Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (11) : 1707-1717    https://doi.org/10.1007/s11705-023-2308-x
RESEARCH ARTICLE
Sulfur-deficient CoNi2S4 nanoparticles-anchored porous carbon nanofibers as bifunctional electrocatalyst for overall water splitting
Gaohui Du1,2(), Yi Fan2, Lina Jia2, Yunting Wang2, Yawen Hao2, Wenqi Zhao2, Qingmei Su2, Bingshe Xu1,2()
1. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
2. Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China
 Download: PDF(10264 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Water electrolysis technology is considered to be one of the most promising means to produce hydrogen. Herein, aiming at the problems of high overpotential and slow kinetics in water splitting, N-doped porous carbon nanofibers-coupled CoNi2S4 nanoparticles are prepared as bifunctional electrocatalyst. In the strategy, NaCl is used as the template to prepare porous carbon nanofibers with a large surface area, and sulfur vacancies are created to modulate the electronic structure of CoNi2S4. Electron spin resonance confirms the formation of abundant sulfur vacancies, which largely reduce the bandgap of CoNi2S4 from 1.68 to 0.52 eV. The narrowed bandgap is conducive to the migration of valence electrons and decreases the charge transfer resistance for electrocatalytic reaction. Moreover, the uniform distribution of CoNi2S4 nanoparticles on carbon nanofibers can prevent the aggregation and facilitate the exposure of electrochemical active sites. Therefore, the composite catalyst exhibits low overpotentials of 340 mV@100 mA·cm–2 for oxygen evolution reaction and 380 mV@100 mA·cm–2 for hydrogen evolution reaction. The assembled electrolyzer requires 1.64 V to achieve 10 mA·cm–2 for overall water-splitting with good long-term stability. The excellent performance results from the synergistic effect of porous structures, sulfur deficiency, nitrogen doping, and the well-dispersed active component.

Keywords nanoparticle      sulfur vacancy      porous carbon nanofiber      transition metal sulfides      electrolysis     
Corresponding Author(s): Gaohui Du,Bingshe Xu   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Just Accepted Date: 11 April 2023   Online First Date: 26 May 2023    Issue Date: 25 October 2023
 Cite this article:   
Gaohui Du,Yi Fan,Lina Jia, et al. Sulfur-deficient CoNi2S4 nanoparticles-anchored porous carbon nanofibers as bifunctional electrocatalyst for overall water splitting[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1707-1717.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2308-x
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I11/1707
Fig.1  Schematics of the fabrication of CoNi2S4@PCNFs.
Fig.2  (a) XRD pattern of CoNi2S4@PCNFs, Ni3S2@PCNFs and CoNi2S4; (b) SEM, (c, d) TEM and (e) HRTEM images of CoNi2S4@PCNFs. The inset in (b) is the diameter distribution of PCNFs, and the inset in (c) is the diameter distribution of nanoparticles. (f) Raman spectra of PCNFs, Ni3S2@PCNFs and CoNi2S4@PCNFs.
Fig.3  (a) Survey XPS spectra, high resolution XPS spectra of (b) Co 2p, (c) Ni 2p and (d) S 2p of CoNi2S4@PCNFs.
Fig.4  (a) TG curve of CoNi2S4@PCNFs; (b) EPR spectra of pure CoNi2S4 and CoNi2S4@PCNFs.
Fig.5  Atomic structures of (a) CoNi2S4 and (b) CoNi2S4 with S vacancies; site projected DOS of (c) CoNi2S4 and (d) CoNi2S4 containing S vacancies.
MaterialsRs-OER/ΩRct-OER/ΩRs-HER/ΩRct-HER/Ω
PCNFs18.0142.112.7222.5
CoNi2S413.138.610.5211.8
Ni2S3@PCNFs9.132.412.644.3
CoNi2S4@PCNFs12.612.98.934.1
Tab.1  The values of Rs and Rct of the samples
Fig.6  (a) OER LSV and (b) HER LSV curves of CoNi2S4@PCNFs-1, CoNi2S4@PCNFs, CoNi2S4@PCNFs-2.
Fig.7  (a) LSV curves of PCNFs, Ni3S2@PCNFs, CoNi2S4 and CoNi2S4@PCNFs; (b) overpotentials required for 20 and 100 mA·cm–2; (c) Tafel plots, (d) EIS curves and (e) Cdl of PCNFs, Ni3S2@PCNFs, CoNi2S4 and CoNi2S4@PCNFs; (f) normalized LSV curves obtained from panel (e); (g) TOF tests; (h) chronoamperometric measurement of CoNi2S4@PCNFs toward OER in 1.0 mol·L–1 KOH.
MaterialsOverpotential/mV (@100 mA·cm–2)Electrode reactionElectrolyteRef.
CuCo2S4/NiCo2S4350OER1 mol·L–1 KOH[41]
100-NCT-NiCo2S4360OER1 mol·L–1 KOH[42]
NiCo2S4/NF430OER1 mol·L–1 KOH[43]
NiCo2S4 NW/NF370OER1 mol·L–1 KOH[44]
CoNi2S4/Ni3S2@NF420OER1 mol·L–1 KOH[45]
NiCo2S4@NF420OER1 mol·L–1 KOH[46]
CoNi2S4@PCNFs340OER1 mol·L–1 KOHThis work
NiCo2S4/NF420HER1 mol·L–1 KOH[43]
NiCo2S4 NW/NF350HER1 mol·L–1 KOH[44]
CoNi2S4/Ni3S2@NF370HER1 mol·L–1 KOH[45]
CoNi2S4@PCNFs380HER1 mol·L–1 KOHThis work
Tab.2  Comparison of the HER/OER overpotentials of NiCo2S4-based electrocatalysts
Fig.8  (a) HER polarization curves of PCNFs, Ni3S2@PCNFs, CoNi2S4, and CoNi2S4@PCNFs; (b) overpotentials required for 20 and 100 mA·cm–2; (c) Tafel plots, (d) EIS curves, and (e) Cdl of the samples; (f) normalized LSV curves obtained from panel (e); (g) TOF tests. (h) chronoamperometric measurement of CoNi2S4@PCNFs toward HER in 1.0 mol·L–1 KOH.
Fig.9  (a) Polarization curves of the CoNi2S4@PCNF cell for overall water splitting in alkaline electrolyte; (b) chronoamperometric curve of CoNi2S4@PCNFs cell and the two-electrode configuration for water splitting (inset).
1 X H Yu, J L Yi, R L Zhang, F Y Wang, L Liu. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407
https://doi.org/10.1007/s11705-021-2097-z
2 C Y Yan, W Q Li, X J Liu, M Chen, X Liu, X M Li, J T Zai, X F Qian. Donor-π-acceptor heterosystem-functionalized porous hollow carbon microsphere for high-performance Li–S cathode materials with S up to 93 wt %. ACS Applied Materials & Interfaces, 2021, 13(41): 48872–48880
https://doi.org/10.1021/acsami.1c15133
3 D Han, G H Du, Y T Wang, L N Jia, W Q Zhao, Q M Su, S K Ding, M Zhang, B S Xu. Chemical energy-driven lithiation preparation of defect-rich transition metal nanostructures for electrocatalytic hydrogen evolution. Small, 2022, 18(35): 2202779
https://doi.org/10.1002/smll.202202779
4 H Wang, C Weng, J T Ren, Z Y Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1408–1426
https://doi.org/10.1007/s11705-021-2102-6
5 J Q Li, Z X Zhu, Y C Huang, F Wang, M S Balogun. Ni3N: a multifunctional material for energy storage and electrocatalysis. Materials Today. Energy, 2022, 26: 101001
https://doi.org/10.1016/j.mtener.2022.101001
6 L Hu, Y W Hu, R Liu, Y C Mao, M S Balogun, Y X Tong. Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N- and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting. International Journal of Hydrogen Energy, 2019, 44(23): 11402–11410
https://doi.org/10.1016/j.ijhydene.2019.03.157
7 T Xiong, X Yao, Z Zhu, R Xiao, Y W Hu, Y Huang, S Zhang, M S Balogun. In situ grown Co-based interstitial compounds: non-3d metal and non-metal dual modulation boosts alkaline and acidic hydrogen electrocatalysis. Small, 2022, 18(9): 2105331
https://doi.org/10.1002/smll.202105331
8 X Feng, Q Jiao, H Cui, M Yin, Q Li, Y Zhao, H Li, W Zhou, C Feng. One-pot synthesis of NiCo2S4 hollow spheres via sequential ion-exchange as an enhanced oxygen bifunctional electrocatalyst in alkaline solution. ACS Applied Materials & Interfaces, 2018, 10(35): 29521–29531
https://doi.org/10.1021/acsami.8b08547
9 K He, T Tadesse Tsega, X Liu, J Zai, X H Li, X Liu, W Li, N Ali, X Qian. Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis. Angewandte Chemie International Edition, 2019, 58(34): 11903–11909
https://doi.org/10.1002/anie.201905281
10 N Ali, T T Tsega, Y C Cao, S Abbas, W J Li, A Iqbal, H Fazal, Z L Xin, J T Zai, X F Qian. Copper vacancy activated plasmonic Cu3−xSnS4 for highly efficient photocatalytic hydrogen generation: broad solar absorption, efficient charge separation and decreased HER overpotential. Nano Research, 2021, 14(10): 3358–3364
https://doi.org/10.1007/s12274-021-3604-8
11 L N Jia, G H Du, D Han, Y Wang, W Q Zhao, Q M Su, S K Ding, B S Xu. Magnetic electrode configuration with polypyrrole-wrapped Ni/NiFe2O4 core–shell nanospheres to boost electrocatalytic water splitting. Chemical Engineering Journal, 2023, 454: 140278
https://doi.org/10.1016/j.cej.2022.140278
12 J Guo, M Wang, L Xu, X Li, A Iqba, G E Sterbinsky, H Yan, M Xie, J Zai, Z Feng, T Cheng, X Qian. Bioinspired activation of N2 on asymmetrical coordinated Fe grafted 1T MoS2 at room temperature. Chinese Journal of Chemistry, 2021, 39(7): 1898–1904
https://doi.org/10.1002/cjoc.202000675
13 J J Guo, T T Tsega, I U Islam, A Iqbal, J Zai, X F Qian. Fe doping promoted electrocatalytic N2 reduction reaction of 2H MoS2. Chinese Chemical Letters, 2020, 31(9): 2487–2490
https://doi.org/10.1016/j.cclet.2020.02.019
14 X Qiao, J Jin, H Fan, Y Li, S Liao. In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5(24): 12354–12360
https://doi.org/10.1039/C7TA00993C
15 T Z Xiong, B W Huang, J J Wei, X C Yao, R Xiao, Z X Zhu, F Yang, Y C Huang, H Yang, M S Balogun. Unveiling the promotion of accelerated water dissociation kinetics on the hydrogen evolution catalysis of NiMoO4 nanorods. Journal of Energy Chemistry, 2022, 67: 805–813
https://doi.org/10.1016/j.jechem.2021.11.025
16 Y Xue, Z Zuo, Y Li, H Liu, Y Li. Graphdiyne-supported NiCo2S4 nanowires: a highly active and stable 3D bifunctional electrode material. Small, 2017, 13(31): 1700936
https://doi.org/10.1002/smll.201700936
17 J Zhang, L Qu, G Shi, J Liu, J Chen, L N Dai. P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angewandte Chemie, 2016, 128(6): 2270–2274
https://doi.org/10.1002/ange.201510495
18 S Chen, J Duan, M Jaroniec, S Z Qiao. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Advanced Materials, 2014, 26(18): 2925–2930
https://doi.org/10.1002/adma.201305608
19 Y Zheng, Y Jiao, L H Li, T Xing, Y Chen, M Jaroniec, S Qiao. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano, 2014, 8(5): 5290–5296
https://doi.org/10.1021/nn501434a
20 K Qu, Y Zheng, X Zhang, K Davey, S Dai, S Z Qiao. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano, 2017, 11(7): 7293–7300
https://doi.org/10.1021/acsnano.7b03290
21 G Ma, X Wang. Synthesis and applications of one-dimensional porous nanowire arrays: a review. Nano, 2015, 10(1): 1530001
https://doi.org/10.1142/S1793292015300017
22 J Wang, F Xu, H Jin, Y Chen, Y Wang. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Advanced Materials, 2017, 29(14): 160583
https://doi.org/10.1002/adma.201605838
23 X Yan, L Zhuang, Z Zhu, X Yao. Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13(6): 3327–3345
https://doi.org/10.1039/D0NR08976A
24 Y Hao, G H Du, Y Fan, L Jia, D Han, W Zhao, Q M Su, S Ding, B S Xu. Mo/P dual-doped Co/oxygen-deficient Co3O4 core–shell nanorods supported on Ni foam for electrochemical overall water splitting. ACS Applied Materials & Interfaces, 2021, 13(46): 55263–55271
https://doi.org/10.1021/acsami.1c18813
25 L F Zhang, X Ke, G Ou, H Wei, L N Wang, H Wu. Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-milling method. Science China Materials, 2017, 60(9): 849–856
https://doi.org/10.1007/s40843-017-9086-9
26 M Basu. Nanotubes of NiCo2S4/Co9S8 heterostructure: efficient hydrogen evolution catalyst in alkaline medium. Chemistry-an Asian Journal, 2018, 13(21): 3204–3211
https://doi.org/10.1002/asia.201801185
27 D Merki, S Fierro, H Vrubel, X L Hu. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science, 2011, 2(7): 1262–1267
https://doi.org/10.1039/C1SC00117E
28 R Li, F Liu, Y Zhang, M Guo, D Liu. Nitrogen, sulfur co-doped hierarchically porous carbon as a metal-free electrocatalyst for oxygen reduction and carbon dioxide reduction reaction. ACS Applied Materials & Interfaces, 2020, 12(40): 44578–44587
https://doi.org/10.1021/acsami.0c06506
29 P Su, Q Jiao, H Li, Y Li, X Liu, Q Wu, D Shi, Y Zhao, T Wang, W Wang. Rational design of NiCo2S4 quantum dot-modified nitrogen-doped carbon nanotube composites as robust Pt-free electrocatalysts for dye-sensitized solar cells. ACS Applied Energy Materials, 2021, 4(5): 4344–4354
https://doi.org/10.1021/acsaem.0c03009
30 S Sharma, A Ganguly, P Papakonstantinou, X Miao, M Li, J Hutchison, M Delichatsios, S Ukleja. Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. Journal of Physical Chemistry C, 2010, 114(45): 19459–19466
https://doi.org/10.1021/jp107872z
31 Y Wang, H Wei, H Lv, Z Chen, J Zhang, X Yan, L Lee, Z Wang, Y L Chueh. Highly stable three-dimensional nickel-cobalt hydroxide hierarchical heterostructures hybridized with carbon nanotubes for high-performance energy storage devices. ACS Nano, 2019, 13(10): 11235–11248
https://doi.org/10.1021/acsnano.9b04282
32 X Cao, J He, H Li, L Kang, X He, J Sun, R Jiang, H Xu, Z Lei, Z H Liu. CoNi2S4 nanoparticle/carbon nanotube sponge cathode with ultrahigh capacitance for highly compressible asymmetric supercapacitor. Small, 2018, 14(27): e1800998
https://doi.org/10.1002/smll.201800998
33 Y J Yang, C Yao, S Chen, N Wang, P Yang, C Jiang, M Liu, Y Cheng. A 3D flower-like CoNi2S4/carbon nanotube nanosheet arrays grown on Ni foam as a binder-free electrode for asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2021, 888: 115217
https://doi.org/10.1016/j.jelechem.2021.115217
34 M Dong, H Hu, S Ding, C Wang, L Li. Flexible non-enzymatic glucose biosensor based on CoNi2S4 nanosheets grown on nitrogen-doped carbon foam substrate. Journal of Alloys and Compounds, 2021, 883: 160830
https://doi.org/10.1016/j.jallcom.2021.160830
35 W Hu, R Chen, W Xie, L Zou, N Qin, D Bao. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Applied Materials & Interfaces, 2014, 6(21): 19318–19326
https://doi.org/10.1021/am5053784
36 E Hu, J Ning, D Zhao, C Xu, Y Lin, Y Zhong, Z Zhang, Y Wang, Y Hu. A room-temperature postsynthetic ligand exchange strategy to construct mesoporous Fe-doped CoP hollow triangle plate arrays for efficient electrocatalytic water splitting. Small, 2018, 14(14): e1704233
https://doi.org/10.1002/smll.201704233
37 J Lin, P Wang, H Wang, C Li, X Si, J Qi, J Cao, Z Zhong, W Fei, J Feng. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Advancement of Science, 2019, 6(14): 1900246
38 Z Li, D Zhao, C Xu, J Ning, Y Zhong, Z Zhang, Y Wang, Y Hu. Reduced CoNi2S4 nanosheets with enhanced conductivity for high-performance supercapacitors. Electrochimica Acta, 2018, 278: 33–41
https://doi.org/10.1016/j.electacta.2018.05.030
39 J Wang, Y Zhao, G Li, D Luo, J Liu, Y Zhang, X Wang, L Shui, Z Chen. Aligned sulfur-deficient ZnS1–x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. Nano Energy, 2021, 84: 105891
https://doi.org/10.1016/j.nanoen.2021.105891
40 Y X Gao, T Z Xiong, Y Li, Y C Huang, Y P Li, M S Balogun. A simple and scalable approach to remarkably boost the overall water splitting activity of stainless steel electrocatalysts. ACS Omega, 2019, 4(14): 16130–16138
https://doi.org/10.1021/acsomega.9b02315
41 L Ma, J Liang, T Chen, Y Liu, S Li, G J Fang. 3D CuCo2S4/NiCo2S4 core–shell composites as efficient bifunctional electrocatalyst electrodes for overall water splitting. Electrochimica Acta, 2019, 326: 135002
https://doi.org/10.1016/j.electacta.2019.135002
42 F Li, R C Xu, Y M Li, F Liang, D F Zhang, W F Fu, X J Lv. N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon, 2019, 145: 521–528
https://doi.org/10.1016/j.carbon.2019.01.065
43 Y Gong, Y Lin, Z Yang, J Wang, H Pan, Z Xu, Y Liu. Crossed NiCo2S4 nanowires supported on nickel foam as a bifunctional catalyst for efficient overall water splitting. ChemistrySelect, 2019, 4(4): 1180–1187
https://doi.org/10.1002/slct.201803665
44 A Sivanantham, P Ganesan, S Shanmugam. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Advanced Functional Materials, 2016, 26(26): 4661–4672
https://doi.org/10.1002/adfm.201600566
45 W Dai, K Ren, Y A Zhu, Y Pan, J Yu, T Lu. Flower-like CoNi2S4/Ni3S2 nanosheet clusters on nickel foam as bifunctional electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 2020, 844: 156252
https://doi.org/10.1016/j.jallcom.2020.156252
46 Y Ning, D Ma, Y Shen, F Wang, X Zhang. Constructing hierarchical mushroom-like bifunctional NiCo/NiCo2S4@NiCo/Ni foam electrocatalysts for efficient overall water splitting in alkaline media. Electrochimica Acta, 2018, 265: 19–31
https://doi.org/10.1016/j.electacta.2018.01.150
[1] Fan Zhang, Ce Gao, Shang-Ru Zhai, Qing-Da An. Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient catalytic degradation of organic dyes[J]. Front. Chem. Sci. Eng., 2023, 17(7): 893-905.
[2] Yong Zheng, Mingjin Li, Yongye Wang, Niu Huang, Wei Liu, Shan Chen, Xuepeng Ni, Kunming Li, Siwei Xiong, Yi Shen, Siliang Liu, Baolong Zhou, Niaz Ali Khan, Liqun Ye, Chao Zhang, Tianxi Liu. Floret-like Fe–Nx nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer boosting oxygen electroreduction[J]. Front. Chem. Sci. Eng., 2023, 17(5): 525-535.
[3] Wenquan Xie, Xianhui Zhang, Dengke Xi, Rusen Zhou, Size Yang, Patrick Cullen, Renwu Zhou. Power-to-chemicals: sustainable liquefaction of food waste with plasma-electrolysis[J]. Front. Chem. Sci. Eng., 2023, 17(5): 594-605.
[4] Bing Lu, Zhecheng Zhang, Meiyu Qi, Yuehua Zhang, Hualing Yang, Jin Wang, Yue Ding, Yang Wang, Yong Yao. All-in-one functional supramolecular nanoparticles based on pillar[5]arene for controlled generation, storage and release of singlet oxygen[J]. Front. Chem. Sci. Eng., 2023, 17(3): 307-313.
[5] Alexey Stepanov, Svetlana Fedorenko, Kirill Kholin, Irek Nizameev, Alexey Dovzhenko, Rustem Zairov, Tatiana Gerasimova, Alexandra Voloshina, Anna Lyubina, Guzel Sibgatullina, Dmitry Samigullin, Asiya Mustafina. Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions of Cu2–xS cores with red emitting carbon dots[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2144-2155.
[6] Jiafeng Ouyang, Wenlu Guo, Lin Wang, Changming Nie, Dadong Shao, Weiqun Shi, Liyong Yuan. Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2037-2049.
[7] Yi-Fan Xue, Jie Feng, Yun-Cai Song, Wen-Ying Li. Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study of active sites[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1986-2000.
[8] Qing-Hui Kong, Xian-Wei Lv, Jin-Tao Ren, Hao-Yu Wang, Xin-Lian Song, Feng Xu, Zhong-Yong Yuan. “Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygen evolution performance[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1755-1764.
[9] Joseph Raj Xavier. Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix[J]. Front. Chem. Sci. Eng., 2023, 17(1): 1-14.
[10] Jinjian Hou, Jinze Du, Hong Sui, Lingyu Sun. A review on the application of nanofluids in enhanced oil recovery[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1165-1197.
[11] Han Jia, Jiajun Dai, Tingyi Wang, Yingbiao Xu, Lingyu Zhang, Jianan Wang, Lin Song, Kaihe Lv, Dexin Liu, Pan Huang. The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1101-1113.
[12] Lingtao Kong, Zhouxun Li, Hui Zhang, Mengmeng Zhang, Jiaxing Zhu, Mingli Deng, Zhenxia Chen, Yun Ling, Yaming Zhou. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1114-1124.
[13] Shanshan Zhang, Jiemei Zhou, Zhaogen Wang, Jianzhong Xia, Yong Wang. Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers[J]. Front. Chem. Sci. Eng., 2022, 16(5): 745-754.
[14] Sunhui Chen, Qiujun Qiu, Dongdong Wang, Dejun She, Bo Yin, Meihong Chai, Huining He, Dong Nyoung Heo, Jianxin Wang. Long acting carmustine loaded natural extracellular matrix hydrogel for inhibition of glioblastoma recurrence after tumor resection[J]. Front. Chem. Sci. Eng., 2022, 16(4): 536-545.
[15] Jinxiao Bo, Mei Li, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang. Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios[J]. Front. Chem. Sci. Eng., 2022, 16(4): 498-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed