Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (9) : 105    https://doi.org/10.1007/s11705-024-2456-7
Facile fabrication of CdIn2S4/TiO2 heterojunction for enhanced solar light efficient CO2 reduction
Xiaoyu Ma1, Longlong Wang1, Houde She1(), Yu Zhou1, Lei Wang1, Jingwei Huang1, Qizhao Wang1,2()
1. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
2. School of Environment Science and Engineering, Chang’an University, Xi’an 710064, China
 Download: PDF(2338 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photocatalytic CO2 reduction is a promising solution to simultaneously provide renewable chemical fuels and address the greenhouse effect. However, designing practical photocatalysts with advanced architectures remains challenging. Herein, we report the preparation of a novel CdIn2S4/TiO2 binary heterojunction via an in situ solvothermal approach, which exhibits superior photocatalytic activity for sunlight-driven CO2 reduction. The CdIn2S4/TiO2 composites exhibit significantly enhanced photocatalytic performance for CO2 reduction compared to unmodified TiO2. Among them, the 3% CdIn2S4/TiO2 composite has optimal CO and CH4 evolution rates of 18.32 and 1.03 μmol·g–1·h–1, respectively. The yield of CO is 4.7 times higher than that of pristine TiO2. This improved photocatalytic activity of the CdIn2S4/TiO2 heterostructure can be attributed to its large surface area, extended light absorption range and high separation efficiency of photogenerated electron-hole pairs, which are supported by the results of photoluminescence spectroscopy and the photoelectrochemical measurements. Moreover, the photocatalytic mechanism based on the binary CdIn2S4/TiO2 heterojunction is proposed and separation process of photogenerated electron-hole pairs is discussed. In brief, we aim to provide insights into the application of TiO2 in energy conversion processes through the construction of heterogeneous junctions.

Keywords TiO2      CdIn2S4      heterojunction      photocatalytic CO2 reduction     
Corresponding Author(s): Houde She,Qizhao Wang   
Just Accepted Date: 19 April 2024   Issue Date: 18 July 2024
 Cite this article:   
Xiaoyu Ma,Longlong Wang,Houde She, et al. Facile fabrication of CdIn2S4/TiO2 heterojunction for enhanced solar light efficient CO2 reduction[J]. Front. Chem. Sci. Eng., 2024, 18(9): 105.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2456-7
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I9/105
  Scheme1 Schematic illustration of the preparation of the CIS/TiO2 heterojunction.
Fig.1  XRD patterns of (a) TiO2, CIS/TiO2 composite and (b) CdIn2S4 sample.
Fig.2  SEM images of (a) TiO2 nanosheets, (b) CdIn2S4 nanosheets, (c) 3% CIS/TiO2 sample and (d–i) elemental mapping images of 3% CIS/TiO2 composite.
Fig.3  TEM images of (a–c) TiO2 nanosheets and (d–f) 3% CIS/TiO2 composite.
Fig.4  XPS spectra of 3% CIS/TiO2 composite (a) Ti 2p, (b) O 1s, (c) Cd 3d, (d) In 3d, and (e) S 2p.
Fig.5  (a) The UV-vis diffuse reflectance spectra of TiO2, CdIn2S4 and CIS/TiO2 photocatalyst, (b) the band edge of TiO2, CIS/TiO2 composite and insets showing the band edge of CdIn2S4 sample.
Fig.6  (a) N2 adsorption-desorption isotherms of the TiO2 and 3% CIS/TiO2 composite; (b) pore-size distribution curves of the TiO2 and 3% CIS/TiO2 composite.
Fig.7  (a, b) Dependence of total CO/CH4 evolution amount within 1 h with the amount of different ratio of CIS/TiO2 and CIS/P25 under Xe lamp, (c) recycle experiment of 3% CIS/TiO2, and (d) XRD patterns of 3% CIS/TiO2 composite before and after recycling.
Fig.8  (a, b) Mott-Schottky plot of the TiO2 and CdIn2S4 electrode and (c) possible mechanism of photocatalytic reduction of CO2 in CIS/TiO2 composite under sunlight irradiation (NHE, normal hydrogen electrode).
1 S Chu , Y Cui , N Liu . The path towards sustainable energy. Nature Materials, 2017, 16(1): 16–22
https://doi.org/10.1038/nmat4834
2 Y N Zhang , M Gao , S T Chen , H Q Wang , P W Huo . Fabricating Ag/CN/ZnIn2S4 S-scheme heterojunctions with plasmonic effect for enhanced light-driven photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2023, 39(6): 2211051
https://doi.org/10.3866/PKU.WHXB202211051
3 Y X Pan , Y You , S Xin , Y T Li , G T Fu , Z M Cui , Y L Men , F F Cao , S H Yu , J B Goodenough . Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. Journal of the American Chemical Society, 2017, 139(11): 4123–4129
https://doi.org/10.1021/jacs.7b00266
4 B Su , M Zheng , W Lin , X F Lu , D Y Luan , S B Wang , X W Lou . S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Advanced Energy Materials, 2023, 13(15): 2203290
https://doi.org/10.1002/aenm.202203290
5 J Zhang , X X Wei , J L Zhao , Y Zhang , L Wang , J W Huang , H D She , Q Z Wang . Electronegative Cl– modified BiVO4 photoanode synergized with nickel hydroxide cocatalyst for high-performance photoelectrochemical water splitting. Chemical Engineering Journal, 2023, 454: 140081
https://doi.org/10.1016/j.cej.2022.140081
6 L J Huang , B F Li , B Su , Z Xiong , C J Zhang , Y D Hou , Z X Ding , S B Wang . Fabrication of hierarchical Co3O4@CdIn2S4 p-n heterojunction photocatalysts for improved CO2 reduction with visible light. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(15): 7177–7183
https://doi.org/10.1039/D0TA01817A
7 L Wang , H Y Cheng , Z T Zhang , Y Zhang , J W Huang , H D She , C L Liu , Q Z Wang . Rational design of honeycomb-like APTES-TiO2/COF heterostructures: promoted intramolecular charge transfer for visible-light-driven catalytic CO2 reduction. Chemical Engineering Journal, 2023, 456: 140990
https://doi.org/10.1016/j.cej.2022.140990
8 J X Low , L Y Zhang , B C Zhu , Z Y Liu , J G Yu . TiO2 photonic crystals with localized surface photothermal effect and enhanced photocatalytic CO2 reduction activity. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15653–15661
https://doi.org/10.1021/acssuschemeng.8b04150
9 Y X Wang , L Rao , P F Wang , Z Y Shi , L X Zhang . Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Applied Catalysis B: Environmental, 2020, 262: 118308
https://doi.org/10.1016/j.apcatb.2019.118308
10 D J Yang , H W Liu , Z F Zheng , Y Yuan , J C Zhao , E R Waclawik , X B Ke , H Y Zhu . An efficient photocatalyst structure: TiO2 (B) nanofibers with a shell of anatase nanocrystals. Journal of the American Chemical Society, 2009, 131(49): 17885–17893
https://doi.org/10.1021/ja906774k
11 W Zhang , Y L Wang , H T Zhao . Continuous operation on synthesis and surface modification of rutile nanoparticles in designed microfluidic reactors. ACS Omega, 2020, 5(22): 12816–12824
https://doi.org/10.1021/acsomega.0c00445
12 R Asahi , T Morikawa , T Ohwaki , K Aoki , Y Taga . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
https://doi.org/10.1126/science.1061051
13 G C Xi , S X Ouyang , J H Ye . General synthesis of hybrid TiO2 mesoporous “french fries” toward improved photocatalytic conversion of CO2 into hydrocarbon fuel: a case of TiO2/ZnO. Chemistry, 2011, 17(33): 9057–9061
https://doi.org/10.1002/chem.201100580
14 L P Jiang , S J Wang , L Y Shi , Y Zhao , Z Y Wang , M H Zhang , S Yuan . Solvothermal synthesis of TiO2/Bi2WO6 heterojunction photocatalyst with optimized interface structure and enabled photocatalytic performance. Chinese Journal of Chemistry, 2017, 35(2): 183–188
https://doi.org/10.1002/cjoc.201600563
15 H Tada , A Hattori , Y Tokihisa , K Imai , N Tohge , S Ito . A patterned-TiO2/SnO2 bilayer type photocatalyst. Journal of Physical Chemistry B, 2000, 104(19): 4585–4587
https://doi.org/10.1021/jp000049r
16 Z R Tang , X Yin , Y H Zhang , Y J Xu . Synthesis of titanate nanotube-CdS nanocomposites with enhanced visible light photocatalytic activity. Inorganic Chemistry, 2013, 52(20): 11758–11766
https://doi.org/10.1021/ic4010483
17 Z Bai , X Q Yan , Y Li , Z Kang , S Y Cao , Y Zhang . 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Advanced Energy Materials, 2016, 6(3): 1501459
https://doi.org/10.1002/aenm.201501459
18 J J Li , Z W Zhao , Z N Li , H J Yang , S J Yue , Y P Tang , Q Z Wang . Construction of immobilized films photocatalysts with CdS clusters decorated by metal Cd and BiOCl for photocatalytic degradation of tetracycline antibiotics. Chinese Chemical Letters, 2022, 33(8): 3705–3708
https://doi.org/10.1016/j.cclet.2021.10.080
19 B Fang , Z P Xing , M J Guo , Y L Qiu , Y Q Cui , Z Z Li , Y Wang , P Chen , W Zhou . Phosphorus-doping CdS@NiFe layered double hydroxide as Z-scheme heterojunction for enhanced photocatalytic and photo-fenton degradation performance. Separation and Purification Technology, 2021, 274: 119066
https://doi.org/10.1016/j.seppur.2021.119066
20 S K Apte , S N Garaje , R D Bolade , J D Ambekar , M V Kulkarni , S D Naik , S W Gosavi , G O Baeg , B B Kale . Hierarchical nanostructures of CdIn2S4 via hydrothermal and microwave methods: efficient solar-light-driven photocatalysts. Journal of Materials Chemistry, 2010, 20(29): 6095–6102
https://doi.org/10.1039/c0jm00538j
21 M G Walter , E L Warren , J R McKone , S W Boettcher , Q X Mi , E A Santori , N S Lewis . Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326
22 S B Wang , B Y Guan , Y Lu , X W Lou . Formation of hierarchical In2S3-CdIn2S4 hetero-structured nanotubes for efficient and stable visible light CO2 reduction. Journal of the American Chemical Society, 2017, 139(48): 17305–17308
https://doi.org/10.1021/jacs.7b10733
23 M A Mahadadalkar , S W Gosavi , B B Kale . Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(33): 16064–16073
https://doi.org/10.1039/C8TA03398F
24 P Zhang , L N Zhang , E L Dong , X Zhang , W Zhang , Q S Wang , S C Xu , H B Li . Synthesis of CaIn2S4/TiO2 heterostructures for enhanced UV-visible light photocatalytic activity. Journal of Alloys and Compounds, 2021, 885: 161027
https://doi.org/10.1016/j.jallcom.2021.161027
25 L B Wang , B Cheng , L Y Zhang , J G Yu . In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17(41): 2103447
https://doi.org/10.1002/smll.202103447
26 S B Wang , B Y Guan , X W Lou . Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. Journal of the American Chemical Society, 2018, 140(15): 5037–5040
https://doi.org/10.1021/jacs.8b02200
27 B Lin , H Li , H An , W B Hao , J J Wei , Y Z Dai , C S Ma , J D Yang . Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220: 542–552
https://doi.org/10.1016/j.apcatb.2017.08.071
28 C Liu , W Xiao , G Y Yu , Q Wang , J W Hu , C H Xu , X Y Du , J G Xu , Q F Zhang , Z G Zou . Interfacial engineering of Ti3C2 MXene/CdIn2S4 schottky heterojunctions for boosting visible-light H2 evolution and Cr(VI) reduction. Journal of Colloid and Interface Science, 2023, 640: 851–863
https://doi.org/10.1016/j.jcis.2023.02.137
29 D Hazarika , N Karak . Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach. Applied Surface Science, 2016, 376: 276–285
https://doi.org/10.1016/j.apsusc.2016.03.165
30 L Fan , R Guo . Fabrication of novel CdIn2S4 hollow spheres via a facile hydrothermal process. Journal of Physical Chemistry C, 2008, 112(29): 10700–10706
https://doi.org/10.1021/jp8022259
31 H Jung , K M Cho , K H Kim , H W Yoo , A Al-Saggaf , I Gereige , H T Jung . Highly efficient and stable CO2 reduction photocatalyst with a hierarchical structure of mesoporous TiO2 on 3D graphene with few-layered MoS2. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5718–5724
https://doi.org/10.1021/acssuschemeng.8b00002
32 W Chen , T Huang , Y X Hua , T Y Liu , X H Liu , S M Chen . Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity. Journal of Hazardous Materials, 2016, 320: 529–538
https://doi.org/10.1016/j.jhazmat.2016.08.025
33 C Xue , H An , X Q Yan , J L Li , B L Yang , J J Wei , G D Yang . Spatial charge separation and transfer in ultrathin CdIn2S4/rGO nanosheet arrays decorated by ZnS quantum dots for efficient visible-light-driven hydrogen evolution. Nano Energy, 2017, 39: 513–523
https://doi.org/10.1016/j.nanoen.2017.07.030
34 J X Low , B Z Dai , T Tong , C J Jiang , J G Yu . In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Advanced Materials, 2019, 31(6): 1802981
https://doi.org/10.1002/adma.201802981
35 F Y Xu , B C Zhu , B Cheng , J G Yu , J S Xu . 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Advanced Optical Materials, 2018, 6(23): 1800911
https://doi.org/10.1002/adom.201800911
36 H Liu , Z Zhang , J C Meng , J Zhang . Novel visible-light-driven CdIn2S4/mesoporous g-C3N4 hybrids for efficient photocatalytic reduction of CO2 to methanol. Molecular Catalysis, 2017, 430: 9–19
https://doi.org/10.1016/j.molcata.2016.12.006
37 L Q Jing , Y G Xu , Z G Chen , M Q He , M Xie , J Liu , H Xu , S Q Huang , H M Li . Different morphologies of SnS2 supported on 2D g-C3N4 for excellent and stable visible light photocatalytic hydrogen generation. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5132–5141
https://doi.org/10.1021/acssuschemeng.7b04792
38 L Yu , X Ba , M Qiu , Y F Li , L Shuai , W Zhang , Z F Ren , Y Yu . Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods. Nano Energy, 2019, 60: 576–582
https://doi.org/10.1016/j.nanoen.2019.03.083
39 S W Cao , B J Shen , T Tong , J W Fu , J G Yu . 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Advanced Functional Materials, 2018, 28(21): 1800136
https://doi.org/10.1002/adfm.201800136
40 P Xiao , D L Jiang , L X Ju , J J Jing , M Chen . Construction of RGO/CdIn2S4/g-C3N4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride. Applied Surface Science, 2018, 433: 388–397
https://doi.org/10.1016/j.apsusc.2017.10.028
41 S Tonda , S Kumar , M Bhardwaj , P Yadav , S. G Ogale . C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high performance photocatalytic reduction of CO2 into renewable fuels. ACS Applied Materials & Interfaces, 2018, 10(3): 2667–2678
https://doi.org/10.1021/acsami.7b18835
42 X Dai , M L Xie , S G Meng , X L Fu , S F Chen . Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Applied Catalysis B: Environmental, 2014, 158–159: 382–390
https://doi.org/10.1016/j.apcatb.2014.04.035
[1] FCE-24010-OF-MX_suppl_1 Download
[1] Lin Yue, Zhihao Zeng, Xujie Ren, Shude Yuan, Chuanqi Xia, Xin Hu, Leihong Zhao, Lvchao Zhuang, Yiming He. Enhanced photocatalytic N2 fixation using KNbO3/Bi4O5Br2 type II heterojunction[J]. Front. Chem. Sci. Eng., 2024, 18(6): 66-.
[2] Huimin Gao, Jinpeng Zhang, Fangyuan Zhang, Jieying Jing, Wen-Ying Li. Enhanced formic acid production for CO2 photocatalytic reduction over Pd/H-TiO2 catalyst[J]. Front. Chem. Sci. Eng., 2024, 18(11): 134-.
[3] Xintong Yao, Dong Zhang, Yupeng Liu, Yanzhao Chen, Dafeng Zhang, Junchang Liu, Xue-Yang Ji, Hengshuai Li, Peiqing Cai, Xipeng Pu. One stone, three birds: up-conversion, photothermal and p-n heterojunction to boost BiOBr:Yb3+,Er3+/Cu3Mo2O9 full spectrum photodegradation[J]. Front. Chem. Sci. Eng., 2024, 18(10): 118-.
[4] Guodong Tian, Chao Duan, Bingxu Zhou, Chaochao Tian, Qiang Wang, Jiachuan Chen. Lignin-based electrospun nanofiber membrane decorated with photo-Fenton Ag@MIF-100(Fe) heterojunctions for complex wastewater remediation[J]. Front. Chem. Sci. Eng., 2023, 17(7): 930-941.
[5] Jiwei Xie, Guijing Liu, Kaikai Wang, Xueming Li, Yusen Bai, Shanmin Gao, Leqing Fan, Rundou Zheng. g-C3N4-coated MnO2 hollow nanorod cathode for stable aqueous Zn-ion batteries[J]. Front. Chem. Sci. Eng., 2023, 17(2): 217-225.
[6] Jianzhong Ma, Lu Wen, Qianqian Fan, Siying Wei, Xueyun Hu, Fan Yang. All-inorganic TiO2/Cs2AgBiBr6 composite as highly efficient photocatalyst under visible light irradiation[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1925-1936.
[7] Yingchao He, Qiong Sun, Likun Sun, Zhixing Gan, Liyan Yu, Lifeng Dong. Design and mechanism insight on SiC quantum dots sensitized inverse opal TiO2 with superior photocatalytic activities under sunlight[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1913-1924.
[8] Dan Cui, Yanqin Li, Keke Pan, Jinbao Liu, Qiang Wang, Minmin Liu, Peng Cao, Jianming Dan, Bin Dai, Feng Yu. NO hydrogenation to NH3 over FeCu/TiO2 catalyst with improved activity[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1973-1985.
[9] Beibei Wang, Kejiang Qian, Weiping Yang, Wenjing An, Lan-Lan Lou, Shuangxi Liu, Kai Yu. ZnFe2O4/BiVO4 Z-scheme heterojunction for efficient visible-light photocatalytic degradation of ciprofloxacin[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1728-1740.
[10] Joseph Raj Xavier. Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix[J]. Front. Chem. Sci. Eng., 2023, 17(1): 1-14.
[11] Jianxin Chen, Yupeng Li, Jihui Li, Jian Han, Guijun Zhu, Liang Ren. Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1125-1138.
[12] Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1125-1133.
[13] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[14] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[15] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed