventReaction atmosphereReactantYield/%Gas phase composition/(mmol %)
18 mL water1 MPa N23.80 g palmitic acidn-C15: 5.0H2: 66.7CO2: 33.3
28 mL water3 MPa H2, 1 MPa N23.80 g palmitic acidn-C15: 61.7n-C16: 5.0hexadecanol: 14.9H2: 89.8CO2: 10.2
38 mL cyclohexane3 MPa H2, 1 MPa N23.80 g palmitic acid n-C15: 50.0n-C16: 15.2hexadecanol: 16.3H2: 90.2CO: 4.4CO2: 4.6CH4: 0.6
48 mL cyclohexane1 MPa N23.59 g hexadecanol n-C15: 79.1n-C16: 7.2H2: 50CO: 40.5CO2: 2.7CH4: 6.9
58 mL water1 MPa N23.59 g hexadecanoln-C15: 53.3n-C16: 4.3palmitic acid: 25.4H2: 76.8CO2: 22.4CH4:0.8
68 mL water3 MPa H2, 1 MPa N23.59 g hexadecanoln-C15: 84.6n-C16: 3.4H2: 88.4CO2: 10.9CH4: 0.7
Tab.2  Conversion of palmitic acid and hexadecanol under different conditions on Ni–Sn(3/1.8)@C
Fig.10  Performance of fresh and used Ni–Sn(3/1.8)@C after (a, b) washing with isopropanol and (c, d) washing with isopropanol and reduction with H2 at 400 °C, followed by passivation with 0.5 vol % O2/N2 flow at room temperature (Reaction condition: 330 °C, 4 g methyl palmitate, 3 g methanol, 8 g water, 0.4 g catalyst, 6 h).
  Scheme3 Proposed structure-reactivity relationship on Ni@C and Ni3Sn2 IMC@C catalysts.
1 C Kordulis, K Bourikas, M Gousi, E Kordouli, A Lycourghiotis. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Applied Catalysis B: Environmental, 2016, 181: 156–196
https://doi.org/10.1016/j.apcatb.2015.07.042
2 D Pan, J Zhou, B Peng, S Wang, Y Zhao, X Ma. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Frontiers of Chemical Science and Engineering, 2022, 16(3): 397–407
https://doi.org/10.1007/s11705-021-2076-4
3 J Zhang, L Kong, Y Chen, H Huang, H Zhang, Y Yao, Y Xu, Y Xu, S Wang, X Ma, Y Zhao. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15(3): 666–678
https://doi.org/10.1007/s11705-020-1982-1
4 V Hegde, P Pandit, P Rananaware, V P Brahmkhatri. Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production. Frontiers of Chemical Science and Engineering, 2022, 16(8): 1198–1210
https://doi.org/10.1007/s11705-021-2133-z
5 X Y Yao, T J Strathmann, Y L Li, L E Cronmiller, H L Ma, J Zhang. Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons: a review. Green Chemistry, 2021, 23(3): 1114–1129
https://doi.org/10.1039/D0GC03707A
6 S Q Chai, G J Zhang, G Q Li, Y F Zhang. Industrial hydrogen production technology and development status in China: a review. Clean Technologies and Environmental Policy, 2021, 23(7): 1931–1946
https://doi.org/10.1007/s10098-021-02089-w
7 Z Zhang, Q Yang, H Chen, K Chen, X Lu, P Ouyang, J Fu, J G Chen. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 2018, 20(1): 197–205
https://doi.org/10.1039/C7GC02774E
8 L Ai, Y Shi, Y Han, J Chen. In situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons on Ni catalyst derived from the reduction of LaNiO3 perovskite. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 209–227
https://doi.org/10.1007/s11144-021-01970-5
9 Y Shi, L Ai, H Shi, X Gu, Y Han, J Chen. Carbon-coated Ni–Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor. Frontiers of Chemical Science and Engineering, 2022, 16(4): 443–460
https://doi.org/10.1007/s11705-021-2079-1
10 S A W Hollak, M A Ariëns, K P de Jong, D S van Es. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming. ChemSusChem, 2014, 7(4): 1057–1062
https://doi.org/10.1002/cssc.201301145
11 D R Vardon, B K Sharma, H Jaramillo, D Kim, J K Choe, P N Ciesielski, T J Strathmann. Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chemistry, 2014, 16(3): 1507–1520
https://doi.org/10.1039/c3gc41798k
12 J Zhang, X Huo, Y Li, T J Strathmann. Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14400–14410
https://doi.org/10.1021/acssuschemeng.9b00215
13 C Miao, O Marin-Flores, T Dong, D Gao, Y Wang, M Garcia-Pérez, S Chen. Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4521–4530
https://doi.org/10.1021/acssuschemeng.7b02226
14 C Miao, O Marin-Flores, S D Davidson, T Li, T Dong, D Gao, Y Wang, M Garcia-Pérez, S Chen. Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst. Fuel, 2016, 166: 302–308
https://doi.org/10.1016/j.fuel.2015.10.120
15 X Liu, M Yang, Z Deng, A Dasgupta, Y Guo. Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst: mechanism and kinetic modeling. Chemical Engineering Journal, 2021, 407: 126332
https://doi.org/10.1016/j.cej.2020.126332
16 M Kouzu, M Kojima, K Mori, S Yamanaka. Catalytic deoxygenation of triglyceride into drop-in fuel under hydrothermal condition with the help of in-situ hydrogen production by APR of glycerol by-produced. Fuel Processing Technology, 2021, 217: 106831
https://doi.org/10.1016/j.fuproc.2021.106831
17 J Zhang, F Tian, J Chen, Y Shi, H Cao, P Ning, S Sun, Y Xie. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts. Frontiers of Chemical Science and Engineering, 2021, 15(2): 288–298
https://doi.org/10.1007/s11705-020-1932-y
18 L Lin, Q Yu, M Peng, A Li, S Yao, S Tian, X Liu, A Li, Z Jiang, R Gao, X Han, Y Li, X Wen, W Zhou, D Ma. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water. Journal of the American Chemical Society, 2021, 143(1): 309–317
https://doi.org/10.1021/jacs.0c10776
19 G W Huber, J W Shabaker, J A Dumesic. Raney Ni–Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 2003, 300(5628): 2075–2077
https://doi.org/10.1126/science.1085597
20 N Zhao, Y Zheng, J Chen. Remarkably reducing carbon loss and H2 consumption on Ni–Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons. Journal of Energy Chemistry, 2020, 41: 194–208
https://doi.org/10.1016/j.jechem.2019.05.019
21 Z Pan, R Wang, J Chen. Deoxygenation of methyl laurate as a model compound on Ni–Zn alloy and intermetallic compound catalysts: geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental, 2018, 224: 88–100
https://doi.org/10.1016/j.apcatb.2017.10.040
22 R G Kukushkin, O A Bulavchenko, V V Kaichev, V A Yakovlev. Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters. Applied Catalysis B: Environmental, 2015, 163: 531–538
https://doi.org/10.1016/j.apcatb.2014.08.001
23 S Xing, Y Liu, X Liu, M Li, J Fu, P Liu, P Lv, Z Wang. Solvent-free hydrodeoxygenation of bio-lipids into renewable alkanes over NiW bimetallic catalyst under mild conditions. Applied Catalysis B: Environmental, 2020, 269: 118718
https://doi.org/10.1016/j.apcatb.2020.118718
24 R Rodiansono, M I Pratama, M D Astuti, A Abdullah, A Nugroho, S Susi. Selective hydrogenation of dodecanoic acid to dodecane-1-ol catalyzed by supported bimetallic Ni–Sn alloy. Bulletin of Chemical Reaction Engineering & Catalysis, 2018, 13(2): 311–319
https://doi.org/10.9767/bcrec.13.2.1790.311-319
25 A Onda, T Komatsu, T Yashima. Characterization and catalytic properties of Ni–Sn intermetallic compounds in acetylene hydrogenation. Physical Chemistry Chemical Physics, 2000, 2(13): 2999–3005
https://doi.org/10.1039/b001381l
26 Y Yang, L Chen, Y Chen, W Liu, H Feng, B Wang, X Zhang, M Wei. The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chemistry, 2019, 21(19): 5352–5362
https://doi.org/10.1039/C9GC01119F
27 G Wang, H Wang, H Zhang, Q Zhu, C Li, H Shan. Highly selective and stable NiSn/SiO2 catalyst for isobutane dehydrogenation: effects of Sn addition. ChemCatChem, 2016, 8(19): 3137–3145
https://doi.org/10.1002/cctc.201600685
28 P Reangchim, T Saelee, V Itthibenchapong, A Junkaew, N Chanlek, A Eiadua, N Kungwan, K Faungnawakij. Role of Sn promoter in Ni/Al2O3 catalyst for the deoxygenation of stearic acid and coke formation: experimental and theoretical studies. Catalysis Science & Technology, 2019, 9(13): 3361–3372
https://doi.org/10.1039/C9CY00268E
29 R M Ravenelle, F Schüβler, A D’Amico, N Danilina, Bokhoven J A van, J A Lercher, C W Jones, C Sievers. Stability of zeolites in hot liquid water. Journal of Physical Chemistry C, 2010, 114(46): 19582–19595
https://doi.org/10.1021/jp104639e
30 J P Lange. Renewable feedstocks: the problem of catalyst deactivation and its mitigation. Angewandte Chemie International Edition, 2015, 54(45): 13186–13197
https://doi.org/10.1002/anie.201503595
31 Y Q Dai, P Lu, Z M Cao, C T Campbell, Y N Xia. The physical chemistry and materials science behind sinter-resistant catalysts. Chemical Society Reviews, 2018, 47(12): 4314–4331
https://doi.org/10.1039/C7CS00650K
32 C Gao, F Lyu, Y Yin. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881
https://doi.org/10.1021/acs.chemrev.0c00237
33 S Li, R Cao, M Xu, Y Deng, L Lin, S Yao, X Liang, M Peng, Z Gao, Y Ge, J X Liu, W X Li, W Zhou, D Ma. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction. National Science Review, 2022, 9(1): nwab026
https://doi.org/10.1093/nsr/nwab026
34 S Li, J Liu, Z Yin, P Ren, L Lin, Y Gong, C Yang, X Zheng, R Cao, S Yao, Y Deng, X Liu, L Gu, W Zhou, J Zhu, X Wen, B Xu, D Ma. Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catalysis, 2020, 10(1): 907–913
https://doi.org/10.1021/acscatal.9b04558
35 L Lin, S Yao, R Gao, X Liang, Q Yu, Y Deng, J Liu, M Peng, Z Jiang, S Li, Y W Li, X D Wen, W Zhou, D Ma. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nature Nanotechnology, 2019, 14(4): 354–361
https://doi.org/10.1038/s41565-019-0366-5
36 X Zhang, M Zhang, Y Deng, M Xu, L Artiglia, W Wen, R Gao, B Chen, S Yao, X Zhang, M Peng, J Yan, A Li, Z Jiang, X Gao, S Cao, C Yang, A J Kropf, J Shi, J Xie, M Bi, J A van Bokhoven, Y W Li, X Wen, M Flytzani-Stephanopoulos, C Shi, W Zhou, D Ma. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature, 2021, 589(7842): 396–401
https://doi.org/10.1038/s41586-020-03130-6
37 J Liu, N P Wickramaratne, S Z Qiao, M Jaroniec. Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Materials, 2015, 14(8): 763–774
https://doi.org/10.1038/nmat4317
38 J Choma, D Jamioła, K Augustynek, M Marszewski, M Jaroniec. Carbon–gold core–shell structures: formation of shells consisting of gold nanoparticles. Chemical Communications (Cambridge), 2012, 48(33): 3972–3974
https://doi.org/10.1039/c2cc30372h
39 J Wei, G Wang, F Chen, M Bai, Y Liang, H Wang, D Zhao, Y Zhao. Sol–gel synthesis of metal-phenolic coordination spheres and their derived carbon composites. Angewandte Chemie International Edition, 2018, 57(31): 9838–9843
https://doi.org/10.1002/anie.201805781
40 B Feng, Y Feng, J Qin, Z Wang, Y Zhang, F Du, Y Zhao, J Wei. Self-template synthesis of spherical mesoporous tin dioxide from tin-polyphenol-formaldehyde polymers for conductometric ethanol gas sensing. Sensors and Actuators B: Chemical, 2021, 341: 129965
https://doi.org/10.1016/j.snb.2021.129965
41 J Liu, S Z Qiao, H Liu, J Chen, A Orpe, D Y Zhao, G Q Lu. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie International Edition, 2011, 50(26): 5947–5951
https://doi.org/10.1002/anie.201102011
42 G Kortüm, W Vogel, K Andrussow. Dissociation constants of organic acids in aqueous solution. Pure and Applied Chemistry, 1960, 1(2–3): 187–536
https://doi.org/10.1351/pac196001020187
43 A Konp, L Pilato. Phenolic Resins, Chemistry, Application and Performance. Berlin: Springer-Verlag Berlin Heidelberg, 1985, 24–58
44 D A Fraser, R W Hall, A L J Raum. Preparation of ‘high-ortho’ novolak resins I. Metal ion catalysis and orientation effect. Journal of Applied Chemistry, 1957, 7(12): 676–689
https://doi.org/10.1002/jctb.5010071207
45 Y F Orlov, E I Maslov, E I Belkina. Solubilities of metal hydroxides. Russian Journal of Inorganic Chemistry, 2013, 58(11): 1306–1314
https://doi.org/10.1134/S0036023613110168
46 U Maver, A Žnidaršič, D Saboti, S Srčič, M Gaberšček, A Godec, O Planinšek. The relation between the interfacial contact and SiO2 coating efficiency and properties in the case of two clarithromycin polymorphs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371(1): 119–125
https://doi.org/10.1016/j.colsurfa.2010.09.016
47 A Ōya, H Marsh. Phenomena of catalytic graphitization. Journal of Materials Science, 1982, 17(2): 309–322
https://doi.org/10.1007/BF00591464
48 L Jiao, L Zhang, X Wang, G Diankov, H Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880
https://doi.org/10.1038/nature07919
49 Y Lyu, P Wang, D Liu, F Zhang, T P Senftle, G Zhang, Z Zhang, J Wang, W Liu. Tracing the active phase and dynamics for carbon nanofiber growth on nickel catalyst using environmental transmission electron microscopy. Small Methods, 2022, 6(6): 2200235
https://doi.org/10.1002/smtd.202200235
50 R Hegde. Core level binding energy shifts in dilute tin alloys. Surface and Interface Analysis, 1982, 4(5): 204–207
https://doi.org/10.1002/sia.740040506
51 Y Tsujino, C Wakai, N Matubayashi, M Nakahara. Noncatalytic Cannizzaro-type reaction of formaldehyde in hot water. Chemistry Letters, 1999, 28(4): 287–288
https://doi.org/10.1246/cl.1999.287
52 J Deng, P J Ren, D H Deng, X H Bao. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 54(7): 2100–2104
https://doi.org/10.1002/anie.201409524
53 Y Chen, J Wei, M S Duyar, V V Ordomsky, A Y Khodakov, J Liu. Carbon-based catalysts for Fischer–Tropsch synthesis. Chemical Society Reviews, 2021, 50(4): 2337–2366
https://doi.org/10.1039/D0CS00905A
54 C Dong, Q Yu, R P Ye, P Su, J Liu, G H Wang. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: void-confinement effects in liquid-phase hydrogenations. Angewandte Chemie International Edition, 2020, 59(42): 18374–18379
https://doi.org/10.1002/anie.202007297
55 S F Pang, F F Liu, Y J Zhang, Z W Dong, Q Su, W F Wang, Z H Li, F Zhou, Y B Wang. Construction of functional superhydrophobic biochars as hydrogen transfer catalysts for dehydrogenation of N-heterocycles. ACS Sustainable Chemistry & Engineering, 2021, 9(27): 9062–9077
https://doi.org/10.1021/acssuschemeng.1c02322
56 Y S Yun, C E Berdugo, D W Flaherty. Advances in understanding the selective hydrogenolysis of biomass derivatives. ACS Catalysis, 2021, 11(17): 11193–11232
https://doi.org/10.1021/acscatal.1c02866
57 B X Peng, X G Yuan, C Zhao, J A Lercher. Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes. Journal of the American Chemical Society, 2012, 134(22): 9400–9405
https://doi.org/10.1021/ja302436q
58 L Wang, X Niu, J Chen. SiO2 supported Ni–In intermetallic compounds: efficient for selective hydrogenation of fatty acid methyl esters to fatty alcohols. Applied Catalysis B: Environmental, 2020, 278: 119293
https://doi.org/10.1016/j.apcatb.2020.119293
59 L Chen, Y Zhu, H Zheng, C Zhang, Y Li. Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts. Applied Catalysis A: General, 2012, 411: 95–104
https://doi.org/10.1016/j.apcata.2011.10.026
60 Z Luo, Q Bing, J Kong, J Liu, C Zhao. Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols. Catalysis Science & Technology, 2018, 8(5): 1322–1332
https://doi.org/10.1039/C8CY00037A
61 B Ma, C Li, S Liu, Y Lu. IR evidence for the formation of tilted CO on alumina-supported nickel catalyst. Chemical Physics Letters, 1992, 196(5): 433–436
https://doi.org/10.1016/0009-2614(92)85716-N
62 R Kupila, K Lappalainen, T Hu, A Heponiemi, D Bergna, U Lassi. Production of ethyl lactate by activated carbon-supported Sn and Zn oxide catalysts utilizing lignocellulosic side streams. Applied Catalysis A: General, 2021, 624: 118327
https://doi.org/10.1016/j.apcata.2021.118327
[1] FCE-22045-OF-SH_suppl_1 Download
[1] Toyin D. Shittu, Olumide B. Ayodele. Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1031-1059.
[2] Weiwei Wang, Xiaoyu Zhang, Min Guo, Jianan Li, Chong Peng. An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(6): 950-962.
[3] Dean Xu, Tong Ding, Yuqing Sun, Shilong Li, Wenheng Jing. Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for efficient water purification[J]. Front. Chem. Sci. Eng., 2022, 16(5): 731-744.
[4] Pingle Liu, Yu Liu, Yang Lv, Wei Xiong, Fang Hao, Hean Luo. Zinc modification of Ni-Ti as efficient NixZnyTi1 catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics[J]. Front. Chem. Sci. Eng., 2022, 16(4): 461-474.
[5] Yinteng Shi, Lin Ai, Haonan Shi, Xiaoyu Gu, Yujun Han, Jixiang Chen. Carbon-coated Ni-Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor[J]. Front. Chem. Sci. Eng., 2022, 16(4): 443-460.
[6] Deng Pan, Jiahua Zhou, Bo Peng, Shengping Wang, Yujun Zhao, Xinbin Ma. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid[J]. Front. Chem. Sci. Eng., 2022, 16(3): 397-407.
[7] Tao Lin, Xiaoxun Ma. Development of an in-situ H2 reduction and moderate oxidation method for 3,5-dimethylpyridine hydrogenation in trickle bed reactor[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1807-1817.
[8] Yang Zhang, Guowu Zhan, Yibo Song, Yiping Liu, Jiale Huang, Shu-Feng Zhou, Kok Bing Tan, Qingbiao Li. Utilization of waste vanadium-bearing resources in the preparation of rare-earth vanadate catalysts for semi-hydrogenation of α,β-unsaturated aldehydes[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1793-1806.
[9] Yuemin Lin, Yuanyuan Zhang, Renfeng Nie, Kai Zhou, Yao Ma, Mingjie Liu, Dan Lu, Zongbi Bao, Qiwei Yang, Yiwen Yang, Qilong Ren, Zhiguo Zhang. Room-temperature hydrogenation of halogenated nitrobenzenes over metal–organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1782-1792.
[10] Reyila Abuduwayiti, Feng-Yun Ma, Xing Fan. Catalytic hydrogenation of insoluble organic matter of CS2/Acetone from coal over mesoporous HZSM-5 supported Ni and Ru[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1505-1513.
[11] Wei Xiong, Susu Zhou, Zeyong Zhao, Fang Hao, Zhihui Cai, Pingle Liu, Hailiang Zhang, Hean Luo. Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(4): 998-1007.
[12] Jingwei Zhang, Lingxin Kong, Yao Chen, Huijiang Huang, Huanhuan Zhang, Yaqi Yao, Yuxi Xu, Yan Xu, Shengping Wang, Xinbin Ma, Yujun Zhao. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2021, 15(3): 666-678.
[13] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[14] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[15] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed