Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 851-859    https://doi.org/10.1007/s11783-013-0569-1
RESEARCH ARTICLE
Diversity and vertical distributions of sediment bacteria in an urban river contaminated by nutrients and heavy metals
Xunan YANG, Shan HUANG, Qunhe WU(), Renduo ZHANG, Guangli LIU
Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(270 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this study was to investigate the benthic bacterial communities in different depths of an urban river sediment accumulated with high concentrations of nutrients and metals. Vertical distributions of bacterial operational taxonomic units (OTUs) and chemical parameters (nutrients: NH4+, NO3-, dissolved organic carbon, and acid volatile sulfur; metals: Fe, Zn, and Cu) were characterized in 30 cm sediment cores. The bacterial OTUs were measured using the terminal restriction fragment length polymorphism analysis. Biodiversity indexes and multivariate statistical analyses were used to characterize the spatial distributions of microbial diversity in response to the environmental parameters. Results showed that concentrations of the nutrients and metals in this river sediment were higher than those in similar studies. Furthermore, high microbial richness and diversity appeared in the sediment. The diversity did not vary obviously in the whole sediment profile. The change of the diversity indexes and the affiliations of the OTUs showed that the top layer had different bacterial community structure from deeper layers due to the hydrological disturbance and redox change in the surface sediment. The dominant bacterial OTUs ubiquitously existed in the deeper sediment layers (5–27 cm) corresponding to the distributions of the nutrients and metals. With much higher diversity than the dominant OTUs, the minor bacterial assemblages varied with depths, which might be affected by the sedimentation process and the environmental competition pressure.

Keywords heavy metals      nutrients      sediment profile      terminal restriction fragment length polymorphism     
Corresponding Author(s): WU Qunhe,Email:eeswqh@mail.sysu.edu.cn   
Issue Date: 01 December 2013
 Cite this article:   
Xunan YANG,Shan HUANG,Qunhe WU, et al. Diversity and vertical distributions of sediment bacteria in an urban river contaminated by nutrients and heavy metals[J]. Front Envir Sci Eng, 0, (): 851-859.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0569-1
https://academic.hep.com.cn/fese/EN/Y0/V/I/851
depth/cmNO3-/(mmol·L-1)NH4+/(mmol·L-1)AVS/(μmol·g-1·dwa))TN/(g·kg-1 dw)TOC/(g·kg-1 dw)DOC/(g·kg-1 dw)
0-20.0310±0.0008b)1.069±0.00512.03±0.211.11±0.0315.15±0.277.71±0.02
5-70.0273±0.00011.547±0.02026.86±0.261.71±0.0236.17±0.358.08±0.02
10-120.0802±0.00015.484±0.05125.04±0.232.80±0.0357.06±0.537.88±0.04
15-170.0255±0.00011.211±0.10129.68±0.011.45±0.1227.40±0.016.69±0.13
20-220.0283±0.00082.671±0.00426.08±0.161.40±0.0420.25±0.128.55±0.00
25-270.0291±0.00012.109±0.06327.55±0.401.44±0.0518.85±0.278.34±0.01
Tab.1  Nutrient concentrations in the sediment core and pore water
depth /cmmetals in sediment/(g·kg-1 dry weight)
FeEASa) of FeZnEAS of ZnCuEAS of Cu
0-236.0±1.5b)0.89±0.04 (2.17%)c)1.15±0.060.59±0.01 (50.18%)0.38±0.020.044±0.001 (12.32%)
5-735.9±2.61.10±0.08 (2.55%)1.31±0.140.80±0.06 (51.47%)0.45±0.030.053±0.005 (10.72%)
10-1235.2±2.21.08±0.08 (2.69%)1.20±0.110.65±0.07 (54.93%)0.37±0.020.041±0.002 (11.39%)
15-1733.6±2.51.17±0.07 (3.60%)1.15±0.060.65±0.05 (54.54%)0.46±0.030.051±0.003 (10.72%)
20-2237.1±1.80.91±0.07 (2.22%)1.30±0.040.64±0.01 (48.86%)0.44±0.020.038±0.002 (10.59%)
25-2730.8±1.70.82±0.06 (2.47%)1.12±0.050.59±0.03 (49.29%)0.34±0.020.038±0.002 (10.57%)
Tab.2  Heavy metal concentrations in the sediment core
depth /cmrichness (T-RFs)Shannon’s index (H’)Simpson’s index (D)evenness (J)
0-21204.110.0270.86
5-71184.230.0110.89
10-121024.150.0130.90
15-171284.320.0110.89
20-221024.190.0130.91
25-271194.300.0100.90
Tab.3  Microbial diversity indexes in different sediment layers
Fig.1  The depth-related similarity of (a) the species distributions (represented by the square and S, for example, S_25-27 denoted the species at the 25-27 cm layer) and (b) the environmental variable distributions (represented by the triangles and E, for example, E_0-2 denoted the environmental variables at the top layer). The eigenvalues of the first two axes (PCA1 and PCA2) were 0.229 and 0.243, respectively, for (a), and 0.429 and 0.294, respectively, for (b)
Fig.2  Distribution of 16S rDNA phylogenetic assignments matched known bacteria based on T-RF sizes
Fig.3  (a) Relationships between the nutrients (,, AVS, and DOC) and the dominant T-RFs, and (b) relationships between the exchangeable and acid soluble fraction of Fe, Zn and Cu (Fe_EAS, Zn_EAS, and Cu_EAS, respectively) and the dominant T-RFs. The eigenvalues of the first two axes (RDA1 and RDA2) were 0.702 and 0.128, respectively, for (a), and 0.474 and 0.091, respectively, for (b). The species-environment correlations of the first two axes (RDA1 and RDA2) were 0.997 and 0.994, respectively, for (a), and 0.848 and 0.894, respectively, for (b)
1 Wobus A, Bleul C, Maassen S, Scheerer C, Schuppler M, Jacobs E, R?ske I. Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiology Ecology , 2003, 46(3): 331–347
doi: 10.1016/S0168-6496(03)00249-6 pmid:19719563
2 Fan L F, Shieh W Y, Wu W F, Chen C P. Distribution of nitrogenous nutrients and denitrifiers strains in estuarine sediment profiles of the Tanshui River, northern Taiwan. Estuarine, Coastal and Shelf Science , 2006, 69(3–4): 543–553
doi: 10.1016/j.ecss.2006.05.016
3 Hewson I, Fuhrman J A. Spatial and vertical biogeography of coral reef sediment bacterial and diazotroph communities. Marine Ecology Progress Series , 2006, 306: 79–86
doi: 10.3354/meps306079
4 Haller L, Tonolla M, Zopfi J, Peduzzi R, Wildi W, Poté J. Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland). Water Research , 2011, 45(3): 1213–1228
doi: 10.1016/j.watres.2010.11.018 pmid:21145090
5 Zhou W, Long A, Jiang T, Chen S, Huang L, Huang H, Cai C, Yan Y. Bacterioplankton dynamics along the gradient from highly eutrophic Pearl River Estuary to oligotrophic northern South China Sea in wet season: implication for anthropogenic inputs. Marine Pollution Bulletin , 2011, 62(4): 726–733
doi: 10.1016/j.marpolbul.2011.01.018 pmid:21316714
6 Cheung K C, Poon B H T, Lan C Y, Wong M H. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere , 2003, 52(9): 1431–1440
doi: 10.1016/S0045-6535(03)00479-X pmid:12867173
7 Iwegbue C M A, Arimoro F O, Nwajei G E, Eguavoen O I. Concentrations and distribution of trace metals in water and streambed sediments of Orogodo River, Southern Nigeria. Soil Sediment Contamination , 2012, 21(3): 382–406
doi: 10.1080/15320383.2012.649378
8 Li W, Shen Z, Tian T, Liu R, Qiu J. Temporal variation of heavy metal pollution in urban stormwater runoff. Frontiers of Environmental Science & Engineering , 2012, 6(5): 692–700
9 Tal Y, Watts J E, Schreier H J. Anaerobic ammonia-oxidizing bacteria and related activity in Baltimore inner harbor sediment. Applied and Environmental Microbiology , 2005, 71(4): 1816–1821
doi: 10.1128/AEM.71.4.1816-1821.2005 pmid:15812006
10 Zhang W, Ki J S, Qian P Y. Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on four clone libraries of 16S rDNA. Estuarine, Coastal and Shelf Science , 2008, 76(3): 668–681
doi: 10.1016/j.ecss.2007.07.040
11 Bushaw-Newton K L, Ewers E C, Velinsky D J, Ashley J T F, Macavoy S E. Bacterial community profiles from sediments of the Anacostia River using metabolic and molecular analyses. Environmental Science and Pollution Research International , 2012, 19(4): 1271–1279
doi: 10.1007/s11356-011-0656-4 pmid:22081372
12 Thiyagarajan V, Tsoi M M Y, Zhang W, Qian P Y. Temporal variation of coastal surface sediment bacterial communities along an environmental pollution gradient. Marine Environmental Research , 2010, 70(1): 56–64
doi: 10.1016/j.marenvres.2010.03.002 pmid:20359741
13 Kemp P F, Aller J Y. Estimating prokaryotic diversity: when are 16S rRNA libraries large enough? Limnology and Oceanography, Methods , 2004, 2: 114–125
doi: 10.4319/lom.2004.2.114
14 Gao D, Tao Y. Current molecular biologic techniques for characterizing environmental microbial community. Frontiers of Environmental Science & Engineering , 2012, 6(1): 82–97
doi: 10.1007/s11783-011-0306-6
15 Hewson I, Jacobson/Meyers M E, Fuhrman J A. Diversity and biogeography of bacterial assemblages in surface sediments across the San Pedro Basin, Southern California Borderlands. Environmental Microbiology , 2007, 9(4): 923–933
doi: 10.1111/j.1462-2920.2006.01214.x pmid:17359264
16 Polymenakou P N, Bertilsson S, Tselepides A, Stephanou E G. Links between geographic location, environmental factors, and microbial community composition in sediments of the Eastern Mediterranean Sea. Microbial Ecology , 2005, 49(3): 367–378
doi: 10.1007/s00248-004-0274-5 pmid:16003476
17 Wang H, Jiang X, He Y, Guan H. Spatial and seasonal variations in bacterial communities of the Yellow Sea by T-RFLP analysis. Frontiers of Environmental Science & Engineering in China , 2009, 3(2): 194–199
doi: 10.1007/s11783-009-0018-3
18 Wilms R, K?pke B, Sass H, Chang T S, Cypionka H, Engelen B. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environmental Microbiology , 2006, 8(4): 709–719
doi: 10.1111/j.1462-2920.2005.00949.x pmid:16584482
19 B?er S I, Hedtkamp S I, van Beusekom J E, Fuhrman J A, Boetius A, Ramette A. Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands. The ISME Journal , 2009, 3(7): 780–791
doi: 10.1038/ismej.2009.29 pmid:19340087
20 Bowman J P, McCuaig R D. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Applied and Environmental Microbiology , 2003, 69(5): 2463–2483
doi: 10.1128/AEM.69.5.2463-2483.2003 pmid:12732511
21 Urakawa H, Yoshida T, Nishimura M, Ohwada K. Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling. Environmental Microbiology , 2000, 2(5): 542–554
doi: 10.1046/j.1462-2920.2000.00137.x pmid:11233162
22 Luna G M, Dell’Anno A, Giuliano L, Danovaro R. Bacterial diversity in deep Mediterranean sediments: relationship with the active bacterial fraction and substrate availability. Environmental Microbiology , 2004, 6(7): 745–753
doi: 10.1111/j.1462-2920.2004.00611.x pmid:15186353
23 Parkes R J, Webster G, Cragg B A, Weightman A J, Newberry C J, Ferdelman T G, Kallmeyer J, J?rgensen B B, Aiello I W, Fry J C. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature , 2005, 436(7049): 390–394
doi: 10.1038/nature03796 pmid:16034418
24 Hu J, Peng P, Mai B, Zhang G. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River in surficial sediments of the subtropical Pearl River estuary and adjacent shelf, southern China. Marine Chemistry , 2006, 98(2–4): 274–285
doi: 10.1016/j.marchem.2005.03.008
25 Chen F, Yang Y, Zhang D, Zhang L. Heavy metals associated with reduced sulfur in sediments from different deposition environments in the Pearl River estuary, China. Environmental Geochemistry and Health , 2006, 28(3): 265–272
doi: 10.1007/s10653-006-9042-4 pmid:16767564
26 Alimohammad Kalhori A, Jafari H R, Yavari A R, Prohi? E, Ahmadzadeh Kokya T. Evaluation of anthropogenic impacts on soiland regolith materials based on BCR sequential extraction analysis. International Journal of Environmental of Research , 2012, 6(1): 185–194
27 Kent A D, Smith D J, Benson B J, Triplett E W. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Applied and Environmental Microbiology , 2003, 69(11): 6768–6776
doi: 10.1128/AEM.69.11.6768-6776.2003 pmid:14602639
28 Magurran A E. Ecological Diversity and Its Measurement. New Jersey, USA: Princeton University Press, 1988
29 Thomas G, Clay D. Bio-DAP. Ecological Diversity and Its Measurement Computer Software. New Brunswick, Canada: Parks Canada (PHQ) & Fundy National Park, 2000. Available online at http://nhsbig.inhs.uiuc.edu/populations/bio-dap_readme.html (accessed October 8, 2012)
30 Lep? J, ?milauer P. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge, UK: Cambridge university press, 2003
31 Culman S W, Gauch H G, Blackwood C B, Thies J E. Analysis of T-RFLP data using analysis of variance and ordination methods: a comparative study. Journal of Microbiological Methods , 2008, 75(1): 55–63
doi: 10.1016/j.mimet.2008.04.011 pmid:18584903
32 Sampei Y, Matsumoto E. C/N ratios in a sediment core from Nakaumi Lagoon, Southwest Japan-usefulness as an organic indicator. Geochemical Journal , 2001, 35(3): 189–205
doi: 10.2343/geochemj.35.189
33 Magalh?es C M, Joye S B, Moreira R M, Wiebe W J, Bordalo A A. Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal. Water Research , 2005, 39(9): 1783–1794
doi: 10.1016/j.watres.2005.03.008 pmid:15899276
34 Nedwell D B, Jickells T D, Trimmer M, Sanders R. Nutrients in estuaries. Advances in Ecological Research , 1999, 29: 43–92
doi: 10.1016/S0065-2504(08)60191-9
35 Horner-Devine M C, Leibold M A, Smith V H, Bohannan B J M. Bacterial diversity patterns along a gradient of primary productivity. Ecology Letters , 2003, 6(7): 613–622
doi: 10.1046/j.1461-0248.2003.00472.x
36 Koizumi Y, Kojima H, Oguri K, Kitazato H, Fukui M. Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determined by a 16S rDNA-based analysis, and related to physicochemical gradients. Environmental Microbiology , 2004, 6(6): 622–637
doi: 10.1111/j.1462-2920.2004.00620.x pmid:15142251
37 Sobolev D, Begonia M F. Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. International Journal of Environmental Research and Public Health , 2008, 5(5): 450–456
doi: 10.3390/ijerph5050450 pmid:19151442
38 Ip C C M, Li X D, Zhang G, Farmer J G, Wai O W H, Li Y S. Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary, South China. Environmental Pollution , 2004, 132(1): 157–172
doi: 10.1016/j.envpol.2004.03.028 pmid:15276283
39 Pringaut O, de Wit R, Caumette P. A benthic gradient chamber for culturing phototrophic sulfur bacteria on reconstituted sediments. FEMS Microbiology Ecology , 1996, 20(4): 237–250
doi: 10.1111/j.1574-6941.1996.tb00322.x
[1] Xian Zhou, Zhengfu Zhang, Hui Yang. Stabilization/solidification mechanisms of tin tailings and fuming slag-based geopolymers for different heavy metals[J]. Front. Environ. Sci. Eng., 2024, 18(5): 56-.
[2] Chengjun Li, Riqing Yu, Wenjing Ning, Huan Zhong, Christian Sonne. Embracing digital mindsets to ensure a sustainable future[J]. Front. Environ. Sci. Eng., 2024, 18(3): 39-.
[3] Yating Wei, Dong Hu, Chengsong Ye, Heng Zhang, Haoran Li, Xin Yu. Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods[J]. Front. Environ. Sci. Eng., 2024, 18(2): 18-.
[4] Xiangyue Pan, Xinrui Weng, Lingyu Zhang, Fang Chen, Hui Li, Yunhua Zhang. Spatiotemporal characteristics and Monte Carlo simulation-based human health risk of heavy metals in soils from a typical coal-mining city in eastern China[J]. Front. Environ. Sci. Eng., 2024, 18(10): 122-.
[5] Xinwan Zhang, Guangyuan Meng, Jinwen Hu, Wanzi Xiao, Tong Li, Lehua Zhang, Peng Chen. Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent prediction based on a back propagation neural network[J]. Front. Environ. Sci. Eng., 2023, 17(8): 97-.
[6] Yirong Hu, Wenjie Du, Cheng Yang, Yang Wang, Tianyin Huang, Xiaoyi Xu, Wenwei Li. Source identification and prediction of nitrogen and phosphorus pollution of Lake Taihu by an ensemble machine learning technique[J]. Front. Environ. Sci. Eng., 2023, 17(5): 55-.
[7] Qian Li, Zhaoping Zhong, Haoran Du, Xiang Zheng, Bo Zhang, Baosheng Jin. Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals[J]. Front. Environ. Sci. Eng., 2022, 16(7): 85-.
[8] Lihui Gao, Yijun Cao, Lizhang Wang, Shulei Li. A review on sustainable reuse applications of Fenton sludge during wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(6): 77-.
[9] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[10] Farasat Ali, Ghulam Jilani, Leilei Bai, Chunliu Wang, Linqi Tian, Helong Jiang. Effects of previous drying of sediment on root functional traits and rhizoperformance of emerged macrophytes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 134-.
[11] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[12] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[13] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[14] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[15] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed