| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene  | 
  					 
  					  										
						Sijia Xing1, Sixiang Zhai1, Lei Chen1, Huabin Yang1,2, Zhong-Yong Yuan1,2( ) | 
					 
															
						1. School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China 2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Direct dehydrogenation with high selectivity and oxidative dehydrogenation with low thermal limit has been regarded as promising methods to solve the increasing demands of light olefins and styrene. Metal-based catalysts have shown remarkable performance for these reactions, such as Pt, CrOx, Co, ZrOx, Zn and V. Compared with metal-based catalysts, carbon materials with stable structure, rich pore texture and large surface area, are ideal platforms as the catalysts and the supports for dehydrogenation reactions. In this review, carbon materials applied in direct dehydrogenation and oxidative dehydrogenation reactions including ordered mesoporous carbon, carbon nanodiamond, carbon nanotubes, graphene and activated carbon, are summarized. A general introduction to the dehydrogenation mechanism and active sites of carbon catalysts is briefly presented to provide a deep understanding of the carbon-based materials used in dehydrogenation reactions. The unique structure of each carbon material is presented, and the diversified synthesis methods of carbon catalysts are clarified. The approaches for promoting the catalytic activity of carbon catalysts are elaborated with respect to preparation method optimization, suitable structure design and heteroatom doping. The regeneration mechanism of carbon-based catalysts is discussed for providing guidance on catalytic performance enhancement. In addition, carbon materials as the support of metal-based catalysts contribute to exploiting the excellent catalytic performance of catalysts due to superior structural characteristics. In the end, the challenges in current research and strategies for future improvements are proposed. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				carbon materials  
																		  																																				dehydrogenation  
																		  																																				active sites  
																		  																																				mechanism  
																		  																																				catalytic performance  
																		  																																				support  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Zhong-Yong Yuan   
																													     		
													     	 | 
														 
																																										
															| About author:  Peng Lei and Charity Ngina Mwangi contributed equally to this work.  | 
														 
																												
															| 
																															Just Accepted Date: 22 May 2023  
																																														Online First Date: 03 July 2023   
																																														Issue Date: 25 October 2023
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      J Sheng, B Yan, W D Lu, B Qiu, X Q Gao, D Wang, A H Lu. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chemical Society Reviews, 2021, 50(2): 1438–1468 
														     														     	 
														     															     		https://doi.org/10.1039/D0CS01174F
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      J J Sattler, J Ruiz-Martinez, E Santillan-Jimenez, B M Weckhuysen. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 2014, 114(20): 10613–10653 
														     														     	 
														     															     		https://doi.org/10.1021/cr5002436
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      J W Zhong, J F Han, Y X Wei, P Tian, X W Guo, C S Song, Z M Liu. Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catalysis Science & Technology, 2017, 7(21): 4905–4923 
														     														     	 
														     															     		https://doi.org/10.1039/C7CY01466J
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      I Yarulina, Wispelaere K De, S Bailleul, J Goetze, M Radersma, E Abou-Hamad, I Vollmer, M Goesten, B Mezari, E J M Hensen, J S Martínez-Espín, M Morten, S Mitchell, J Perez-Ramirez, U Olsbye, B M Weckhuysen, Speybroeck V Van, F Kapteijn, J Gascon. Publisher correction: structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10(8): 897 
														     														     	 
														     															     		https://doi.org/10.1038/s41557-018-0118-4
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      P Munnik, P E de Jongh, K P de Jong. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis. Journal of the American Chemical Society, 2014, 136(20): 7333–7340 
														     														     	 
														     															     		https://doi.org/10.1021/ja500436y
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														      C J Weststrate, J van de Loosdrecht, J W Niemantsverdriet. Spectroscopic insights into cobalt-catalyzed Fischer–Tropsch synthesis: a review of the carbon monoxide interaction with single crystalline surfaces of cobalt. Journal of Catalysis, 2016, 342: 1–16 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcat.2016.07.010
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      C Chen, Z P Hu, J T Ren, S Zhang, Z Wang, Z Y Yuan. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Molecular Catalysis, 2019, 476: 110508 
														     														     	 
														     															     		https://doi.org/10.1016/j.mcat.2019.110508
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														      C Chen, M L Sun, Z P Hu, J T Ren, S M Zhang, Z Y Yuan. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catalysis Science & Technology, 2019, 9(8): 1979–1988 
														     														     	 
														     															     		https://doi.org/10.1039/C9CY00237E
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      Z P Hu, Y Wang, D Yang, Z Y Yuan. CrOx supported on high-silica HZSM-5 for propane dehydrogenation. Journal of Energy Chemistry, 2020, 47: 225–233 
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2019.12.010
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      Y S Wang, Z P Hu, W W Tian, L J Gao, Z Wang, Z Y Yuan. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability. Catalysis Science & Technology, 2019, 9(24): 6993–7002 
														     														     	 
														     															     		https://doi.org/10.1039/C9CY01907C
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      Y Wang, Y Suo, X Lv, Z Wang, Z Y Yuan. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 593: 304–314 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2021.02.129
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      Y Wang, Y Suo, J T Ren, Z Wang, Z Y Yuan. Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 594: 113–121 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2021.03.023
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      F Guo, P Yang, Z Pan, X N Cao, Z Xie, X Wang. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene. Angewandte Chemie International Edition, 2017, 56(28): 8231–8235 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201703789
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      R Yao, J E Herrera, L H Chen, Y H C Chin. Generalized mechanistic framework for ethane dehydrogenation and oxidative dehydrogenation on molybdenum oxide catalysts. ACS Catalysis, 2020, 10(12): 6952–6968 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.0c01073
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      L Ye, X Duan, K Xie. Electrochemical oxidative dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. Angewandte Chemie International Edition, 2021, 60(40): 21746–21750 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202109355
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      V Bikbaeva, O Perez, N Nesterenko, V Valtchev. Ethane oxidative dehydrogenation with CO2 on thiogallates. Inorganic Chemistry Frontiers, 2022, 9(20): 5181–5187 
														     														     	 
														     															     		https://doi.org/10.1039/D2QI01630C
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      N J LiBretto, C Yang, Y Ren, G Zhang, J T Miller. Identification of surface structures in Pt3Cr intermetallic nanocatalysts. Chemistry of Materials, 2019, 31(5): 1597–1609 
														     														     	 
														     															     		https://doi.org/10.1021/acs.chemmater.8b04774
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      Y Zhang, Y Zhou, L Huang, S Zhou, X Sheng, Q Wang, C Zhang. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation. Chemical Engineering Journal, 2015, 270: 352–361 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2015.01.008
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      X Li, P Wang, H Wang, C Li. Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation. Applied Surface Science, 2018, 441: 688–693 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2018.02.024
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      M W Schreiber, C P Plaisance, M Baumgartl, K Reuter, A Jentys, R Bermejo-Deval, J A Lercher. Lewis-bronsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. Journal of the American Chemical Society, 2018, 140(14): 4849–4859 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.7b12901
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      S L Han, T Otroshchenko, D Zhao, H Lund, N Rockstroh, T H Vuong, J Rabeah, U Rodemerck, D Linke, M L Gao, G Jiang, E V Kondratenko. The effect of ZrO2 crystallinity in CrZrOx/SiO2 on non-oxidative propane dehydrogenation. Applied Catalysis A: General, 2020, 590: 117350 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2019.117350
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      N Jeon, J Oh, A Tayal, B Jeong, O Seo, S Kim, I Chung, Y Yun. Effects of heat-treatment atmosphere and temperature on cobalt species in Co/Al2O3 catalyst for propane dehydrogenation. Journal of Catalysis, 2021, 404: 1007–1016 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcat.2021.10.035
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      Y Yuan, R F Lobo, B Xu. Ga2O22+ stabilized by paired framework Al atoms in MFI: a highly reactive site in nonoxidative propane dehydrogenation. ACS Catalysis, 2022, 12(3): 1775–1783 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.1c05724
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      Z P Hu, G Qin, J Han, W Zhang, N Wang, Y Zheng, Q Jiang, T Ji, Z Y Yuan, J Xiao, Y Wei, Z Liu. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. Journal of the American Chemical Society, 2022, 144(27): 12127–12137 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.2c02636
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      S Najari, S Saeidi, P Concepcion, D D Dionysiou, S K Bhargava, A F Lee, K Wilson. Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chemical Society Reviews, 2021, 50(7): 4564–4605 
														     														     	 
														     															     		https://doi.org/10.1039/D0CS01518K
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      M A Atanga, F Rezaei, A Jawad, M Fitch, A A Rownaghi. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Applied Catalysis B: Environmental, 2018, 220: 429–445 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2017.08.052
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      P Djinović, J Zavašnik, J Teržan, I Jerman. Role of CO2 during oxidative dehydrogenation of propane over bulk and activated-carbon supported cerium and vanadium based catalysts. Catalysis Letters, 2021, 151(10): 2816–2832 
														     														     	 
														     															     		https://doi.org/10.1007/s10562-020-03519-y
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      Y Gambo, S Adamu, A A Abdulrasheed, R A Lucky, M S Ba-Shammakh, M M Hossain. Catalyst design and tuning for oxidative dehydrogenation of propane—a review. Applied Catalysis A: General, 2021, 609: 117914 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2020.117914
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      D S Su, S Perathoner, G Centi. Nanocarbons for the development of advanced catalysts. Chemical Reviews, 2013, 113(8): 5782–5816 
														     														     	 
														     															     		https://doi.org/10.1021/cr300367d
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      X Li, J Yu, S Wageh, A A Al-Ghamdi, J Xie. Graphene in photocatalysis: a review. Small, 2016, 12(48): 6640–6696 
														     														     	 
														     															     		https://doi.org/10.1002/smll.201600382
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      C Hu, L Dai. Doping of carbon materials for metal-free electrocatalysis. Advanced Materials, 2019, 31(7): 1804672 
														     														     	 
														     															     		https://doi.org/10.1002/adma.201804672
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      C Li, G Wang. Dehydrogenation of light alkanes to mono-olefins. Chemical Society Reviews, 2021, 50(7): 4359–4381 
														     														     	 
														     															     		https://doi.org/10.1039/D0CS00983K
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      R Watanabe, M Tsujioka, C Fukuhara. Performance of non-stoichiometric perovskite catalyst (AxCrO3-δ, A: La, Pr, Nd) for dehydrogenation of propane under steam condition. Catalysis Letters, 2016, 146(12): 2458–2467 
														     														     	 
														     															     		https://doi.org/10.1007/s10562-016-1876-5
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      Y Dai, X Gao, Q Wang, X Wan, C Zhou, Y Yang. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chemical Society Reviews, 2021, 50(9): 5590–5630 
														     														     	 
														     															     		https://doi.org/10.1039/D0CS01260B
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      O O James, S Mandal, N Alele, B Chowdhury, S Maity. Lower alkanes dehydrogenation: strategies and reaction routes to corresponding alkenes. Fuel Processing Technology, 2016, 149: 239–255 
														     														     	 
														     															     		https://doi.org/10.1016/j.fuproc.2016.04.016
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      D Iranshahi, P Salimi, Z Pourmand, S Saeidi, J J Klemeš. Utilising a radial flow, spherical packed-bed reactor for auto thermal steam reforming of methane to achieve a high capacity of H2 production. Chemical Engineering and Processing, 2017, 120: 258–267 
														     														     	 
														     															     		https://doi.org/10.1016/j.cep.2017.07.020
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      T T Nguyen, M Aouine, J M M Millet. Optimizing the efficiency of MoVTeNbO catalysts for ethane oxidative dehydrogenation to ethylene. Catalysis Communications, 2012, 21: 22–26 
														     														     	 
														     															     		https://doi.org/10.1016/j.catcom.2012.01.026
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      S T Rahman, J R Choi, J H Lee, S J Park. The role of CO2 as a mild oxidant in oxidation and dehydrogenation over catalysts: a review. Catalysts, 2020, 10(9): 1075 
														     														     	 
														     															     		https://doi.org/10.3390/catal10091075
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      D Chen, A Holmen, Z Sui, X Zhou. Carbon mediated catalysis: a review on oxidative dehydrogenation. Chinese Journal of Catalysis, 2014, 35(6): 824–841 
														     														     	 
														     															     		https://doi.org/10.1016/S1872-2067(14)60120-0
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      W Qi, D Su. Metal-free carbon catalysts for oxidative dehydrogenation reactions. ACS Catalysis, 2014, 4(9): 3212–3218 
														     														     	 
														     															     		https://doi.org/10.1021/cs500723v
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														      Z Zhao, G Ge, W Li, X Guo, G Wang. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: a review. Chinese Journal of Catalysis, 2016, 37(5): 644–670 
														     														     	 
														     															     		https://doi.org/10.1016/S1872-2067(15)61065-8
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      X Sun, P Han, B Li, S Mao, T Liu, S Ali, Z Lian, D Su. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account. Chemical Communications (Cambridge), 2018, 54(8): 864–875 
														     														     	 
														     															     		https://doi.org/10.1039/C7CC06941C
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      T J Zhao, W Z Sun, X Y Gu, M Rønning, D Chen, Y C Dai, W K Yuan, A Holmen. Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene. Applied Catalysis A, General, 2007, 323: 135–146 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2007.02.008
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      J Zhang, X Liu, R Blume, A Zhang, R Schlögl, D S Su. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science, 2008, 322(5898): 73–77 
														     														     	 
														     															     		https://doi.org/10.1126/science.1161916
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      J J Delgado, X W Chen, B Frank, D S Su, R Schlögl. Activation processes of highly ordered carbon nanofibers in the oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2012, 186(1): 93–98 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2011.10.023
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      P Niebrzydowska, R Janus, P Kuśtrowski, S Jarczewski, A Wach, A M Silvestre-Albero, F Rodríguez-Reinoso. A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. Carbon, 2013, 64: 252–261 
														     														     	 
														     															     		https://doi.org/10.1016/j.carbon.2013.07.060
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      Z P Hu, D D Yang, Z Wang, Z Y Yuan. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2019, 40(9): 1233–1254 
														     														     	 
														     															     		https://doi.org/10.1016/S1872-2067(19)63360-7
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														      R Huang, H Y Liu, B S Zhang, X Y Sun, C H Liang, D S Su, B N Zong, J F Rong. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes. ChemSusChem, 2014, 7(12): 3476–3482 
														     														     	 
														     															     		https://doi.org/10.1002/cssc.201402457
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														      R Rao, M Yang, Q Ling, C Li, Q Zhang, H Yang, A Zhang. A novel route of enhancing oxidative catalytic activity: hydroxylation of MWCNTs induced by sectional defects. Catalysis Science & Technology, 2014, 4(3): 665–671 
														     														     	 
														     															     		https://doi.org/10.1039/C3CY00582H
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														      I Pelech, O S G P Soares, M F R Pereira, J L Figueiredo. Oxidative dehydrogenation of isobutane on carbon xerogel catalysts. Catalysis Today, 2015, 249: 176–183 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2014.10.007
														     															     															     															 | 
																  
																														
															| 51 | 
															 
														      W Qi, W Liu, B Zhang, X Gu, X Guo, D Su. Oxidative dehydrierung an nanokohlenstoff: identifizierung und quantifizierung aktiver zentren durch chemische titration. Angewandte Chemie, 2013, 125(52): 14474–14478 
														     														     	 
														     															     		https://doi.org/10.1002/ange.201306825
														     															     															     															 | 
																  
																														
															| 52 | 
															 
														      W Qi, W Liu, X Guo, R Schlögl, D Su. Oxidative dehydrogenation on nanocarbon: intrinsic catalytic activity and structure-function relationships. Angewandte Chemie International Edition, 2015, 54(46): 13682–13685 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201505818
														     															     															     															 | 
																  
																														
															| 53 | 
															 
														      B Li, D Su. The nucleophilicity of the oxygen functional groups on carbon materials: a DFT analysis. Chemistry, 2014, 20(26): 7890–7894 
														     														     	 
														     															     		https://doi.org/10.1002/chem.201400347
														     															     															     															 | 
																  
																														
															| 54 | 
															 
														      S Mao, B Li, D Su. The first principles studies on the reaction pathway of the oxidative dehydrogenation of ethane on the undoped and doped carbon catalyst. Journal of Materials Chemistry A, 2014, 2(15): 5287–5294 
														     														     	 
														     															     		https://doi.org/10.1039/c3ta14837h
														     															     															     															 | 
																  
																														
															| 55 | 
															 
														      R Wang, X Sun, B Zhang, X Sun, D Su. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core–shell sp2/sp3 nanocomposite structure. Chemistry, 2014, 20(21): 6324–6331 
														     														     	 
														     															     		https://doi.org/10.1002/chem.201400018
														     															     															     															 | 
																  
																														
															| 56 | 
															 
														      V Schwartz, W Fu, Y T Tsai, H M III Meyer, A J Rondinone, J Chen, Z Wu, S H Overbury, C Liang. Oxygen-functionalized few-layer graphene sheets as active catalysts for oxidative dehydrogenation reactions. ChemSusChem, 2013, 6(5): 840–846 
														     														     	 
														     															     		https://doi.org/10.1002/cssc.201200756
														     															     															     															 | 
																  
																														
															| 57 | 
															 
														      Y Li, Z Zhang, J Wang, C Ma, H Yang, Z Hao. Direct dehydrogenation of isobutane to isobutene over carbon catalysts. Chinese Journal of Catalysis, 2015, 36(8): 1214–1222 
														     														     	 
														     															     		https://doi.org/10.1016/S1872-2067(15)60914-7
														     															     															     															 | 
																  
																														
															| 58 | 
															 
														      X Guo, W Qi, W Liu, P Yan, F Li, C Liang, D Su. Oxidative dehydrogenation on nanocarbon: revealing the catalytic mechanism using model catalysts. ACS Catalysis, 2017, 7(2): 1424–1427 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.6b02936
														     															     															     															 | 
																  
																														
															| 59 | 
															 
														      J Zhang, D S Su, R Blume, R Schlögl, R Wang, X Yang, A Gajović. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angewandte Chemie International Edition, 2010, 49(46): 8640–8644 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201002869
														     															     															     															 | 
																  
																														
															| 60 | 
															 
														      Z P Hu, C Chen, J T Ren, Z Y Yuan. Direct dehydrogenation of propane to propylene on surface-oxidized multiwall carbon nanotubes. Applied Catalysis A: General, 2018, 559: 85–93 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2018.04.017
														     															     															     															 | 
																  
																														
															| 61 | 
															 
														      R Rao, Q Ling, H Dong, X Dong, N Li, A Zhang. Effect of surface modification on multi-walled carbon nanotubes for catalytic oxidative dehydrogenation using CO2 as oxidant. Chemical Engineering Journal, 2016, 301: 115–122 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2016.04.109
														     															     															     															 | 
																  
																														
															| 62 | 
															 
														      W Shi, Y Peng, S A III Steiner, J Li, D L Plata. Carbon dioxide promotes dehydrogenation in the equimolar C2H2-CO2 reaction to synthesize carbon nanotubes. Small, 2018, 14(11): 1703482 
														     														     	 
														     															     		https://doi.org/10.1002/smll.201703482
														     															     															     															 | 
																  
																														
															| 63 | 
															 
														      L R Parent, E Bakalis, M Proetto, Y Li, C Park, F Zerbetto, N C Gianneschi. Tackling the challenges of dynamic experiments using liquid-cell transmission electron microscopy. Accounts of Chemical Research, 2018, 51(1): 3–11 
														     														     	 
														     															     		https://doi.org/10.1021/acs.accounts.7b00331
														     															     															     															 | 
																  
																														
															| 64 | 
															 
														      Y Zheng, X Huang, J Chen, K Wu, J Wang, X Zhang. A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications. Materials, 2021, 14(14): 3911 
														     														     	 
														     															     		https://doi.org/10.3390/ma14143911
														     															     															     															 | 
																  
																														
															| 65 | 
															 
														      O A Knyazheva, O N Baklanova, A V Lavrenov. Catalytic dehydrogenation on carbon. Solid Fuel Chemistry, 2020, 54(6): 345–353 
														     														     	 
														     															     		https://doi.org/10.3103/S0361521920060051
														     															     															     															 | 
																  
																														
															| 66 | 
															 
														      T Y Ma, L Liu, Z Y Yuan. Direct synthesis of ordered mesoporous carbons. Chemical Society Reviews, 2013, 42(9): 3977–4003 
														     														     	 
														     															     		https://doi.org/10.1039/C2CS35301F
														     															     															     															 | 
																  
																														
															| 67 | 
															 
														      L Liu, Y P Zhu, M Su, Z Y Yuan. Metal-free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem, 2015, 7(18): 2765–2787 
														     														     	 
														     															     		https://doi.org/10.1002/cctc.201500350
														     															     															     															 | 
																  
																														
															| 68 | 
															 
														      L Liu, Q F Deng, B Agula, X Zhao, T Z Ren, Z Y Yuan. Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. Chemical Communications, 2011, 47(29): 8334–8336 
														     														     	 
														     															     		https://doi.org/10.1039/c1cc12806j
														     															     															     															 | 
																  
																														
															| 69 | 
															 
														      Z P Hu, J T Ren, D Yang, Z Wang, Z Y Yuan. Mesoporous carbons as metal-free catalysts for propane dehydrogenation: effect of the pore structure and surface property. Chinese Journal of Catalysis, 2019, 40(9): 1385–1394 
														     														     	 
														     															     		https://doi.org/10.1016/S1872-2067(19)63334-6
														     															     															     															 | 
																  
																														
															| 70 | 
															 
														      L Liu, Q F Deng, B Agula, T Z Ren, Y P Liu, B Zhaorigetu, Z Y Yuan. Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. Catalysis Today, 2012, 186(1): 35–41 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2011.08.022
														     															     															     															 | 
																  
																														
															| 71 | 
															 
														      L Liu, Q F Deng, Y P Liu, T Z Ren, Z Y Yuan. HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene. Catalysis Communications, 2011, 16(1): 81–85 
														     														     	 
														     															     		https://doi.org/10.1016/j.catcom.2011.09.005
														     															     															     															 | 
																  
																														
															| 72 | 
															 
														      W Zhang, G Zhao, T Muschin, A Bao. Nitrogen‐doped mesoporous carbon materials for oxidative dehydrogenation of propane. Surface and Interface Analysis, 2020, 53(1): 100–107 
														     														     	 
														     															     		https://doi.org/10.1002/sia.6883
														     															     															     															 | 
																  
																														
															| 73 | 
															 
														      I Szewczyk, A Rokicińska, M Michalik, J Chen, A Jaworski, R Aleksis, A J Pell, N Hedin, A Slabon, P Kuśtrowski. Electrochemical denitrification and oxidative dehydrogenation of ethylbenzene over N-doped mesoporous carbon: atomic level understanding of catalytic activity by 15N NMR. Chemistry of Materials, 2020, 32(17): 7263–7273 
														     														     	 
														     															     		https://doi.org/10.1021/acs.chemmater.0c01666
														     															     															     															 | 
																  
																														
															| 74 | 
															 
														      L Li, W Zhu, Y Liu, L Shi, H Liu, Y Ni, S Liu, H Zhou, Z Liu. Phosphorous-modified ordered mesoporous carbon for catalytic dehydrogenation of propane to propylene. RSC Advances, 2015, 5(69): 56304–56310 
														     														     	 
														     															     		https://doi.org/10.1039/C5RA06619K
														     															     															     															 | 
																  
																														
															| 75 | 
															 
														     Y SongG LiuZ Y. Yuan N-, P-, and B-doped mesoporous carbons for direct dehydrogenation of propane. RSC Advances, 2016, 6(97): 94636–94642
														     															 | 
																  
																														
															| 76 | 
															 
														      V Schwartz, H Xie, H M III Meyer, S H Overbury, C Liang. Oxidative dehydrogenation of isobutane on phosphorous-modified graphitic mesoporous carbon. Carbon, 2011, 49(2): 659–668 
														     														     	 
														     															     		https://doi.org/10.1016/j.carbon.2010.10.015
														     															     															     															 | 
																  
																														
															| 77 | 
															 
														      C Yin, J He, S Liu. Carbon nanotubes derived from industrial resin for the oxidative dehydrogenation of ethylbenzene. ChemistrySelect, 2020, 5(22): 6674–6677 
														     														     	 
														     															     		https://doi.org/10.1002/slct.202001540
														     															     															     															 | 
																  
																														
															| 78 | 
															 
														      I Bychko, A Abakumov, A Nikolenko, O V Selyshchev, D R T Zahn, V O Khavrus, J Tang, P Strizhak. Ethane direct dehydrogenation over carbon nanotubes and reduced graphene oxide. Chemistry Select, 2021, 6(34): 8981–8984 
														     														     	 
														     															     		https://doi.org/10.1002/slct.202102493
														     															     															     															 | 
																  
																														
															| 79 | 
															 
														      J Li, P Yu, J Xie, J Liu, Z Wang, C Wu, J Rong, H Liu, D Su. Improving the alkene selectivity of nanocarbon-catalyzed oxidative dehydrogenation of n-butane by refinement of oxygen species. ACS Catalysis, 2017, 7(10): 7305–7311 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.7b02282
														     															     															     															 | 
																  
																														
															| 80 | 
															 
														      H Yuan, Z Sun, H Liu, B Zhang, C Chen, H Wang, Z Yang, J Zhang, F Wei, D S Su. Immobilizing carbon nanotubes on SiC foam as a monolith catalyst for oxidative dehydrogenation reactions. ChemCatChem, 2013, 5(7): 1713–1717 
														     														     	 
														     															     		https://doi.org/10.1002/cctc.201200758
														     															     															     															 | 
																  
																														
															| 81 | 
															 
														      Y Zhang, J Wang, J Rong, J Diao, J Zhang, C Shi, H Liu, D Su. A facile and efficient method to fabricate highly selective nanocarbon catalysts for oxidative dehydrogenation. ChemSusChem, 2017, 10(2): 353–358 
														     														     	 
														     															     		https://doi.org/10.1002/cssc.201601299
														     															     															     															 | 
																  
																														
															| 82 | 
															 
														      Y Zhang, R Huang, Z Feng, H Liu, C Shi, J Rong, B Zong, D Su. Phosphate modified carbon nanotubes for oxidative dehydrogenation of n-butane. Journal of Energy Chemistry, 2016, 25(3): 349–353 
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2016.02.010
														     															     															     															 | 
																  
																														
															| 83 | 
															 
														      B Frank, J Zhang, R Blume, R Schlogl, D S Su. Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angewandte Chemie International Edition, 2009, 48(37): 6913–6917 
														     														     	 
														     															     		https://doi.org/10.1002/anie.200901826
														     															     															     															 | 
																  
																														
															| 84 | 
															 
														      W Liu, C Wang, F Herold, B J M Etzold, D Su, W Qi. Oxidative dehydrogenation on nanocarbon: effect of heteroatom doping. Applied Catalysis B: Environmental, 2019, 258: 117982 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2019.117982
														     															     															     															 | 
																  
																														
															| 85 | 
															 
														      Z Zhao, Y Dai, G Ge, X Guo, G Wang. Increased active sites and their accessibility of a N-doped carbon nanotube carbocatalyst with remarkably enhanced catalytic performance in direct dehydrogenation of ethylbenzene. RSC Advances, 2015, 5(65): 53095–53099 
														     														     	 
														     															     		https://doi.org/10.1039/C5RA08754F
														     															     															     															 | 
																  
																														
															| 86 | 
															 
														      Z Zhao, Y Dai, G Ge, G Wang. Explosive decomposition of a melamine-cyanuric acid supramolecular assembly for fabricating defect-rich nitrogen-doped carbon nanotubes with significantly promoted catalysis. Chemistry, 2015, 21(22): 8004–8009 
														     														     	 
														     															     		https://doi.org/10.1002/chem.201500316
														     															     															     															 | 
																  
																														
															| 87 | 
															 
														      Q Wang, H Wang, Y Zhang, G Wen, H Liu, D Su. Syntheses and catalytic applications of the high-N-content, the cup-stacking and the macroscopic nitrogen doped carbon nanotubes. Journal of Materials Science and Technology, 2017, 33(8): 843–849 
														     														     	 
														     															     		https://doi.org/10.1016/j.jmst.2017.01.011
														     															     															     															 | 
																  
																														
															| 88 | 
															 
														      T Cao, X Dai, W Liu, Y Fu, W Qi. Carbon nanotubes modified by multi-heteroatoms polymer for oxidative dehydrogenation of propane: improvement of propene selectivity and oxidation resistance. Carbon, 2022, 189: 199–209 
														     														     	 
														     															     		https://doi.org/10.1016/j.carbon.2021.12.069
														     															     															     															 | 
																  
																														
															| 89 | 
															 
														      J Li, P Yu, J Xie, Y Zhang, H Liu, D Su, J Rong. Grignard reagent reduced nanocarbon material in oxidative dehydrogenation of n-butane. Journal of Catalysis, 2018, 360: 51–56 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcat.2018.01.021
														     															     															     															 | 
																  
																														
															| 90 | 
															 
														      G Hong, S Diao, A L Antaris, H Dai. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 2015, 115(19): 10816–10906 
														     														     	 
														     															     		https://doi.org/10.1021/acs.chemrev.5b00008
														     															     															     															 | 
																  
																														
															| 91 | 
															 
														      S Kumar, M Nehra, D Kedia, N Dilbaghi, K Tankeshwar, K H Kim. Nanodiamonds: emerging face of future nanotechnology. Carbon, 2019, 143: 678–699 
														     														     	 
														     															     		https://doi.org/10.1016/j.carbon.2018.11.060
														     															     															     															 | 
																  
																														
															| 92 | 
															 
														      A V Shvidchenko, E D Eidelman, A Y Vul, N M Kuznetsov, D Y Stolyarova, S I Belousov, S N Chvalun. Colloids of detonation nanodiamond particles for advanced applications. Advances in Colloid and Interface Science, 2019, 268: 64–81 
														     														     	 
														     															     		https://doi.org/10.1016/j.cis.2019.03.008
														     															     															     															 | 
																  
																														
															| 93 | 
															 
														      Q Zhou, G Ge, Z Guo, Y Liu, Z Zhao. Poly(imidazolium-methylene)-assisted grinding strategy to prepare nanocarbon-embedded network monoliths for carbocatalysis. ACS Catalysis, 2020, 10(24): 14604–14614 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.0c03797
														     															     															     															 | 
																  
																														
															| 94 | 
															 
														      V N Mochalin, O Shenderova, D Ho, Y Gogotsi. The properties and applications of nanodiamonds. Nature Nanotechnology, 2011, 7(1): 11–23 
														     														     	 
														     															     		https://doi.org/10.1038/nnano.2011.209
														     															     															     															 | 
																  
																														
															| 95 | 
															 
														      C S Wood, M M Stevens. Improving the image of nanoparticles. Nature, 2016, 539(7630): 505–506 
														     														     	 
														     															     		https://doi.org/10.1038/nature20478
														     															     															     															 | 
																  
																														
															| 96 | 
															 
														      H Ba, S Podila, Y Liu, X Mu, J M Nhut, V Papaefthimiou, S Zafeiratos, P Granger, C Pham-Huu. Nanodiamond decorated few-layer graphene composite as an efficient metal-free dehydrogenation catalyst for styrene production. Catalysis Today, 2015, 249: 167–175 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2014.10.029
														     															     															     															 | 
																  
																														
															| 97 | 
															 
														      J Diao, H Liu, Z Feng, Y Zhang, T Chen, C Miao, W Yang, D S Su. Highly dispersed nanodiamonds supported on few-layer graphene as robust metal-free catalysts for ethylbenzene dehydrogenation reaction. Catalysis Science & Technology, 2015, 5(11): 4950–4953 
														     														     	 
														     															     		https://doi.org/10.1039/C5CY01213A
														     															     															     															 | 
																  
																														
															| 98 | 
															 
														      T T Thanh, H Ba, L Truong-Phuoc, J M Nhut, O Ersen, D Begin, I Janowska, D L Nguyen, P Granger, C Pham-Huu. A few-layer graphene-graphene oxide composite containing nanodiamonds as metal-free catalysts. Journal of Materials Chemistry A, 2014, 2(29): 11349–11357 
														     														     	 
														     															     		https://doi.org/10.1039/C4TA01307G
														     															     															     															 | 
																  
																														
															| 99 | 
															 
														      L Roldán, A M Benito, E García-Bordejé. Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. Journal of Materials Chemistry A, 2015, 3(48): 24379–24388 
														     														     	 
														     															     		https://doi.org/10.1039/C5TA07404E
														     															     															     															 | 
																  
																														
															| 100 | 
															 
														      H Ba, Y Liu, X Mu, W H Doh, J M Nhut, P Granger, C Pham-Huu. Macroscopic nanodiamonds/β-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 499: 217–226 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2015.04.022
														     															     															     															 | 
																  
																														
															| 101 | 
															 
														     G GeX WeiH GuoZ Zhao. Assembly‐in‐foam approach to construct nanodiamond/carbon nanotube hybrid monolithic carbocatalysts for direct dehydrogenation of ethylbenzene to styrene. European Journal of Inorganic Chemistry, 2022, 2022(26).
														     															 | 
																  
																														
															| 102 | 
															 
														      C Chen, Z P Hu, S M Zhang, Z Y Yuan. Advance in the catalysts of direct dehydrogenation of propane to propylene. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 639–652
														     															 | 
																  
																														
															| 103 | 
															 
														      X Liu, B Frank, W Zhang, T P Cotter, R Schlogl, D S Su. Carbon-catalyzed oxidative dehydrogenation of n-butane: selective site formation during sp3-to-sp2 lattice rearrangement. Angewandte Chemie International Edition, 2011, 50(14): 3318–3322 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201006717
														     															     															     															 | 
																  
																														
															| 104 | 
															 
														      X Sun, Y Ding, B Zhang, R Huang, D Chen, D S Su. Insight into the enhanced selectivity of phosphate-modified annealed nanodiamond for oxidative dehydrogenation reactions. ACS Catalysis, 2015, 5(4): 2436–2444 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.5b00042
														     															     															     															 | 
																  
																														
															| 105 | 
															 
														      X Sun, Y Ding, B Zhang, R Huang, D S Su. New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond. Chemical Communications, 2015, 51(44): 9145–9148 
														     														     	 
														     															     		https://doi.org/10.1039/C5CC00588D
														     															     															     															 | 
																  
																														
															| 106 | 
															 
														      Y Liu, H Ba, J Luo, K H Wu, J M Nhut, D S Su, C Pham-Huu. Structure-performance relationship of nanodiamonds@nitrogen-doped mesoporous carbon in the direct dehydrogenation of ethylbenzene. Catalysis Today, 2018, 301: 38–47 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2017.05.010
														     															     															     															 | 
																  
																														
															| 107 | 
															 
														      Q Zhou, X Guo, C Song, Z Zhao. Defect-enriched N,O-codoped nanodiamond/carbon nanotube catalysts for styrene production via dehydrogenation of ethylbenzene. ACS Applied Nano Materials, 2019, 2(4): 2152–2159 
														     														     	 
														     															     		https://doi.org/10.1021/acsanm.9b00124
														     															     															     															 | 
																  
																														
															| 108 | 
															 
														      G Ge, X Wei, H Guo, Z Zhao. An efficient nanodiamond-based monolithic foam catalyst prepared by a facile thermal impregnation strategy for direct dehydrogenation of ethylbenzene to styrene. Chinese Chemical Letters, 2023, 34(5): 107808 
														     														     	 
														     															     		https://doi.org/10.1016/j.cclet.2022.107808
														     															     															     															 | 
																  
																														
															| 109 | 
															 
														      G Ge, X Guo, C Song, Z Zhao. A mutually isolated nanodiamond/porous carbon nitride nanosheet hybrid with enriched active sites for promoted catalysis in styrene production. Catalysis Science & Technology, 2020, 10(4): 1048–1055 
														     														     	 
														     															     		https://doi.org/10.1039/C9CY02217A
														     															     															     															 | 
																  
																														
															| 110 | 
															 
														      Z Luo, Q Wan, Z Yu, S Lin, Z Xie, X Wang. Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene. Nature Communications, 2021, 12(1): 6542 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-021-26891-8
														     															     															     															 | 
																  
																														
															| 111 | 
															 
														      W Zhao, D W He, Y S Wang, X Du, H Xin. Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials. Chinese Physics B, 2015, 24(4): 047204 
														     														     	 
														     															     		https://doi.org/10.1088/1674-1056/24/4/047204
														     															     															     															 | 
																  
																														
															| 112 | 
															 
														      Y Gao, D Ma, C Wang, J Guan, X Bao. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications, 2011, 47(8): 2432–2434 
														     														     	 
														     															     		https://doi.org/10.1039/C0CC04420B
														     															     															     															 | 
																  
																														
															| 113 | 
															 
														      Y Gao, G Hu, J Zhong, Z Shi, Y Zhu, D S Su, J Wang, X Bao, D Ma. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angewandte Chemie International Edition, 2013, 52(7): 2109–2113 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201207918
														     															     															     															 | 
																  
																														
															| 114 | 
															 
														      D D Eslek-Koyuncu. Microwave-assisted non-oxidative ethane dehydrogenation over different carbon materials. Diamond and Related Materials, 2020, 110: 108130 
														     														     	 
														     															     		https://doi.org/10.1016/j.diamond.2020.108130
														     															     															     															 | 
																  
																														
															| 115 | 
															 
														      S Tang, Z Cao. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Physical Chemistry Chemical Physics, 2012, 14(48): 16558–16565 
														     														     	 
														     															     		https://doi.org/10.1039/c2cp41343d
														     															     															     															 | 
																  
																														
															| 116 | 
															 
														      G K Dathar, Y T Tsai, K Gierszal, Y Xu, C Liang, A J Rondinone, S H Overbury, V Schwartz. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane. ChemSusChem, 2014, 7(2): 483–491 
														     														     	 
														     															     		https://doi.org/10.1002/cssc.201301006
														     															     															     															 | 
																  
																														
															| 117 | 
															 
														      A Brooks, S J Jenkins, S Wrabetz, J McGregor, M Sacchi. The dehydrogenation of butane on metal-free graphene. Journal of Colloid and Interface Science, 2022, 619: 377–387 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2022.03.128
														     															     															     															 | 
																  
																														
															| 118 | 
															 
														      C Chen, M L Sun, Z P Hu, Y P Liu, S M Zhang, Z Y Yuan. Nature of active phase of VOx catalysts supported on SiBeta for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2020, 41(2): 276–285 
														     														     	 
														     															     		https://doi.org/10.1016/S1872-2067(19)63444-3
														     															     															     															 | 
																  
																														
															| 119 | 
															 
														      Z Heidarinejad, M H Dehghani, M Heidari, G Javedan, I Ali, M Sillanpää. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 2020, 18(2): 393–415 
														     														     	 
														     															     		https://doi.org/10.1007/s10311-019-00955-0
														     															     															     															 | 
																  
																														
															| 120 | 
															 
														      W Ao, J Fu, X Mao, Q Kang, C Ran, Y Liu, H Zhang, Z Gao, J Li, G Liu, J Dai. Microwave assisted preparation of activated carbon from biomass: a review. Renewable & Sustainable Energy Reviews, 2018, 92: 958–979 
														     														     	 
														     															     		https://doi.org/10.1016/j.rser.2018.04.051
														     															     															     															 | 
																  
																														
															| 121 | 
															 
														      K MacDermid-Watts, R Pradhan, A Dutta. Catalytic hydrothermal carbonization treatment of biomass for enhanced activated carbon: a review. Waste and Biomass Valorization, 2020, 12(5): 2171–2186 
														     														     	 
														     															     		https://doi.org/10.1007/s12649-020-01134-x
														     															     															     															 | 
																  
																														
															| 122 | 
															 
														      R Pietrzak, T J Bandosz. Activated carbons modified with sewage sludge derived phase and their application in the process of NO2 removal. Carbon, 2007, 45(13): 2537–2546 
														     														     	 
														     															     		https://doi.org/10.1016/j.carbon.2007.08.030
														     															     															     															 | 
																  
																														
															| 123 | 
															 
														      N Karatepe, İ Orbak, R Yavuz, A Özyuğuran. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties. Fuel, 2008, 87(15–16): 3207–3215 
														     														     	 
														     															     		https://doi.org/10.1016/j.fuel.2008.06.002
														     															     															     															 | 
																  
																														
															| 124 | 
															 
														      H L Mudoga, H Yucel, N S Kincal. Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology, 2008, 99(9): 3528–3533 
														     														     	 
														     															     		https://doi.org/10.1016/j.biortech.2007.07.058
														     															     															     															 | 
																  
																														
															| 125 | 
															 
														      J Cui, L Zhang. Metallurgical recovery of metals from electronic waste: a review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2008.02.001
														     															     															     															 | 
																  
																														
															| 126 | 
															 
														      B Tsyntsarski, I Stoycheva, T Tsoncheva, I Genova, M Dimitrov, B Petrova, D Paneva, Z Cherkezova-Zheleva, T Budinova, H Kolev, A Gomis-Berenguer, C O Ania, I Mitov, N Petrov. Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Processing Technology, 2015, 137: 139–147 
														     														     	 
														     															     		https://doi.org/10.1016/j.fuproc.2015.04.016
														     															     															     															 | 
																  
																														
															| 127 | 
															 
														      I Matos, M Bernardo, I Fonseca. Porous carbon: a versatile material for catalysis. Catalysis Today, 2017, 285: 194–203 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2017.01.039
														     															     															     															 | 
																  
																														
															| 128 | 
															 
														      S Ma, H Li, G Zhang, T Iqbal, K Li, Q Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst. Frontiers of Environmental Science & Engineering, 2020, 15(2): 25 
														     														     	 
														     															     		https://doi.org/10.1007/s11783-020-1317-y
														     															     															     															 | 
																  
																														
															| 129 | 
															 
														      K Ö Köse, M K Aydınol. Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis. International Journal of Energy Research, 2022, 46(15): 22078–22088 
														     														     	 
														     															     		https://doi.org/10.1002/er.8710
														     															     															     															 | 
																  
																														
															| 130 | 
															 
														      Z P Hu, L F Zhang, Z Wang, Z Y Yuan. Bean dregs-derived hierarchical porous carbons as metal-free catalysts for efficient dehydrogenation of propane to propylene. Journal of Chemical Technology and Biotechnology, 2018, 93(12): 3410–3417 
														     														     	 
														     															     		https://doi.org/10.1002/jctb.5698
														     															     															     															 | 
																  
																														
															| 131 | 
															 
														      Z Cheng, Y Wang, D Jin, J Liu, W Wang, Y Gu, W Ni, Z Feng, M Wu. Petroleum pitch-derived porous carbon as a metal-free catalyst for direct propane dehydrogenation to propylene. Catalysis Today, 2023, 410: 164–174 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2022.06.022
														     															     															     															 | 
																  
																														
															| 132 | 
															 
														      Z P Hu, H Zhao, C Chen, Z Y Yuan. Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today, 2018, 316: 214–222 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2018.01.010
														     															     															     															 | 
																  
																														
															| 133 | 
															 
														      N Martin-Sanchez, O S G P Soares, M F R Pereira, M J Sanchez-Montero, J L Figueiredo, F Salvador. Oxidative dehydrogenation of isobutane catalyzed by an activated carbon fiber cloth exposed to supercritical fluids. Applied Catalysis A: General, 2015, 502: 71–77 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2015.05.037
														     															     															     															 | 
																  
																														
															| 134 | 
															 
														      S Büchele, G Zichittella, S Kanatakis, S Mitchell, Ramírez J Pérez. Impact of heteroatom speciation on the activity and stability of carbon-based catalysts for propane dehydrogenation. ChemCatChem, 2021, 13(11): 2599–2608 
														     														     	 
														     															     		https://doi.org/10.1002/cctc.202100208
														     															     															     															 | 
																  
																														
															| 135 | 
															 
														      Jesús Díaz Velásquez J de, L M C Suárez, J L Figueiredo. Oxidative dehydrogenation of isobutane over activated carbon catalysts. Applied Catalysis A: General, 2006, 311: 51–57 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2006.06.001
														     															     															     															 | 
																  
																														
															| 136 | 
															 
														      Y Zhang, J Diao, J Rong, J Zhang, J Xie, F Huang, Z Jia, H Liu, D S Su. An efficient metal-free catalyst for oxidative dehydrogenation reaction: activated carbon decorated with few-layer graphene. ChemSusChem, 2018, 11(3): 536–541 
														     														     	 
														     															     		https://doi.org/10.1002/cssc.201702178
														     															     															     															 | 
																  
																														
															| 137 | 
															 
														      Q Ling, R Wu, Z H Wang, H W Liang, Z Lei, Z G Zhao, Q P Ke, X C Liu, P Cui. Promotion role of B doping in N,B co-doped humic acids-based porous carbon for enhancing catalytic performance of oxidative dehydrogenation of propane using CO2. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(4): 1785–1802 
														     														     	 
														     															     		https://doi.org/10.1007/s11144-022-02251-5
														     															     															     															 | 
																  
																														
															| 138 | 
															 
														      J Delgado, D Su, G Rebmann, N Keller, A Gajovic, R Schlogl. Immobilized carbon nanofibers as industrial catalyst for ODH reactions. Journal of Catalysis, 2006, 244(1): 126–129 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcat.2006.08.007
														     															     															     															 | 
																  
																														
															| 139 | 
															 
														      O Klepel, S Utgenannt, C Vormelchert, M König, A Meißner, F Hansen, J H Bölte, T Sieber, R Heinemann, M Bron, A Rokicińska, S Jarczewski, P Kuśtrowski. Redox catalysts based on amorphous porous carbons. Microporous and Mesoporous Materials, 2021, 323: 111257 
														     														     	 
														     															     		https://doi.org/10.1016/j.micromeso.2021.111257
														     															     															     															 | 
																  
																														
															| 140 | 
															 
														      X Cao, X Wu, Y Liu, H Geng, S Yu, S Liu. Boron and nitrogen co-doped porous carbon nanospheres for oxidative dehydrogenation of ethane to ethylene. Carbon, 2022, 197: 120–128 
														     														     	 
														     															     		https://doi.org/10.1016/j.carbon.2022.06.028
														     															     															     															 | 
																  
																														
															| 141 | 
															 
														      H Ba, L Truong Phuoc, Y Liu, C Duong Viet, J M Nhut, L Nguyen Dinh, P Granger, C Pham Huu. Hierarchical carbon nanofibers/graphene composite containing nanodiamonds for direct dehydrogenation of ethylbenzene. Carbon, 2016, 96: 1060–1069 
														     														     	 
														     															     		https://doi.org/10.1016/j.carbon.2015.10.044
														     															     															     															 | 
																  
																														
															| 142 | 
															 
														      Y Liu, J Luo, C Helleu, M Behr, H Ba, T Romero, A Hébraud, G Schlatter, O Ersen, D S Su, C Pham-Huu. Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform. Journal of Materials Chemistry A, 2017, 5(5): 2151–2162 
														     														     	 
														     															     		https://doi.org/10.1039/C6TA09414G
														     															     															     															 | 
																  
																														
															| 143 | 
															 
														      X Dai, F Li, X Zhang, T Cao, X Lu, W Qi. Oxidative dehydrogenation on nanocarbon: polydopamine hollow nanospheres as novel highly efficient catalysts. FlatChem, 2021, 25: 100220 
														     														     	 
														     															     		https://doi.org/10.1016/j.flatc.2020.100220
														     															     															     															 | 
																  
																														
															| 144 | 
															 
														      J Wang, L Wang, J Diao, X Xie, G Lin, Q Jia, H Liu, G Sui. Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene. Journal of Materials Science and Technology, 2022, 103: 209–214 
														     														     	 
														     															     		https://doi.org/10.1016/j.jmst.2021.06.044
														     															     															     															 | 
																  
																														
															| 145 | 
															 
														      P Janus, R Janus, B Dudek, M Drozdek, A Silvestre-Albero, F Rodríguez-Reinoso, P Kuśtrowski. On mechanism of formation of SBA-15/furfuryl alcohol-derived mesoporous carbon replicas and its relationship with catalytic activity in oxidative dehydrogenation of ethylbenzene. Microporous and Mesoporous Materials, 2020, 299: 110118 
														     														     	 
														     															     		https://doi.org/10.1016/j.micromeso.2020.110118
														     															     															     															 | 
																  
																														
															| 146 | 
															 
														      B Frank, M Morassutto, R Schomäcker, R Schlögl, D S Su. Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes. ChemCatChem, 2010, 2(6): 644–648 
														     														     	 
														     															     		https://doi.org/10.1002/cctc.201000035
														     															     															     															 | 
																  
																														
															| 147 | 
															 
														      Z Wang, B Yang, Y Wang, Y Zhao, X M Cao, P Hu. Identifying the trend of reactivity for sp2 materials: an electron delocalization model from first principles calculations. Physical Chemistry Chemical Physics, 2013, 15(24): 9498–9502 
														     														     	 
														     															     		https://doi.org/10.1039/c3cp51375k
														     															     															     															 | 
																  
																														
															| 148 | 
															 
														      H N Pham, J J Sattler, B M Weckhuysen, A K Datye. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts. ACS Catalysis, 2016, 6(4): 2257–2264 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.5b02917
														     															     															     															 | 
																  
																														
															| 149 | 
															 
														      L Liu, M Lopez Haro, C W Lopes, S Rojas Buzo, P Concepcion, R Manzorro, L Simonelli, A Sattler, P Serna, J J Calvino, A Corma. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 2020, 3(8): 628–638 
														     														     	 
														     															     		https://doi.org/10.1038/s41929-020-0472-7
														     															     															     															 | 
																  
																														
															| 150 | 
															 
														      Y Zhu, X Kong, J Yin, R You, B Zhang, H Zheng, X Wen, Y Zhu, Y W Li. Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. Journal of Catalysis, 2017, 353: 315–324 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcat.2017.07.030
														     															     															     															 | 
																  
																														
															| 151 | 
															 
														      L M Ombaka, P Ndungu, V O Nyamori. Usage of carbon nanotubes as platinum and nickel catalyst support in dehydrogenation reactions. Catalysis Today, 2013, 217: 65–75 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2013.05.014
														     															     															     															 | 
																  
																														
															| 152 | 
															 
														      X Chen, M Peng, D Xiao, H Liu, D Ma. Fully exposed metal clusters: fabrication and application in alkane dehydrogenation. ACS Catalysis, 2022, 12(20): 12720–12743 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.2c04008
														     															     															     															 | 
																  
																														
															| 153 | 
															 
														      P Yin, X Luo, Y Ma, S Q Chu, S Chen, X Zheng, J Lu, X J Wu, H W Liang. Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nature Communications, 2021, 12(1): 3135 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-021-23426-z
														     															     															     															 | 
																  
																														
															| 154 | 
															 
														      F Huang, Y Deng, Y Chen, X Cai, M Peng, Z Jia, J Xie, D Xiao, X Wen, N Wang, Z Jiang, H Liu, D Ma. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nature Communications, 2019, 10(1): 4431 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-019-12460-7
														     															     															     															 | 
																  
																														
															| 155 | 
															 
														      X H Yu, J L Yi, R L Zhang, F Y Wang, L Liu. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-021-2097-z
														     															     															     															 | 
																  
																														
															| 156 | 
															 
														      H Liu, J Wang, Z Feng, Y Lin, L Zhang, D Su. Facile synthesis of Au nanoparticles embedded in an ultrathin hollow graphene nanoshell with robust catalytic performance. Small, 2015, 10(38): 5059–5064 
														     														     	 
														     															     		https://doi.org/10.1002/smll.201500635
														     															     															     															 | 
																  
																														
															| 157 | 
															 
														      B Agula, M Sun, S Liang, Y Bao, M Jia, F Xu, Z Y Yuan. Oxidative dehydrogenation of propane over nanostructured mesoporous VOx/CexZr1-xO2 catalysts. Advanced Materials Science and Technology, 2022, 4(2): 049385 
														     														     	 
														     															     		https://doi.org/10.37155/2717-526X-0402-5
														     															     															     															 | 
																  
																														
															| 158 | 
															 
														      T Cao, X Dai, F Li, W Liu, Y Bai, Y Fu, W Qi. Efficient non-precious metal catalyst for propane dehydrogenation: atomically dispersed cobalt-nitrogen compounds on carbon nanotubes. ChemCatChem, 2021, 13(13): 3067–3073 
														     														     	 
														     															     		https://doi.org/10.1002/cctc.202100410
														     															     															     															 | 
																  
																														
															| 159 | 
															 
														      T Cao, X Dai, Y Fu, W Qi. Coordination polymer-derived non-precious metal catalyst for propane dehydrogenation: highly dispersed zinc anchored on N-doped carbon. Applied Surface Science, 2023, 607: 155055 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2022.155055
														     															     															     															 | 
																  
																														
															| 160 | 
															 
														      H Wang, S Chai, P Li, Y Yang, X Wang. Non-oxidative Propane dehydrogenation over vanadium doped graphitic carbon nitride catalysts. Catalysis Letters, 2023, 153(4): 1120–1129 
														     														     	 
														     															     		https://doi.org/10.1007/s10562-022-04018-y
														     															     															     															 | 
																  
																														
															| 161 | 
															 
														      A Ballarini, S Bocanegra, J Mendez, S de Miguel, P Zgolicz. Application of novel catalysts supported on carbonaceous materials in the direct non-oxidative dehydrogenation of n-butane to olefins. Inorganic Chemistry Communications, 2022, 142: 109638 
														     														     	 
														     															     		https://doi.org/10.1016/j.inoche.2022.109638
														     															     															     															 | 
																  
																														
															| 162 | 
															 
														      S A Chernyak, A L Kustov, D N Stolbov, M A Tedeeva, O Y Isaikina, K I Maslakov, N V Usol’tseva, S V Savilov. Chromium catalysts supported on carbon nanotubes and graphene nanoflakes for CO2-assisted oxidative dehydrogenation of propane. Applied Surface Science, 2022, 578: 152099 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2021.152099
														     															     															     															 | 
																  
																														
															| 163 | 
															 
														      N Kong, X Fan, F Liu, L Wang, H Lin, Y Li, S T Lee. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano, 2020, 14(5): 5772–5779 
														     														     	 
														     															     		https://doi.org/10.1021/acsnano.0c00659
														     															     															     															 | 
																  
																														
															| 164 | 
															 
														      X Y Sun, J H Xue, Y Ren, X Y Li, L J Zhou, B Li, Z Zhao. Catalytic property and stability of subnanometer Pt cluster on carbon nanotube in direct propane dehydrogenation. Chinese Journal of Chemistry, 2021, 39(3): 661–665 
														     														     	 
														     															     		https://doi.org/10.1002/cjoc.202000415
														     															     															     															 | 
																  
																														
															| 165 | 
															 
														      R Obunai, K Tamura, I Ogino, S R Mukai, W Ueda. Mo-V-O nanocrystals synthesized in the confined space of a mesoporous carbon. Applied Catalysis A: General, 2021, 624: 118294 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcata.2021.118294
														     															     															     															 | 
																  
																														
															| 166 | 
															 
														      S L Xu, S C Shen, Z Y Wei, S Zhao, L J Zuo, M X Chen, L Wang, Y W Ding, P Chen, S Q Chu, Y Lin, K Qian, H W Liang. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research, 2020, 13(10): 2735–2740 
														     														     	 
														     															     		https://doi.org/10.1007/s12274-020-2920-8
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |