|
|
Facile fabrication of CdIn2S4/TiO2 heterojunction for enhanced solar light efficient CO2 reduction |
Xiaoyu Ma1, Longlong Wang1, Houde She1( ), Yu Zhou1, Lei Wang1, Jingwei Huang1, Qizhao Wang1,2( ) |
1. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China 2. School of Environment Science and Engineering, Chang’an University, Xi’an 710064, China |
|
|
Abstract Photocatalytic CO2 reduction is a promising solution to simultaneously provide renewable chemical fuels and address the greenhouse effect. However, designing practical photocatalysts with advanced architectures remains challenging. Herein, we report the preparation of a novel CdIn2S4/TiO2 binary heterojunction via an in situ solvothermal approach, which exhibits superior photocatalytic activity for sunlight-driven CO2 reduction. The CdIn2S4/TiO2 composites exhibit significantly enhanced photocatalytic performance for CO2 reduction compared to unmodified TiO2. Among them, the 3% CdIn2S4/TiO2 composite has optimal CO and CH4 evolution rates of 18.32 and 1.03 μmol·g–1·h–1, respectively. The yield of CO is 4.7 times higher than that of pristine TiO2. This improved photocatalytic activity of the CdIn2S4/TiO2 heterostructure can be attributed to its large surface area, extended light absorption range and high separation efficiency of photogenerated electron-hole pairs, which are supported by the results of photoluminescence spectroscopy and the photoelectrochemical measurements. Moreover, the photocatalytic mechanism based on the binary CdIn2S4/TiO2 heterojunction is proposed and separation process of photogenerated electron-hole pairs is discussed. In brief, we aim to provide insights into the application of TiO2 in energy conversion processes through the construction of heterogeneous junctions.
|
Keywords
TiO2
CdIn2S4
heterojunction
photocatalytic CO2 reduction
|
Corresponding Author(s):
Houde She,Qizhao Wang
|
Just Accepted Date: 19 April 2024
Issue Date: 18 July 2024
|
|
1 |
S Chu , Y Cui , N Liu . The path towards sustainable energy. Nature Materials, 2017, 16(1): 16–22
https://doi.org/10.1038/nmat4834
|
2 |
Y N Zhang , M Gao , S T Chen , H Q Wang , P W Huo . Fabricating Ag/CN/ZnIn2S4 S-scheme heterojunctions with plasmonic effect for enhanced light-driven photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2023, 39(6): 2211051
https://doi.org/10.3866/PKU.WHXB202211051
|
3 |
Y X Pan , Y You , S Xin , Y T Li , G T Fu , Z M Cui , Y L Men , F F Cao , S H Yu , J B Goodenough . Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. Journal of the American Chemical Society, 2017, 139(11): 4123–4129
https://doi.org/10.1021/jacs.7b00266
|
4 |
B Su , M Zheng , W Lin , X F Lu , D Y Luan , S B Wang , X W Lou . S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Advanced Energy Materials, 2023, 13(15): 2203290
https://doi.org/10.1002/aenm.202203290
|
5 |
J Zhang , X X Wei , J L Zhao , Y Zhang , L Wang , J W Huang , H D She , Q Z Wang . Electronegative Cl– modified BiVO4 photoanode synergized with nickel hydroxide cocatalyst for high-performance photoelectrochemical water splitting. Chemical Engineering Journal, 2023, 454: 140081
https://doi.org/10.1016/j.cej.2022.140081
|
6 |
L J Huang , B F Li , B Su , Z Xiong , C J Zhang , Y D Hou , Z X Ding , S B Wang . Fabrication of hierarchical Co3O4@CdIn2S4 p-n heterojunction photocatalysts for improved CO2 reduction with visible light. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(15): 7177–7183
https://doi.org/10.1039/D0TA01817A
|
7 |
L Wang , H Y Cheng , Z T Zhang , Y Zhang , J W Huang , H D She , C L Liu , Q Z Wang . Rational design of honeycomb-like APTES-TiO2/COF heterostructures: promoted intramolecular charge transfer for visible-light-driven catalytic CO2 reduction. Chemical Engineering Journal, 2023, 456: 140990
https://doi.org/10.1016/j.cej.2022.140990
|
8 |
J X Low , L Y Zhang , B C Zhu , Z Y Liu , J G Yu . TiO2 photonic crystals with localized surface photothermal effect and enhanced photocatalytic CO2 reduction activity. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15653–15661
https://doi.org/10.1021/acssuschemeng.8b04150
|
9 |
Y X Wang , L Rao , P F Wang , Z Y Shi , L X Zhang . Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Applied Catalysis B: Environmental, 2020, 262: 118308
https://doi.org/10.1016/j.apcatb.2019.118308
|
10 |
D J Yang , H W Liu , Z F Zheng , Y Yuan , J C Zhao , E R Waclawik , X B Ke , H Y Zhu . An efficient photocatalyst structure: TiO2 (B) nanofibers with a shell of anatase nanocrystals. Journal of the American Chemical Society, 2009, 131(49): 17885–17893
https://doi.org/10.1021/ja906774k
|
11 |
W Zhang , Y L Wang , H T Zhao . Continuous operation on synthesis and surface modification of rutile nanoparticles in designed microfluidic reactors. ACS Omega, 2020, 5(22): 12816–12824
https://doi.org/10.1021/acsomega.0c00445
|
12 |
R Asahi , T Morikawa , T Ohwaki , K Aoki , Y Taga . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
https://doi.org/10.1126/science.1061051
|
13 |
G C Xi , S X Ouyang , J H Ye . General synthesis of hybrid TiO2 mesoporous “french fries” toward improved photocatalytic conversion of CO2 into hydrocarbon fuel: a case of TiO2/ZnO. Chemistry, 2011, 17(33): 9057–9061
https://doi.org/10.1002/chem.201100580
|
14 |
L P Jiang , S J Wang , L Y Shi , Y Zhao , Z Y Wang , M H Zhang , S Yuan . Solvothermal synthesis of TiO2/Bi2WO6 heterojunction photocatalyst with optimized interface structure and enabled photocatalytic performance. Chinese Journal of Chemistry, 2017, 35(2): 183–188
https://doi.org/10.1002/cjoc.201600563
|
15 |
H Tada , A Hattori , Y Tokihisa , K Imai , N Tohge , S Ito . A patterned-TiO2/SnO2 bilayer type photocatalyst. Journal of Physical Chemistry B, 2000, 104(19): 4585–4587
https://doi.org/10.1021/jp000049r
|
16 |
Z R Tang , X Yin , Y H Zhang , Y J Xu . Synthesis of titanate nanotube-CdS nanocomposites with enhanced visible light photocatalytic activity. Inorganic Chemistry, 2013, 52(20): 11758–11766
https://doi.org/10.1021/ic4010483
|
17 |
Z Bai , X Q Yan , Y Li , Z Kang , S Y Cao , Y Zhang . 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Advanced Energy Materials, 2016, 6(3): 1501459
https://doi.org/10.1002/aenm.201501459
|
18 |
J J Li , Z W Zhao , Z N Li , H J Yang , S J Yue , Y P Tang , Q Z Wang . Construction of immobilized films photocatalysts with CdS clusters decorated by metal Cd and BiOCl for photocatalytic degradation of tetracycline antibiotics. Chinese Chemical Letters, 2022, 33(8): 3705–3708
https://doi.org/10.1016/j.cclet.2021.10.080
|
19 |
B Fang , Z P Xing , M J Guo , Y L Qiu , Y Q Cui , Z Z Li , Y Wang , P Chen , W Zhou . Phosphorus-doping CdS@NiFe layered double hydroxide as Z-scheme heterojunction for enhanced photocatalytic and photo-fenton degradation performance. Separation and Purification Technology, 2021, 274: 119066
https://doi.org/10.1016/j.seppur.2021.119066
|
20 |
S K Apte , S N Garaje , R D Bolade , J D Ambekar , M V Kulkarni , S D Naik , S W Gosavi , G O Baeg , B B Kale . Hierarchical nanostructures of CdIn2S4 via hydrothermal and microwave methods: efficient solar-light-driven photocatalysts. Journal of Materials Chemistry, 2010, 20(29): 6095–6102
https://doi.org/10.1039/c0jm00538j
|
21 |
M G Walter , E L Warren , J R McKone , S W Boettcher , Q X Mi , E A Santori , N S Lewis . Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326
|
22 |
S B Wang , B Y Guan , Y Lu , X W Lou . Formation of hierarchical In2S3-CdIn2S4 hetero-structured nanotubes for efficient and stable visible light CO2 reduction. Journal of the American Chemical Society, 2017, 139(48): 17305–17308
https://doi.org/10.1021/jacs.7b10733
|
23 |
M A Mahadadalkar , S W Gosavi , B B Kale . Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(33): 16064–16073
https://doi.org/10.1039/C8TA03398F
|
24 |
P Zhang , L N Zhang , E L Dong , X Zhang , W Zhang , Q S Wang , S C Xu , H B Li . Synthesis of CaIn2S4/TiO2 heterostructures for enhanced UV-visible light photocatalytic activity. Journal of Alloys and Compounds, 2021, 885: 161027
https://doi.org/10.1016/j.jallcom.2021.161027
|
25 |
L B Wang , B Cheng , L Y Zhang , J G Yu . In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17(41): 2103447
https://doi.org/10.1002/smll.202103447
|
26 |
S B Wang , B Y Guan , X W Lou . Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. Journal of the American Chemical Society, 2018, 140(15): 5037–5040
https://doi.org/10.1021/jacs.8b02200
|
27 |
B Lin , H Li , H An , W B Hao , J J Wei , Y Z Dai , C S Ma , J D Yang . Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220: 542–552
https://doi.org/10.1016/j.apcatb.2017.08.071
|
28 |
C Liu , W Xiao , G Y Yu , Q Wang , J W Hu , C H Xu , X Y Du , J G Xu , Q F Zhang , Z G Zou . Interfacial engineering of Ti3C2 MXene/CdIn2S4 schottky heterojunctions for boosting visible-light H2 evolution and Cr(VI) reduction. Journal of Colloid and Interface Science, 2023, 640: 851–863
https://doi.org/10.1016/j.jcis.2023.02.137
|
29 |
D Hazarika , N Karak . Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach. Applied Surface Science, 2016, 376: 276–285
https://doi.org/10.1016/j.apsusc.2016.03.165
|
30 |
L Fan , R Guo . Fabrication of novel CdIn2S4 hollow spheres via a facile hydrothermal process. Journal of Physical Chemistry C, 2008, 112(29): 10700–10706
https://doi.org/10.1021/jp8022259
|
31 |
H Jung , K M Cho , K H Kim , H W Yoo , A Al-Saggaf , I Gereige , H T Jung . Highly efficient and stable CO2 reduction photocatalyst with a hierarchical structure of mesoporous TiO2 on 3D graphene with few-layered MoS2. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5718–5724
https://doi.org/10.1021/acssuschemeng.8b00002
|
32 |
W Chen , T Huang , Y X Hua , T Y Liu , X H Liu , S M Chen . Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity. Journal of Hazardous Materials, 2016, 320: 529–538
https://doi.org/10.1016/j.jhazmat.2016.08.025
|
33 |
C Xue , H An , X Q Yan , J L Li , B L Yang , J J Wei , G D Yang . Spatial charge separation and transfer in ultrathin CdIn2S4/rGO nanosheet arrays decorated by ZnS quantum dots for efficient visible-light-driven hydrogen evolution. Nano Energy, 2017, 39: 513–523
https://doi.org/10.1016/j.nanoen.2017.07.030
|
34 |
J X Low , B Z Dai , T Tong , C J Jiang , J G Yu . In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Advanced Materials, 2019, 31(6): 1802981
https://doi.org/10.1002/adma.201802981
|
35 |
F Y Xu , B C Zhu , B Cheng , J G Yu , J S Xu . 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Advanced Optical Materials, 2018, 6(23): 1800911
https://doi.org/10.1002/adom.201800911
|
36 |
H Liu , Z Zhang , J C Meng , J Zhang . Novel visible-light-driven CdIn2S4/mesoporous g-C3N4 hybrids for efficient photocatalytic reduction of CO2 to methanol. Molecular Catalysis, 2017, 430: 9–19
https://doi.org/10.1016/j.molcata.2016.12.006
|
37 |
L Q Jing , Y G Xu , Z G Chen , M Q He , M Xie , J Liu , H Xu , S Q Huang , H M Li . Different morphologies of SnS2 supported on 2D g-C3N4 for excellent and stable visible light photocatalytic hydrogen generation. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5132–5141
https://doi.org/10.1021/acssuschemeng.7b04792
|
38 |
L Yu , X Ba , M Qiu , Y F Li , L Shuai , W Zhang , Z F Ren , Y Yu . Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods. Nano Energy, 2019, 60: 576–582
https://doi.org/10.1016/j.nanoen.2019.03.083
|
39 |
S W Cao , B J Shen , T Tong , J W Fu , J G Yu . 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Advanced Functional Materials, 2018, 28(21): 1800136
https://doi.org/10.1002/adfm.201800136
|
40 |
P Xiao , D L Jiang , L X Ju , J J Jing , M Chen . Construction of RGO/CdIn2S4/g-C3N4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride. Applied Surface Science, 2018, 433: 388–397
https://doi.org/10.1016/j.apsusc.2017.10.028
|
41 |
S Tonda , S Kumar , M Bhardwaj , P Yadav , S. G Ogale . C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high performance photocatalytic reduction of CO2 into renewable fuels. ACS Applied Materials & Interfaces, 2018, 10(3): 2667–2678
https://doi.org/10.1021/acsami.7b18835
|
42 |
X Dai , M L Xie , S G Meng , X L Fu , S F Chen . Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Applied Catalysis B: Environmental, 2014, 158–159: 382–390
https://doi.org/10.1016/j.apcatb.2014.04.035
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|