|
Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites
Huining HE, Junxiao YE, Jianyong SHENG, Jianxin WANG, Yongzhuo HUANG, Guanyi CHEN, Jingkang WANG, Victor C YANG
Front Chem Sci Eng. 2013, 7 (1): 9-19.
https://doi.org/10.1007/s11705-013-1306-9
Oral insulin delivery has received the most attention in insulin formulations due to its high patient compliance and, more importantly, to its potential to mimic the physiologic insulin secretion seen in non-diabetic individuals. However, oral insulin delivery has two major limitations: the enzymatic barrier that leads to rapid insulin degradation, and the mucosal barrier that limits insulin’s bioavailability. Several approaches have been actively pursued to circumvent the enzyme barrier, with some of them receiving promising results. Yet, thus far there has been no major success in overcoming the mucosal barrier, which is the main cause in undercutting insulin’s oral bioavailability. In this review of our group’s research, an innovative silica-based, mucoadhesive oral insulin formulation with encapsulated-insulin/cell penetrating peptide (CPP) to overcome both enzyme and mucosal barriers is discussed, and the preliminary and convincing results to confirm the plausibility of this oral insulin delivery system are reviewed. In vitro studies demonstrated that the CPP-insulin conjugates could facilitate cellular uptake of insulin while keeping insulin’s biologic functions intact. It was also confirmed that low molecular weight protamine (LMWP) behaves like a CPP peptide, with a cell translocation potency equivalent to that of the widely studied TAT. The mucoadhesive properties of the produced silica-chitosan composites could be controlled by varying both the pH and composition; the composite consisting of chitosan (25 wt-%) and silica (75 wt-%) exhibited the greatest mucoadhesion at gastric pH. Furthermore, drug release from the composite network could also be regulated by altering the chitosan content. Overall, the universal applicability of those technologies could lead to development of a generic platform for oral delivery of many other bioactive compounds, especially for peptide or protein drugs which inevitably encounter the poor bioavailability issues.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Ultrasound-mediated targeted microbubbles: a new vehicle for cancer therapy
Junxiao YE, Huining HE, Junbo GONG, Weibing DONG, Yongzhuo HUANG, Jianxin WANG, Guanyi CHEN, Victor C YANG
Front Chem Sci Eng. 2013, 7 (1): 20-28.
https://doi.org/10.1007/s11705-013-1311-z
With the hope of overcoming the serious side effects, great endeavor has been made in tumor-targeted chemotherapy, and various drug delivery modalities and drug carriers have been made to decrease systemic toxicity caused by chemotherapeutic agents. Scientists from home and abroad focus on the research of targeted microbubbles contrast agent, and the use of the targeted ultrasound microbubble contrast agent can carry gene drugs and so on to the target tissue, as well as mediated tumor cell apoptosis and tumor microvascular thrombosis block, etc., thus plays the role of targeted therapy. Recent studies have elucidated the mechanisms of drug release and absorption, however, much work remains to be done in order to develop a successful and optimal system. In this review, we summarized the continuing efforts in understanding the usage of the ultrasound triggered target microbubbles in cancer therapy, from release mechanism to preparation methods. The latest applications of ultrasound-triggered targeted microbubbles in cancer therapy, especially in gene therapy and antiangiogenic cancer therapy were discussed. Moreover, we concluded that as a new technology, ultrasound–triggered targeted microbubbles used as drug carriers and imaging agents are still energetic and are very likely to be translated into clinic in the near future.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Influence of short chain ceramides and lipophilic penetration enhancers on the nano-structure of stratum corneum model membranes studied using neutron diffraction
Annett SCHROETER, Tanja ENGELBRECHT, Reinhard H. H. NEUBERT
Front Chem Sci Eng. 2013, 7 (1): 29-36.
https://doi.org/10.1007/s11705-013-1302-0
Oriented stratum corneum model lipid membranes were used to study the influence of the short chain ceramides (CER)[NP] and [AP] as well as the impact of the lipophilic penetration enhancer molecules oleic acid (OA) and isopropyl myristate (IPM) on the lipid nanostructure. The influence of the enhancer molecules were studied using specifically deuterated OA and IPM and neutron diffraction. 2H NMR spectroscopy was used to study the impact of the ceramides’ degree of order within the stratum corneum model lipid membranes. It was found that CER[NP] forms two very stable phases with high resistance against temperature increase. Phase B showed unusual hydration behavior as no water uptake of this phase was observed. The 2H NMR spectroscopic measurements showed that CER[NP] based ternary model system had a higher state of lamellar order in comparison to CER[AP] based lipid matrix. The studies confirmed that the short chain ceramides, particularly CER[NP], have a very high impact on the integrity of the Stratum corneum lipid bilayers. The penetration enhancer OA has not influenced the repeat distance of the model membrane based on CER[AP], and was not able to induce a phase separation in the investigated lipid matrix. However, a disorder and a fluidisation of the model membranes were observed when OA was incorporated. IPM showed the same effect but two phases (assigned as phase A and B) appeared, when IPM was used as penetration enhancer and incorporated into the model membrane. Furthermore, two arrangements of IPM were identified in phase A using deuterated IPM. A model of the nanostructure of the Stratum corneum lipid membranes is presented.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Particle size distribution and shape control of Au nanoparticles used for particle gun
S. Kida, M. Ichiji, J. Watanabe, I. Hirasawa
Front Chem Sci Eng. 2013, 7 (1): 60-64.
https://doi.org/10.1007/s11705-013-1313-x
Au nanoparticles are expected for the media to transfer genes into plants. However, the control of particle size distribution (PSD) and shape of Au nanoparticles is too difficult to design and prepare particles with suitable quality for the gene supporting media. Reduction crystallization experiments were performed in aqueous solution in order to clarify the effect of feeding conditions such as feeding profile, feeding rate, and feeding amount on PSD and shape of Au nanoparticles. Ascorbic acid (AsA) was selected as a reducing agent because it is safe for plants. Au particles of 50 nm, 50–200 nm, and 150–400 nm were obtained in batch operation, single-jet, and double-jet, respectively. Moreover, in single-jet and double-jet, the mean size of the obtained Au particles increases with the decrease of feeding rate or the increase of feeding amount. It is concluded that PSD of Au nanoparticles can be controlled in the range of 50–400 nm by changing feeding conditions of AsA and HAuCl4 aqueous solution.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Evaluation of precipitation behavior of zirconium molybdate hydrate
Liang ZHANG, Masayuki TAKEUCHI, Tsutomu KOIZUMI, Izumi HIRASAWA
Front Chem Sci Eng. 2013, 7 (1): 65-71.
https://doi.org/10.1007/s11705-013-1314-9
In the dissolution step of spent nuclear fuel, there is a world-concern problem that zirconium molybdate hydrate precipitates as a byproduct, and accumulates in some reprocessing equipments. In order to prevent this accumulation, we have developed a new method based on the controlled reaction crystallization of zirconium molybdate hydrate (ZMH) in the reprocessing solution, followed by solid liquid separation. In order to measure the particle size of ZMH, batch crystallization experiments were conducted by varying nitric acid concentration and operating temperature. In result, almost all particle sizes scatter around 1 μm on average, despite the higher concentration of nitric aid and operating temperature, and then small particles grow up as an aggregate sticking to the crystallizer. Moreover, polymorph and color changing were observed by varying the concentration of nitric acid and reaction time. These results suggest that crystal color and adhesiveness are closely related to the particle size of ZMH. And the control of nitric acid concentration and small particle growth would be the useful technique to prevent the ZMH sticking.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Purification of artemisinin from quercetin by anti-solvent crystallization
Chandrakant R. MALWADE, Haiyan QU, Ben-Guang RONG, Lars P. CHRISTENSEN
Front Chem Sci Eng. 2013, 7 (1): 72-78.
https://doi.org/10.1007/s11705-013-1305-x
In the present work, anti-solvent crystallization of artemisinin from four different organic solvents (methanol, ethanol, acetonitrile, and acetone) was studied. Water was used as anti-solvent. The effect of an impurity (quercetin) on the performance of anti-solvent crystallization of artemisinin was investigated. The fundamental process data such as solubility of artemisinin in pure organic solvents and their binary mixtures with varying composition water were measured at room temperature. The solubility of quercetin was measured only in pure organic solvents at room temperature. Anti-solvent crystallization experiments were designed based on the fundamental process data determined. Firstly, the anti-solvent crystallization of artemisinin without impurity was performed from all four organic solvents and then the experiments were repeated with addition of an impurity (quercetin) while keeping all other process parameters constant. Two different concentrations of impurity, i.e., 10% and 50% of its solubility, in the respective organic solvents at room temperature were used. The effect of impurity on performance of anti-solvent crystallization was evaluated by comparing the yield and purity of the artemisinin obtained with those in the absence of impurity. Results of the present work demonstrated that the presence of quercetin in the solution does not affect the final yield of artemisinin from the solution of each of four organic solvents used. However, the purity of artemisinin crystals were reduced when quercetin concentration was 50% of its solubility in all solvents studied.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst
Can LIN, Haiyang WANG, Zhenhua LI, Baowei WANG, Xinbin MA, Shaodong QIN, Qi SUN
Front Chem Sci Eng. 2013, 7 (1): 88-94.
https://doi.org/10.1007/s11705-013-1301-1
The effect of adding Co, Ni or La on the methanation activity of a Mo-based sulfur-resistant catalyst was investigated. As promoters, Co, Ni and La all improved the methanation activity of a 15% MoO3/Al2O3 catalyst but to different extents. Similar improvements were also found when Co, Ni or La was added to a 15% MoO3/25%-CeO2-Al2O3 catalyst. The promotion effects of Co and Ni were better than that of La. However, the catalytic methanation activity deteriorated the most with time for the Ni-promoted catalyst. The used catalysts were analyzed by nitrogen adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Oxidative leaching kinetics of molybdenum-uranium ore in H2SO4 using H2O2 as an oxidizing agent
T. A. Lasheen, M. E. El-Ahmady, H. B. Hassib, A. S. Helal
Front Chem Sci Eng. 2013, 7 (1): 95-102.
https://doi.org/10.1007/s11705-013-1317-6
The processing of molybdenum-uranium ore in a sulfuric acid solution using hydrogen peroxide as an oxidant has been investigated. The leaching temperature, hydrogen peroxide concentration, sulfuric acid concentration, leaching time, particle size, liquid-to-solid ratio and agitation speed all have significant effects on the process. The optimum process operating parameters were: temperature: 95°C; H2O2 concentration: 0.5 M; sulfuric acid concentration: 2.5 M; time: 2 h; particle size: 74 μm, liquid-to-solid ratio: 14 ∶ 1 and agitation speed: 600 rpm. Under these experimental conditions, the extraction efficiency of molybdenum was about 98.4%, and the uranium extraction efficiency was about 98.7%. The leaching kinetics of molybdenum showed that the reaction rate of the leaching process is controlled by the chemical reaction at the particle surface. The leaching process follows the kinetic model 1 ? (1?X)1/3 = kt with an apparent activation energy of 40.40 kJ/mole. The temperature, concentrations of H2O2 and H2SO4 and the mesh size are the main factors that influence the leaching rate. The reaction order in H2SO4 was 1.0012 and in H2O2 it was 1.2544.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Tensile ratcheting behaviors of bronze powder filled polytetrafluoroethylene
Wenjuan XU, Hong GAO, LiLan GAO, Xu CHEN, Yong WANG
Front Chem Sci Eng. 2013, 7 (1): 103-109.
https://doi.org/10.1007/s11705-013-1315-8
A series of tensile and ratcheting experiments for compacted polytetrafluoroethylene (PTFE) and bronze filled PTFE (PTFE/bronze) were conducted on dynamic mechanical analyzer (DMA-Q800). The effects of mean stress, stress amplitude and temperature on the ratcheting behaviors of PTFE and PTFE/bronze were investigated. It is found that the stress-strain response of PTFE/bronze is nonlinear and its elastic modulus is higher than that of pure PTFE. For uniaxial ratcheting test, the dissipation strain energy density (DSED) decreases rapidly in the first 10 cycles and approaches a constant after 20 cycles. The ratcheting strain and the DSED corresponding to 100 cycles increase with increasing mean stress, stress amplitude and temperature. Additionally, the DSED and ratcheting strain of PTFE/bronze are much lower than those of pure PTFE under the same experimental conditions. It is also found that both pure PTFE and PTFE/bronze present cyclic hardening characteristics. Above all, the addition of bronze can improve both the uniaxial tensile property and the cyclic property of PTFE.
Figures and Tables |
References |
Related Articles |
Metrics
|
17 articles
|