Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (2) : 182-190    https://doi.org/10.1007/s11707-013-0352-4
RESEARCH ARTICLE
Relationships between testate amoeba communities and water quality in Lake Donghu, a large alkaline lake in Wuhan, China
Yangmin QIN1,2(), Bertrand FOURNIER3, Enrique LARA3, Yansheng GU1, Hongmei WANG1, Yongde CUI4, Xiaoke ZHANG4, Edward A. D. MITCHELL3
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China; 3. Laboratory of Soil Biology, University of Neuchatel, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland; 4. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
 Download: PDF(396 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The middle Yangtze Reach is one of the most developed regions of China. As a result, most lakes in this area have suffered from eutrophication and serious environmental pollution during recent decades. The aquatic biodiversity in the lakes of the area is thus currently under significant threat from continuous human activities. Testate amoebae (TA) are benthic (rarely planktonic) microorganisms characterized by an agglutinated or autogenous shell. Owing to their high abundance, preservation potential in lacustrine sediments, and distinct response to environmental stress, they are increasingly used as indicators for monitoring water quality and reconstructing palaeoenvironmental changes. However this approach has not yet been developed in China. This study presents an initial assessment of benthic TA assemblages in eight lakes of Lake Donghu in the region of Wuhan, China. Testate amoeba community structure was most strongly correlated to water pH. In more alkaline conditions, communities were dominated by Centropyxis aculeata, Difflugia oblonga, Pontigulasia compressa, Pon. elisa and Lesquereusia modesta. These results are consistent with previous studies and show that TA could be useful for reconstructing past water pH fluctuations in China. To achieve this, the next step will be to expand the database and build transfer function models.

Keywords testate amoebae (TA)      water quality      water pH      Lake Donghu      China     
Corresponding Author(s): QIN Yangmin,Email:qymcug@yahoo.com.cn   
Issue Date: 05 June 2013
 Cite this article:   
Yangmin QIN,Bertrand FOURNIER,Enrique LARA, et al. Relationships between testate amoeba communities and water quality in Lake Donghu, a large alkaline lake in Wuhan, China[J]. Front Earth Sci, 2013, 7(2): 182-190.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0352-4
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I2/182
Fig.1  Location of the eight studied lakes of Lake Donghu. (a) Location of Wuhan City near the middle Yangtze Reach of Central China, (b) Eight studied lakes in the Lake Donghu of Wuhan, see Table 1 for name of lakes
Sample NoName of lakeDepth/mpHCond/(μS·cm-1)TN/(mg·L-1)TP/(mg·L-1)Chlorophy U-a/(μg ·L-1)Zsd/cm
1Guozhenghu (GZ)3.79.14110.2250.13325.7060
2Tanglinhu (TL)3.19.04040.2290.14011.8060
3Shuiguohu (SG)2.58.73930.6930.18821.1455
4Houhu (HH)3.68.83680.3820.08618.9175
5Yandonghu (YD)1.68.64100.2460.0173.18162
6Qingtanhu (QT)1.48.54010.2030.03617.5665
7Shahu (SH)0.58.05591.4650.3116.0633
8Qingshangang(QSG)2.08.14530.6260.09811.1860
Tab.1  Environmental variables measured in Lake Donghu (Wuhan, China) (From )
GZTLSGHHYDQTSHQSG
Cyclopyxis cf. aplanata0.000.008.331.656.420.0015.380.00
Centropyxis aculeata 23.4425.7116.6747.9369.7232.0834.6252.13
C. ecornis7.037.148.335.792.7513.219.622.13
C. cassis3.917.1441.6710.747.340.0019.2323.40
Difflugia acuminata5.472.866.256.616.420.000.000.00
D. accutissima 2.344.290.000.830.001.890.000.00
D. corona0.000.002.080.000.000.000.002.13
D. elegans0.001.430.000.000.000.000.000.00
D. glans4.695.710.000.000.925.661.921.06
D. globulosa0.004.294.170.000.000.007.6918.09
D. labiosa0.780.004.172.482.750.000.000.00
D. lithophila3.911.430.000.000.007.551.920.00
D. lanceolata1.562.860.000.000.005.661.920.00
D. lacustris0.000.000.000.830.000.000.000.00
D. oblonga25.7811.434.1716.531.8318.877.690.00
D. lobostoma0.000.000.000.000.921.890.000.00
D. longum 0.000.000.000.000.001.890.000.00
D. smilion2.341.434.170.830.923.770.000.00
D. urceolata2.342.860.000.000.000.000.000.00
Phryganella nidulus2.340.000.000.000.000.000.000.00
Pontigulasia elisa8.5911.430.002.480.001.890.000.00
Pon. compressa5.471.430.002.480.003.770.000.00
Lesquereusia modesta0.008.570.000.830.001.890.001.06
SDI2.262.411.861.741.202.091.821.25
Richness value161711141014108
Tab.2  Relative abundance (percentage of total count) of testate amoeba morpho-taxa in eight lakes of Lake Donghu (Wuhan, China)
Fig.2  SEM photos of testate amoebae from sediments of Lake Donghu, Wuhan, China. a-b) cf. , c-d) , e-f) , g) , h) -type, here , i) , j) , k) , l) , m) , n) , o-p)
DepthpHCondTNTP
pH0.842**
Cond-0.714*-0.751*
TN-0.600-0.728*0.863**
TP-0.252-0.3150.719*0.856**
Chlorophyll-a0.6870.589-0.530-0.352-0.047
Zsd-0.0290.172-0.373-0.490-0.696
Tab.3  Correlations between water chemical variables measured in Lake Donghu (Wuhan, China)
Fig.3  Scatter plot of pH versus testate amoeba species richness in eight lakes of Lake Donghu (Wuhan, China). The solid line represents a linear regression function (adjusted- = 0.69)
Individual RDAExplained variance/%p
Depth170.31
pH260.09
Cond.150.42
TN230.10
TP140.36
Chlorophyll-a170.30
water transparency120.66
Tab.4  Redundancy analyses (RDA) results showing the percentage variance in the testate amoeba data set from in eight lakes of Lake Donghu (Wuhan, China) explained by the measured environmental variables (separate analysis for each variable)
Fig.4  RDA ordination showing the relationship between testate amoeba community structure in eight lakes of Lake Donghu (Wuhan, China) and the fitted environmental variables (circles are species, squares are eight small lakes of Lake Donghu)
1 Bobrov A, Mazei Y, Chernyshov V, Gong Y, Feng W (2012). Testate amoebae communities from some freshwater and soil habitats in China (Hubei and Shandong Provinces). Front Earth Sci , 6(1): 1– 9
doi: 10.1007/s11707-012-0310-6
2 Bobrov A A, Charman D J, Warner B G (1999). Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. Protist , 150(2): 125–136
doi: 10.1016/S1434-4610(99)70016-7 pmid:10505413
3 Dalby A P, Kumar A, Moore J M, Patterson R T (2000). Preliminary survey of arcellaceans (Thecamoebians) as limnological indicators in tropical lake Sentani, Irian Java, Indonesia. J Foraminiferal Res , 30(2): 135–142
doi: 10.2113/0300135
4 Escobar J, Brenner M, Whitmore T J, Kenney W F, Curtis J H (2008). Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes. J Paleolimnol , 40(2): 715–731
doi: 10.1007/s10933-008-9195-5
5 Gu Y, Li X, Qiu H, Huang J, Xie S, Ruan X, Zhou X (2008). Sediments records of eutrophication history in the Donghu Lake, Wuhan, over the past 100 years. Ecol Environ , 17: 35–40 (in Chinese)
6 Gu Y, Wang H, Huang X, Peng H, Huang J (2012). Phytolith records of the climate change since the past 15000 years in the middle reach of the Yangtze River in China. Front Earth Sci , 6(1): 10–17
doi: 10.1007/s11707-012-0302-6
7 Hu Y, Qi S, Wu C, Ke Y, Chen J, Chen W, Gong X (2012). Preliminary assessment of heavy metal contamination in surface water and sediments from Honghu Lake, East Central China. Front Earth Sci , 6(1): 39–47
doi: 10.1007/s11707-012-0309-z
8 Jiang J G, Wu S G, Shen Y F (2007). Effects of seasonal succession and water pollution on the protozoan community structure in an eutrophic lake. Chemosphere , 66(3): 523–532
doi: 10.1016/j.chemosphere.2006.05.042 pmid:16822536
9 Kowalewska G (2005). Algal pigments in sediments as a measure of eutrophication in the Baltic environment. Quat Int , 130(1): 141–151
doi: 10.1016/j.quaint.2004.04.037
10 Kumar A, Patterson R T (2000). Arcellaceans (thecamoebians): new tools for monitoring long- and short-term changes in lake bottom acidity. Environ Geolo , 39(6): 689–697
doi: 10.1007/s002540050483
11 Legendre P, Gallagher E D (2001). Ecologically meaningful transformations for ordination of species data. Oecologia , 129(2): 271–280
doi: 10.1007/s004420100716
12 Liu Z, Liu Q, Du Y, Wang Z (2006). Characteristics of heavy elements in sediments of Lake Donghu (Wuhan) and relations to urban pollution. J Lake Sci , 18: 79–85 (in Chinese)
13 Margalef R (1972). Homage to Evelyn Hutchinson, or why is there an upper limit to diversity. Trans Conn Acad Arts Sci , 44: 211–235
14 Mazei Yu, Tsyganov A (2006). Freshwater Testate Amoebae. Moscow: KMK Science Press (in Russia)
15 Medioli F S, Scott D B (1988). Lacustrine thecamoebians (mainly Arcellaceans) as potential tools for paleolimnological interpretations. Palaeogeogr Palaeoclimatol Palaeoecol , 62(1–4): 361–386
doi: 10.1016/0031-0182(88)90062-4
16 Meisterfeld R (2002). Order Arcellinida Kent, 1880. In: Lee J J, Leedale G F, Bradbury P, eds. An Illustrated Guide to the Protozoa . Lawrence Kansas: Allen Press
17 Meng C, Zhao B (2008). Vertical distributions of species of nitrogen and phosphorus in the sediments of Donghu Lake. Environ Sci , 29: 1831–1837
18 Mitchell E A D, Charman D J, Warner B G (2008). Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv , 17(9): 2115–2137
doi: 10.1007/s10531-007-9221-3
19 Ogden C G (1983). Observations on the systematics of the genus Difflugia in Britain (Rhizopoda, Protozoa). Bull Br Mus Nat Hist (Zool) , 44: 1–73
20 Ogden C G, Hedley R H (1980). An Atlas of Freshwater Testate Amoebae. Oxford: Oxford University Press
21 Olson D M, Dinerstein E (1998). The global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol , 12(3): 502–515
doi: 10.1046/j.1523-1739.1998.012003502.x
22 Patterson R T, Dalby A, Kumar A, Henderson L A, Boudreau R E A (2002). Arcellaceans (thecamoebians) as indicators of land-use change: settlement history of the Swan Lake area, Ontario as a case study. J Paleolimnol , 28(3): 297–316
doi: 10.1023/A:1021621622090
23 Patterson R T, Kumar A (2000). Assessment of arcellacea (thecamoebian) assemblages, species and strains as contaminant indicators in variably contaminated James Lake, north eastern Ontario. J Foraminiferal Res , 30: 310–320
doi: 10.2113/0300310
24 Payne R, Mitchell E A D (2009). How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J Paleolimnol , 42(4): 483–495
doi: 10.1007/s10933-008-9299-y
25 Qin Y, Booth R K, Gu Y, Wang Y, Xie S (2009). Testate amoebae as indicators of 20th century environmental change in Lake Zhangdu, China. Fundam Appl Limnol , 175(1): 29–38
doi: 10.1127/1863-9135/2009/0175-0029
26 Qin Y, Payne R, Gu Y, Huang X, Wang H (2012). Ecology of testate amoebae in Dajiuhu peatland of Shennongjia Mountains, China, in relation to hydrology. Front Earth Sci , 6(1): 57–65
doi: 10.1007/s11707-012-0307-1
27 Qin Y, Xie S, Smith H G, Swindles G T, Gu Y (2011). Diversity, distribution and biogeography of testate amoebae in China: implications for ecological studies in Asia. Eur J Protistol , 47(1): 1–9
doi: 10.1016/j.ejop.2010.09.004 pmid:21074391
28 Qin Y, Xie S, Swindles G T, Gu Y S, Zhou X G (2008a). Pentagonia zhangduensis nov. spec. (Lobosea, Arcellinida), a new freshwater species from China. Eur J Protistol , 44(4): 287–290
doi: 10.1016/j.ejop.2008.03.001 pmid:18547792
29 Qin Z, Fan T, Wu Q, Zhou X (2008b). Analysis of “Red Tide” in East Lake and trend of development. Environ Sci Technol , 31: 93–95 (in Chinese)
30 R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing . Vienna, Austria
31 Reinhardt E G, Dalby A P, Kumar A, Patterson R T (1998). Arcellaceans as pollution indicators in mine tailing contaminated lakes near Cobalt, Ontario, Canada. Micropaleontol , 44(2): 131–148
doi: 10.2307/1486066
32 Roe H M, Patterson R T (2006). Distribution of thecamoebians (testate amoebae) in small lakes and ponds, Barbados, West Indies. J Foraminiferal Res , 36(2): 116–134
doi: 10.2113/36.2.116
33 Roe H M, Patterson R T, Swindles G T (2010). Controls on the contemporary distribution of lake thecamoebians (testate amoebae) within the Greater Toronto Area and their potential as water quality indicators. J Paleolimnol , 43(4): 955–975
doi: 10.1007/s10933-009-9380-1
34 Scott D B, Medioli F S (1983). Agglutinated Rhizopods in Lake Erie: modern distribution and stratigraphic implications. J Paleontol , 57: 809–820
35 Shannon C E, Weaver W (1949). The Mathematical Theory of Communication. Urbana: University of Illinois Press
36 Wall A, Gilbert D, Magny M, Mitchell E A D (2010). Testate amoeba analysis of lake sediments: impact of filter size and total count on estimates of density, species richness and assemblage structure. J Paleolimnol , 43: 689–704
doi: 10.1007/s10933-009-9360-5
37 Wang Q, Wang H, Cui Y (2010). Community characteristics of the macrozoobenthos and bioassessment of water quality in Lake Donghu Distinct, Wuhan. Acta Hydrobiol Sin , 34(4): 739–746 (in Chinese)
doi: 10.3724/SP.J.1035.2010.00739
38 Xie P, Huang X F, Takamura N (2000). Changes of Leptodora kindti. abundance (1957–1996) in a planktivorous fishes dominated subtropical Chinese lake (Lake Donghu). Arch Hydrobiol , 147: 351–372
39 Xu M, Cao H, Xie P, Deng D, Feng W, Xu J (2005). Use of PFU protozoan community structural and functional characteristics in assessment of water quality in a large, highly polluted freshwater lake in China. J Environ Monit , 7(7): 670–674
doi: 10.1039/b504396b pmid:15986045
[1] Ying LIU, Xudong WU, Xudong SUN, Chenghe GUAN, Bo ZHANG, Xiaofang WU. Exports-driven primary energy requirements and the structural paths of Chinese regions[J]. Front. Earth Sci., 2020, 14(4): 803-815.
[2] Kaixiu ZHANG, Wen QIN, Fang TIAN, Xianyong CAO, Yuecong LI, Jule XIAO, Wei DING, Ulrike HERZSCHUH, Qinghai XU. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China[J]. Front. Earth Sci., 2020, 14(4): 789-802.
[3] Baofu LI, Jili ZHENG, Xun SHI, Yaning CHEN. Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China[J]. Front. Earth Sci., 2020, 14(3): 568-577.
[4] KuoRay MAO, Qian ZHANG, Yongji XUE, Nefratiri WEEKS. Toward a socio-political approach to water management: successes and limitations of IWRM programs in rural north-western China[J]. Front. Earth Sci., 2020, 14(2): 268-285.
[5] Chao FU, Xinghe YU, Xue FAN, Yulin HE, Jinqiang LIANG, Shunli LI. Classification of mass-transport complexes and distribution of gashydrate-bearing sediments in the northeastern continental slope of the South China Sea[J]. Front. Earth Sci., 2020, 14(1): 25-36.
[6] Yang DING, Zhigang YAO, Lingling ZHOU, Min BAO, Zhengchen ZANG. Numerical modeling of the seasonal circulation in the coastal ocean of the Northern South China Sea[J]. Front. Earth Sci., 2020, 14(1): 90-109.
[7] Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain[J]. Front. Earth Sci., 2019, 13(2): 327-335.
[8] Zhuang LI, Bin CHEN. Lithotectonic elements of Archean basement on the Liaodong Peninsula and its vicinity, North China Craton, China[J]. Front. Earth Sci., 2019, 13(1): 209-228.
[9] Fenliang LIU, Hongshan GAO, Baotian PAN, Zongmeng LI, Huai SU. Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China[J]. Front. Earth Sci., 2019, 13(1): 55-74.
[10] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[11] Jincui WANG, Yongsheng ZHAO, Jichao SUN, Ying ZHANG, Chunyan LIU. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China[J]. Front. Earth Sci., 2019, 13(1): 33-42.
[12] Xuerongzi HUANG, Dashan WANG, Yu LIU, Zhizhou FENG, Dagang WANG. Evaluation of extreme precipitation based on satellite retrievals over China[J]. Front. Earth Sci., 2018, 12(4): 846-861.
[13] Qianfeng WANG, Jingyu ZENG, Song LENG, Bingxiong FAN, Jia TANG, Cong JIANG, Yi HUANG, Qing ZHANG, Yanping QU, Wulin WANG, Wei SHUI. The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century[J]. Front. Earth Sci., 2018, 12(4): 818-833.
[14] Jun WANG, Xiaohong MENG, Zhaoxi CHEN, Fang LI. Interpretation of gravity data for fault distribution near the Mongolia–Hinggan metallogenic belt in the eastern China-Mongolia frontier area[J]. Front. Earth Sci., 2018, 12(4): 808-817.
[15] Erfu DAI, Zhuo WU, Xiaodian DU. A gradient analysis on urban sprawl and urban landscape pattern between 1985 and 2000 in the Pearl River Delta, China[J]. Front. Earth Sci., 2018, 12(4): 791-807.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed