Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (1) : 1-12    https://doi.org/10.1007/s11707-014-0444-9
RESEARCH ARTICLE
Analysis of spatio-temporal variability of aerosol optical depth with empirical orthogonal functions in the Changjiang River Delta, China
Tianyong ZHAI1,2,Qing ZHAO1,2,*(),Wei GAO1,2,3,Runhe SHI1,2,Weining XIANG4,Hung-lung Allen HUANG5,Chao ZHANG1,2
1. Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200062, China
2. Joint Laboratory for Environmental Remote Sensing and Data Assimilation, ECNU&CEODE, Shanghai 200062, China
3. Colorado State University, Natural Resource Ecology Laboratory, Fort Collins, Colorado 80521, USA
4. Shanghai Key Laboratory for Urban Ecology and Sustainability, East China Normal University, Shanghai 200062, China
5. University of Wisconsin–Madison, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Madison, Wisconsin 53706, USA
 Download: PDF(1938 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This work aims to analyze the spatial and temporal variability of aerosol optical depth (AOD) from 2000 to 2012 in the Changjiang River Delta (CRD), China. US Terra satellite moderate resolution imaging spectroradiometer (MODIS) AOD and ?ngstr?m exponent (α) data constitute a baseline, with the empirical orthogonal functions (EOFs) method used as a major data analysis method. The results show that the maximum value of AOD observed in June is 1.00±0.12, and the lowest value detected in December is 0.40±0.05. AOD in spring and summer is higher than in autumn and winter. On the other hand, the α-value is lowest in spring (0.86±0.10), which are affected by coarse particles. High α-value appears in summer (1.32±0.05), which indicate that aerosols are dominated by fine particles. The spatial distribution of AOD has a close relationship with terrain and population density. Generally, high AODs are distributed in the low-lying plains, and low AODs in the mountainous areas. The spatial and temporal patterns of seasonal AODs show that the first three EOF modes cumulatively account for 77% of the total variance. The first mode that explains 67% of the total variance shows the primary spatial distribution of aerosols, i.e., high AODs are distributed in the northern areas and low AODs in the southern areas. The second mode (7%) shows that the monsoon climate probably plays an important role in modifying the distribution of aerosols, especially in summer and winter. In the third mode (3%), this distribution of aerosols usually occurs in spring and winter when the prevailing northwestern or western winds could bring aerosol particles from the inland areas into the central regions of the CRD.

Keywords AOD      MODIS      EOFs      ?ngstr?m exponent      Changjiang River Delta     
Corresponding Author(s): Qing ZHAO   
Online First Date: 15 July 2014    Issue Date: 04 February 2015
 Cite this article:   
Tianyong ZHAI,Qing ZHAO,Wei GAO, et al. Analysis of spatio-temporal variability of aerosol optical depth with empirical orthogonal functions in the Changjiang River Delta, China[J]. Front. Earth Sci., 2015, 9(1): 1-12.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0444-9
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I1/1
Fig.1  Location of Changjiang River Delta and its spatial distribution of altitude in meters.
Fig.2  Annual average AOD derived from MODIS at 550 nm from 2000 to 2012. The dashed line represents the long-term variability trend of the AODs derived from the ensemble empirical mode decomposition (EEMD) analysis.
Fig.3  Multi-year seasonal average AOD at 550 nm and ?ngstr?m exponent from 2000 to 2012. The error bars on the dots along y-axis denote the standard deviation.
Fig.4  Seasonal average AOD at 550 nm (a) and ?ngstr?m exponent (b) from 2000 to 2012.
Fig.5  Monthly average AOD at 550 nm and ?ngstr?m exponent from 2000 to 2012.
Fig.6  The spatial distribution of AOD at 550 nm averaged from MODIS from 2000 to 2012 in the Changjiang River Delta.
Fig.7  The spatial distribution of annual average AOD at 550 nm in the Changjiang River Delta from 2000 to 2012.
Fig.8  Spatial distributions of seasonal average AOD at 550 nm (upper panel) and ?ngstr?m exponent (lower panel) in the Changjiang River Delta during 2000–2012.
Principal component Eigenvalue Contribution rate/% Accumulating contribution rate/%
1 24.95 66.88 66.88
2 2.67 7.16 74.04
3 1.11 2.97 77.01
4 0.82 2.19 79.20
5 0.64 1.73 80.93
Tab.1  Percentage variance explained for the first five empirical orthogonal functions (EOFs) modes.
Fig.9  Spatial modes of seasonal AOD in the Changjiang River Delta by the empirical orthogonal functions (EOFs), i.e., (a) the first EOF mode, (b) second EOF mode, and (c) third EOF mode.
Fig.10  Time coefficients corresponding to the EOF modes: (a) first mode; (b) second mode; and (c) third mode.
1 ?ngstr?m A (1929). On the atmospheric transmission of sun radiation and on dust in the air. Geogr Anal, 12: 130–159
2 Chu D A, Kaufman Y J, Ichoku C, Remer L A, Tanr D, Holben B N (2002). Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett, 29(12): 8007
https://doi.org/10.1029/2001GL013205
3 Deng X, Deng W, He D (2010). Spatial-temporal features of atmospheric aerosol in East China in recent years. Transactions of Atmospheric Sciences, 33(3): 347–354 (in Chinese)
4 Duan H, Zhao J, Li Y (2013). The frequencies, severities, and driving factors of the sand-dust weather processes occurred in Northern China in the spring of 2011. J Desert Res, 33(1): 179–186 (in Chinese)
5 Duan X, Yu X, Liu X (2009). Analysis on the character of regional development of 30 years in the Yangtze River Delta. Econ Geogr, 29(2): 185–192 (in Chinese)
6 Eck T F, Holben B N, Reid J S, Dubovik O, Smirnov A, O’Neill N T, Slutsker I, Kinne S (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res, 104(D24): 31333–31349
https://doi.org/10.1029/1999JD900923
7 Engel-Cox J A, Holloman C H, Coutant B W, Hoff R M (2004). Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos Environ, 38(16): 2495–2509
https://doi.org/10.1016/j.atmosenv.2004.01.039
8 He Q, Li C, Geng F, Lei Y, Li Y (2012). Study on long-term aerosol distribution over the land of East China using MODIS data. Aerosol and Air Quality Research, 12(3): 304–319
https://doi.org/10.4209/aaqr.2011.11.0200
9 He Q, Li C, Tang X, Li H, Geng F, Wu Y (2010). Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sens Environ, 114(8): 1649–1661
https://doi.org/10.1016/j.rse.2010.02.015
10 Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Ver-mote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998). AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 66(1): 1–16
https://doi.org/10.1016/S0034-4257(98)00031-5
11 Holben B N, Tanré D, Smirnov A, Eck T F, Slutsker I, Abuhassan N, Newcomb W W, Schafer J S, Chatenet B, Lavenu F, Kaufman Y J, Castle J V, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karneli A, O’Neill N T, Pietras C, Pinker R T, Voss K, Zibordi G (2001). An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res, 106(D11): 12067–12097
https://doi.org/10.1029/2001JD900014
12 Hu T, Sun Z, Zhang H (2008). Spatial/Temporal variations and trends of aerosol optical depth at 380 nm wavelength in China during 1980–2001. Journal of Applied Meteorological Science, 19(5): 513–521 (in Chinese)
13 Ichoku C, Chu D A, Mattoo S, Kaufman Y J, Remer L A, Tanré D, Slutsker I, Holben B N (2002). A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys Res Lett, 29(12): 8006
https://doi.org/10.1029/2001GL013206
14 Kaskaoutis D G, Kambezidis H D, Adamopoulos A D, Kassomenos P A (2006). On the Characterization of aerosols using the ?ngstr?m exponent in the Athens area. J Atmos Sol Terr Phys, 68(18): 2147–2163
https://doi.org/10.1016/j.jastp.2006.07.008
15 Kaufman Y J, Tanré D, Boucher O (2002). A satellite view of aerosols in the climate system. Nature, 419(6903): 215–223
https://doi.org/10.1038/nature01091 pmid: 12226676
16 Kaufman Y J, Tanré D, Remer L A, Vermote E F, Chu A, Holben B N (1997). Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res, D, Atmospheres, 102(D14): 17051–17067
https://doi.org/10.1029/96JD03988
17 Kennedy I M (2007). The health effects of combustion-generated aerosols. Proc Combust Inst, 31(2): 2757–2770
https://doi.org/10.1016/j.proci.2006.08.116
18 Kim H S, Chung Y S, Lee S G (2013). Analysis of spatial and seasonal distributions of MODIS aerosol optical properties and ground-based measurements of mass concentrations in the Yellow Sea region in 2009. Environ Monit Assess, 185(1): 369–382
https://doi.org/10.1007/s10661-012-2559-3 pmid: 22362557
19 Kim S W, Yoon S C, Kim J, Kim S Y (2007). Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos Environ, 41(8): 1634–1651
https://doi.org/10.1016/j.atmosenv.2006.10.044
20 King M D, Kaufman Y J, Menzel W P, Tanré D (1992). Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans Geosci Rem Sens, 30(1): 2–27
https://doi.org/10.1109/36.124212
21 King M D, Kaufman Y J, Tanré D, Nakajima T (1999). Remote sensing of tropospheric aerosols from space: past, present, and future. Bull Am Meteorol Soc, 80(11): 2229–2259
https://doi.org/10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2
22 King M D, Menzel W P, Kaufman Y J, Tanré D, Gao B, Platnick S, Ackerman S A, Remer L A, Pincus R, Hubanks P A (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Rem Sens, 41(2): 442–458
https://doi.org/10.1109/TGRS.2002.808226
23 Levy R C, Remer L A, Tanré D, Mattoo S, Kaufman Y J (2009). Algorithm for Remote Sensing of Tropospheric Aerosol over Dark Targets from MODIS: Collections 005 and 051: Revision 2; Feb 2009
24 Li C, Lau A K H, Mao J, Chu D A (2005). Retrieval, validation, and application of the 1km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Trans Geosci Rem Sens, 43(11): 2650–2658
https://doi.org/10.1109/TGRS.2005.856627
25 Li C, Mao J, Lau K H A, Chen J, Yuan Z, Liu X, Zhu A, Liu G (2003). Characteristics of distribution and seasonal variation of aerosol optical depth in eastern China with MODIS products. Chin Sci Bull, 48(22): 2488–2495
26 North G R, Bell T L, Cahalan R F, Moeng F J (1982). Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev, 110(7): 699–706
https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
27 Pan L, Che H, Geng F, Xia X, Wang Y, Zhu C, Chen M, Gao W, Guo J (2010). Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos Environ, 44(21–22): 2587–2596
https://doi.org/10.1016/j.atmosenv.2010.04.013
28 Pope C A 3rd, Dockery D W (2006). Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc, 56(6): 709–742
https://doi.org/10.1080/10473289.2006.10464485 pmid: 16805397
29 Preisendorfer R W, Mobley C D (1988). Principal component analysis in meteorology and oceanography. Amsterdam: Elsevier
30 Qiu J, Yang L (2000). Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980–1994. Atmos Environ, 34(4): 603–609
https://doi.org/10.1016/S1352-2310(99)00173-9
31 Remer L A, Kaufman Y J, Tanré D, Mattoo S, Chu D A, Martins J V, Li R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E, Holben B N (2005). The MODIS aerosol algorithm, products, and validation. J Atmos Sci, 62(4): 947–973
https://doi.org/10.1175/JAS3385.1
32 Shrestha P, Barros A P (2010). Joint spatial variability of aerosol, clouds and rainfall in the Himalayas from satellite data. Atmos Chem Phys, 10(17): 8305–8317
https://doi.org/10.5194/acp-10-8305-2010
33 Su J, Zhu B, Kang H, Wang H, Wang T (2012). Applications of pollutions released from crop residues at open burning in Yangtze River Delta Region in air quality model. Environ Sci, 33(5): 1418–1424 (in Chinese)
34 Yang K L (2002). Spatial and seasonal variation of PM10 mass concentrations in Taiwan. Atmos Environ, 36(21): 3403–3411
https://doi.org/10.1016/S1352-2310(02)00312-6
35 Zhao Q, Gao W, Xiang W, Shi R, Liu C, Zhai T, Huang H A, Gumley L E, Strabala K (2013). Analysis of air quality variability in Shanghai using AOD and API data in the recent decade. Front Earth Sci, 7(2): 159–168
https://doi.org/10.1007/s11707-013-0357-z
[1] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[2] Zhuang LI, Bin CHEN. Lithotectonic elements of Archean basement on the Liaodong Peninsula and its vicinity, North China Craton, China[J]. Front. Earth Sci., 2019, 13(1): 209-228.
[3] Jianhong LIU, Le LI, Xin HUANG, Yongmei LIU, Tongsheng LI. Mapping paddy rice in Jiangsu Province, China, based on phenological parameters and a decision tree model[J]. Front. Earth Sci., 2019, 13(1): 111-123.
[4] Yongfeng WANG, Zhaohui XUE, Jun CHEN, Guangzhou CHEN. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015[J]. Front. Earth Sci., 2019, 13(1): 92-110.
[5] Xiaojuan HUANG, Mingguo MA, Xufeng WANG, Xuguang TANG, Hong YANG. The uncertainty analysis of the MODIS GPP product in global maize croplands[J]. Front. Earth Sci., 2018, 12(4): 739-749.
[6] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[7] Babula JENA. Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean[J]. Front. Earth Sci., 2016, 10(3): 479-486.
[8] Qing XU,Hongyuan ZHANG,Yongcun CHENG. Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods[J]. Front. Earth Sci., 2016, 10(2): 378-388.
[9] Weichun MA,Liguo ZHOU,Hao ZHANG,Yan ZHANG,Xiaoyan DAI. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai[J]. Front. Earth Sci., 2016, 10(1): 38-48.
[10] Youzhi AN,Wei GAO,Zhiqiang GAO,Chaoshun LIU,Runhe SHI. Trend analysis for evaluating the consistency of Terra MODIS and SPOT VGT NDVI time series products in China[J]. Front. Earth Sci., 2015, 9(1): 125-136.
[11] Daifeng WANG, Quan’an ZHENG, Jianyu HU. Jet-like features of Jiulongjiang River plume discharging into the west Taiwan Strait[J]. Front Earth Sci, 2013, 7(3): 282-294.
[12] Qing ZHAO, Wei GAO, Weining XIANG, Runhe SHI, Chaoshun LIU, Tianyong ZHAI, Hung-lung Allen HUANG, Liam E. GUMLEY, Kathleen STRABALA. Analysis of air quality variability in Shanghai using AOD and API data in the recent decade[J]. Front Earth Sci, 2013, 7(2): 159-168.
[13] Hongzhao TANG, Maosi CHEN, John DAVIS, Wei GAO. Comparison of aerosol optical depth of UV-B Monitoring and Research Program (UVMRP), AERONET and MODIS over continental United States[J]. Front Earth Sci, 2013, 7(2): 129-140.
[14] Yibo LIU, Weimin JU, Honglin HE, Shaoqiang WANG, Rui SUN, Yuandong ZHANG. Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by MODIS data[J]. Front Earth Sci, 2013, 7(1): 112-127.
[15] Christopher K. WRIGHT, Kirsten M. de BEURS, Geoffrey M. HENEBRY. Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt[J]. Front Earth Sci, 2012, 6(2): 177-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed