Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (3) : 38    https://doi.org/10.1007/s11783-024-1798-1
REVIEW ARTICLE
Cesium removal from radioactive wastewater by adsorption and membrane technology
Shuting Zhuang1,2, Jianlong Wang2,3()
1. School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
2. Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
3. Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, China
 Download: PDF(3055 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Removal of cesium from radioactive wastewater is still a challenging.

● Main approaches used for waste treatment in Fukushima Daiichi accident were reviewed.

● Kurion/SARRY system + desalination system and ALPS were briefly introduced.

● The removal of cesium by adsorption and membrane separation were summarized.

Radiocesium is frequently present in radioactive wastewater, while its removal is still a challenge due to its small hydrated radius, high diffusion coefficient, and similar chemical behavior to other alkali metal elements with high background concentrations. This review summarized and analyzed the recent advances in the removal of Cs+ from aqueous solutions, with a particular focus on adsorption and membrane separation methods. Various inorganic, organic, and biological adsorbents have undergone assessments to determine their efficacy in the removal of cesium ions. Additionally, membrane-based separation techniques, including reverse osmosis, forward osmosis, and membrane distillation, have also shown promise in effectively separating cesium ions from radioactive wastewater. Additionally, this review summarized the main approaches, including Kurion/SARRY system + desalination system and advanced liquid processing system, implemented after the Fukushima Daiichi nuclear power plant accident in Japan to remove radionuclides from contaminated water. Adsorption technology and membrane separation technology play a vital role in treatment of contaminated water.

Keywords Cesium      Adsorption      Membrane separation      Advanced liquid processing system      Fukushima nuclear accident     
Corresponding Author(s): Jianlong Wang   
Issue Date: 11 December 2023
 Cite this article:   
Shuting Zhuang,Jianlong Wang. Cesium removal from radioactive wastewater by adsorption and membrane technology[J]. Front. Environ. Sci. Eng., 2024, 18(3): 38.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1798-1
https://academic.hep.com.cn/fese/EN/Y2024/V18/I3/38
Fig.1  Key adsorbents and their mechanisms for cesium ions removal.
Types Adsorbents
Inorganic adsorbents Hexacyanoferrates: NiHCF, CoHCF, CuHCF, FeHCF etc. Carbon-based materials: activated carbon, carbon nanotubes, graphene oxide, and biochar Clay minerals: bentonite, zeolite, sepiolite, kaolinite, etc. Others: Geopolymers, MXenes, MOFs, titanate nanosheets, ammonium molybdophosphate, etc.
Organic adsorbents Resins: resorcinol-formaldehyde resin etc. Cs+-imprinted polymers Macrocyclic ligands based adsorbents: crown ethers-based adsorbents and calixarenes-based adsorbent Synthetic polymer modified with polyaniline, polyphosphazene
Biosorbents Microbes: Bacteria, filamentous fungi, yeast, algae, etc. Industrial and agricultural wastes: brewery’s waste biomass etc. Biopolymers: chitosan, alginate, cellulose, etc.
Tab.1  Various adsorbents for cesium ions
Adsorbents Adsorption capacity References
Bentonite 37 ug/g–300.35 mg/g Seliman et al. (2014); Bayülken et al. (2011)
Zeolite 9.055 ug/g–229.6 mg/g Kim et al. (2013); Dran’kov et al. (2022)
GO 95.46–528 mg/g Xing et al. (2020); Kaewmee et al. (2017)
CNT 31.23–107.7 mg/g Yang et al. (2014); Ali et al. (2020)
Activated carbon 0.76–35.426 mg/g Caccin et al. (2013); Xing et al. (2020)
Alginate 57.1–190.8 mg/g Mimura et al. (2001); Chang et al. (2022)
Biochar 52.63–458 mg/g Park et al. (2023); Abu-Khadra et al. (2016)
Microorganisms 16.67–238.1 mg/g Yin et al. (2017); Ngwenya & Chirwa (2010)
MOF 57.7–432 mg/g Wang et al. (2022); Wang et al. (2015)
MXene 25.4–315.91 mg/g Khan et al. (2019); Shahzad et al. (2020)
Hexacyanoferrates 24.9–241 mg/g Zhuang et al. (2022a); Chen et al. (2015b)
Tab.2  Cesium adsorption capacity by some typical adsorbents
Membrane separation technology Active layer of membrane material Driving force Separation mechanism of cesium ions Decontamination factor (DF)
Reverse osmosis Polyamide Pressure Pore rejection: rejection of Cs+, while allowing the passage of H2O 10–103
Forward osmosis Cellulose triacetate Polyamide Osmotic pressure Pore rejection: Rejection of Cs+, while allowing the passage of H2O
Membrane distillation Polypropylene, polyethylene, polytetrafluoroethylene, poly (vinylidene fluoride), Ceramic Temperature difference Selective retention of non-volatile Cs+ ions while allowing the passage of volatile water molecules DF→∞
Tab.3  Membrane separation technology used for cesium removal
Fig.2  Diagram of membrane separation technologies (Wang and Zhuang, 2019c).
Fig.3  Diagram of the forward osmosis (FO) system (Liu et al., 2020).
Fig.4  Diagram of four types of membrane distillation. (a) Direct contact membrane distillation; (b) air gap membrane distillation; (c) sweeping gas membrane distillation; (d) vacuum membrane distillation (Wang and Zhuang, 2019c).
Fig.5  Schematic diagram of Kurion/SARRY system + desalination system for the treatment of Fukushima Daiichi waste effluents.
Systems Operation time Parallel units Processing capacity (m3/d/unit) Pretreatment method Number of adsorption towers Removal capability
First ALPS Mar 2013– 3 250 Coagulation and Precipitation 14 + 2 stages 62 nuclides, below detection limit
Second ALPS Sept 2014– 3 250 Coagulation and Precipitation 18 stages
Third ALPS Oct 2014–Mar 2016 1 500 Filtration 20 stages
Tab.4  Key parameters comparison of three sets of Advanced Liquid Processing System (ALPS)
Fig.6  Flow chart of the ALPS used in Fukushima Daiichi nuclear power plant.
1 S A Abu-Khadra, H M Killa, W E Y Abdelmalik, M Elrafie. (2016). A study of some parameters affecting the biosorption of 137Cs radionuclide by non-living biomass. Arab Journal of Nuclear Science and Applications, 49(4): 177–188
2 B Aguila, D Banerjee, Z Nie, Y Shin, S Ma, P K Thallapally. (2016). Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chemical Communications, 52(35): 5940–5942
https://doi.org/10.1039/C6CC00843G
3 J Ai, F Y Chen, C Y Gao, H R Tian, Q J Pan, Z M Sun. (2018). Porous anionic uranyl-organic networks for highly efficient Cs+ adsorption and investigation of the mechanism. Inorganic Chemistry, 57(8): 4419–4426
https://doi.org/10.1021/acs.inorgchem.8b00099
4 D Alby, C Charnay, M Heran, B Prelot, J Zajac. (2018). Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity: a review. Journal of Hazardous Materials, 344: 511–530
https://doi.org/10.1016/j.jhazmat.2017.10.047
5 S Ali, I A Shah, H Huang. (2020). Selectivity of Ar/O2 plasma-treated carbon nanotube membranes for Sr(II) and Cs(I) in water and wastewater: fit-for-purpose water treatment. Separation and Purification Technology, 237: 116352
https://doi.org/10.1016/j.seppur.2019.116352
6 J M Arnal, M Sancho, G Verdú, J M Campayo, J I Villaescusa. (2003). Treatment of 137Cs liquid wastes by reverse osmosis Part I. Preliminary tests. Desalination, 154(1): 27–33
https://doi.org/10.1016/S0011-9164(03)00205-4
7 M R Awual, T Yaita, T Taguchi, H Shiwaku, S Suzuki, Y Okamoto. (2014). Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. Journal of Hazardous Materials, 278: 227–235
https://doi.org/10.1016/j.jhazmat.2014.06.011
8 S Bayülken, E Başçetin, K Güçlü, R Apak. (2011). Investigation and modeling of cesium(I) adsorption by Turkish clays: bentonite, zeolite, sepiolite, and kaolinite. Environmental Progress & Sustainable Energy, 30(1): 70–80
https://doi.org/10.1002/ep.10452
9 J Beyea, E Lyman, F N Von Hippel. (2013). Accounting for long-term doses in “worldwide health effects of the Fukushima Daiichi nuclear accident”. Energy & Environmental Science, 6(3): 1042–1045
https://doi.org/10.1039/c2ee24183h
10 M Caccin, F Giacobbo, M Da Ros, L Besozzi, M Mariani. (2013). Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. Journal of Radioanalytical and Nuclear Chemistry, 297(1): 9–18
https://doi.org/10.1007/s10967-012-2305-x
11 Y R Chang, Y J Lee, D J Lee. (2022). Synthesis of pH, thermally, and shape stable poly(vinyl alcohol) and alginate cross-linked hydrogels for cesium adsorption from water. Environmental Technology & Innovation, 27: 102431
https://doi.org/10.1016/j.eti.2022.102431
12 C Chen, J Hu, J L Wang. (2020a). Biosorption of uranium by immobilized Saccharomyces cerevisiae. Journal of Environmental Radioactivity, 213: 106158
https://doi.org/10.1016/j.jenvrad.2020.106158
13 C Chen, J Hu, J L Wang. (2020b). Uranium biosorption by immobilized active yeast cells entrapped in calcium-alginate-PVA-GO-crosslinked gel beads. Radiochimica Acta, 108(4): 273–286
https://doi.org/10.1515/ract-2019-3150
14 C Chen, J L Wang. (2007a). Correlating metal ionic characteristics with biosorption capacity using QSAR model. Chemosphere, 69(10): 1610–1616
https://doi.org/10.1016/j.chemosphere.2007.05.043
15 C Chen, J L Wang. (2007b). Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 74(4): 911–917
https://doi.org/10.1007/s00253-006-0739-1
16 C Chen, J L Wang. (2008a). Investigating the interaction mechanism between zinc and Saccharomyces cerevisiae using combined SEM-EDX and XAFS. Applied Microbiology and Biotechnology, 79(2): 293–299
https://doi.org/10.1007/s00253-008-1415-4
17 C Chen, J L Wang. (2008b). Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass. Journal of Hazardous Materials, 151(1): 65–70
https://doi.org/10.1016/j.jhazmat.2007.05.046
18 C Chen, J L Wang. (2010). Removal of heavy metal ions by waste biomass of Saccharomyces Cerevisiae. Journal of Environmental Engineering, 136(1): 95–102
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000128
19 D Chen, X Zhao, F Z Li. (2015a). Influence of boron on rejection of trace nuclides by reverse osmosis. Desalination, 370: 72–78
https://doi.org/10.1016/j.desal.2015.05.019
20 G R Chen, Y R Chang, X Liu, T Kawamoto, H Tanaka, A Kitajima, D Parajuli, M Takasaki, K Yoshino, M L Chen. et al.. (2015b). Prussian blue (PB) granules for cesium (Cs) removal from drinking water. Separation and Purification Technology, 143: 146–151
https://doi.org/10.1016/j.seppur.2015.01.040
21 X F Chen, Z X Zhang, L Liu, R Cheng, L Shi, X Zheng. (2016). RO applications in China: history, current status, and driving forces. Desalination, 397: 185–193
https://doi.org/10.1016/j.desal.2016.07.001
22 Y W Chen, J L Wang. (2012a). Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nuclear Engineering and Design, 242: 445–451
https://doi.org/10.1016/j.nucengdes.2011.10.059
23 Y W Chen, J L Wang. (2012b). The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan. Nuclear Engineering and Design, 242: 452–457
https://doi.org/10.1016/j.nucengdes.2011.11.004
24 Y W Chen, J L Wang. (2016). Removal of cesium from radioactive wastewater using magnetic chitosan beads cross-linked with glutaraldehyde. Nuclear Science and Techniques, 27(2): 43
https://doi.org/10.1007/s41365-016-0033-6
25 J Cheng, J Liang, L Dong, J Chai, N Zhao, S Ullah, H Wang, D Zhang, S Imtiaz, G Shan. et al.. (2018). Self-assembly of 2D-metal-organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs+ from aqueous solutions. RSC Advances, 8(71): 40813–40822
https://doi.org/10.1039/C8RA08410F
26 A G Chmielewski, M Harasimowicz, B Tyminski, G Zakrzewska-Trznadel. (2001). Concentration of low- and medium-level radioactive wastes with three-stage reverse osmosis pilot plant. Separation Science and Technology, 36(5–6): 1117–1127
https://doi.org/10.1081/SS-100103640
27 A Dran’kov, O Shichalin, E Papynov, A Nomerovskii, V Mayorov, V Pechnikov, A Ivanets, I Buravlev, S Yarusova, A Zavjalov. et al.. (2022). Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites. Nuclear Engineering and Technology, 54(6): 1991–2003
https://doi.org/10.1016/j.net.2021.12.010
28 G E Eden, G H J Elkins, G A Truesdale. (1954). Removal of radioactive substances from water by biological treatment processes. Atomics, 5: 133–142
29 M R El-Naggar, H A Ibrahim, A M El-Kamash. (2014). Sorptive removal of cesium and cobalt ions in a fixed bed column using Lewatit S100 cation exchange resin. Arab Journal of Nuclear Science and Applications, 47(2): 77–93
30 E C Escobar, J E L Sio, R E C Torrejos, H Kim, W J Chung, G M Nisola. (2022). Organic ligands for the development of adsorbents for Cs+ sequestration: a review. Journal of Industrial and Engineering Chemistry, 107: 1–19
https://doi.org/10.1016/j.jiec.2021.11.039
31 S K Fiskum, L F Pease, R A Peterson. (2020). Review of ion exchange technologies for cesium removal from caustic tank waste. Solvent Extraction and Ion Exchange, 38(6): 573–611
https://doi.org/10.1080/07366299.2020.1780688
32 Q C Ge, M M Ling, T S Chung. (2013). Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. Journal of Membrane Science, 442: 225–237
https://doi.org/10.1016/j.memsci.2013.03.046
33 C L Guo, M J Yuan, L W He, L W Cheng, X Wang, N N Shen, F Y Ma, G L Huang, S A Wang. (2021). Efficient capture of Sr2+ from acidic aqueous solution by an 18-crown-6-ether-based metal organic framework. CrystEngComm, 23(18): 3349–3355
https://doi.org/10.1039/D1CE00229E
34 N M Hassan, K Adu-Wusu. (2005). Cesium removal from hanford tank waste solution using resorcinol-formaldehyde resin. Solvent Extraction and Ion Exchange, 23(3): 375–389
https://doi.org/10.1081/SEI-200056519
35 Y M Hu, X Guo, J L Wang. (2020). Biosorption of Sr2+ and Cs+ onto Undaria pinnatifida: isothermal titration calorimetry and molecular dynamics simulation. Journal of Molecular Liquids, 319: 114146
https://doi.org/10.1016/j.molliq.2020.114146
36 IAEA (2020). IAEA follow-up review of progress made on management of ALPS treated water and the report of the subcommittee on handling of ALPS treated water at TEPCO’s Fukushima Daiichi nuclear power station. Vienna: IAEA
37 IAEA (2022). IAEA Review of Safety Related Aspects of Handling ALPS Treated Water at TEPCO’s Fukushima Daiichi Nuclear Power Station. Vienna: IAEA
38 IAEA (2023). IAEA comprehensive report on the safety review of the ALPS-treated water at the Fukushima Daiichi nuclear power station. Vienna, Austria: IAEA
39 F Jia, J L Wang. (2017). Separation of cesium ions from aqueous solution by vacuum membrane distillation process. Progress in Nuclear Energy, 98: 293–300
https://doi.org/10.1016/j.pnucene.2017.04.008
40 M Jiménez-Reyes, P T Almazán-Sánchez, M Solache-Ríos. (2021). Radioactive waste treatments by using zeolites: a short review. Journal of Environmental Radioactivity, 233: 106610
https://doi.org/10.1016/j.jenvrad.2021.106610
41 B M Jun, M Jang, C Park, J Han, Y Yoon. (2020). Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater. Nuclear Engineering and Technology, 52(6): 1201–1207
https://doi.org/10.1016/j.net.2019.11.020
42 P Kaewmee, J Manyam, P Opaprakasit, G T Truc Le, N Chanlek, P Sreearunothai. (2017). Effective removal of cesium by pristine graphene oxide: performance, characterizations and mechanisms. RSC Advances, 7(61): 38747–38756
https://doi.org/10.1039/C7RA04868H
43 A R Khan, S M Husnain, F Shahzad, S Mujtaba-Ul-Hassan, M Mehmood, J Ahmad, M T Mehran, S Rahman. (2019). Two-dimensional transition metal carbide (Ti3C2Tx) as an efficient adsorbent to remove cesium (Cs+). Dalton Transactions, 48(31): 11803–11812
https://doi.org/10.1039/C9DT01965K
44 M Khayet. (2011). Membranes and theoretical modeling of membrane distillation: a review. Advances in Colloid and Interface Science, 164(1–2): 56–88
https://doi.org/10.1016/j.cis.2010.09.005
45 C K Kim, J Y Kong, B S Chun, J W Park. (2013). Radioactive removal by adsorption on Yesan clay and zeolite. Environmental Earth Sciences, 68(8): 2393–2398
https://doi.org/10.1007/s12665-012-1923-5
46 V V Kusumkar, M Galamboš, E Viglašová, M Daňo, J Šmelková. (2021). Ion-imprinted polymers: synthesis, characterization, and adsorption of radionuclides. Materials, 14(5): 1083
https://doi.org/10.3390/ma14051083
47 J Lehto, R Koivula, H Leinonen, E Tusa, R Harjula. (2019). Removal of radionuclides from Fukushima Daiichi waste effluents. Separation and Purification Reviews, 48(2): 122–142
https://doi.org/10.1080/15422119.2018.1549567
48 H Liu, J Wang. (2013). Treatment of radioactive wastewater using direct contact membrane distillation. Journal of Hazardous Materials, 261: 307–315
https://doi.org/10.1016/j.jhazmat.2013.07.045
49 X Liu, G R Chen, D J Lee, T Kawamoto, H Tanaka, M L Chen, Y K Luo. (2014). Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresource Technology, 160: 142–149
https://doi.org/10.1016/j.biortech.2014.01.012
50 X J Liu, J L Wang. (2021). Adsorptive removal of Sr2+ and Cs+ from aqueous solution by capacitive deionization. Environmental Science and Pollution Research International, 28(3): 3182–3195
https://doi.org/10.1007/s11356-020-10691-6
51 X J Liu, J L Wu, L A Hou, J L Wang. (2019a). Removal of Co, Sr and Cs ions from simulated radioactive wastewater by forward osmosis. Chemosphere, 232: 87–95
https://doi.org/10.1016/j.chemosphere.2019.05.210
52 X J Liu, J L Wu, L A Hou, J L Wang. (2020). Fouling and cleaning protocols for forward osmosis membrane used for radioactive wastewater treatment. Nuclear Engineering and Technology, 52(3): 581–588
https://doi.org/10.1016/j.net.2019.08.007
53 X J Liu, J L Wu, J L Wang. (2018). Removal of Cs(I) from simulated radioactive wastewater by three forward osmosis membranes. Chemical Engineering Journal, 344: 353–362
https://doi.org/10.1016/j.cej.2018.03.046
54 X J Liu, J L Wu, J L Wang. (2019b). Removal of nuclides and boric acid from simulated radioactive wastewater by forward osmosis. Progress in Nuclear Energy, 114: 155–163
https://doi.org/10.1016/j.pnucene.2019.03.014
55 Z Liu, Y Zhou, M Guo, B Lv, Z Wu, W Zhou. (2019c). Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent. Journal of Hazardous Materials, 371: 712–720
https://doi.org/10.1016/j.jhazmat.2019.03.022
56 S Ma, H Yang, S Fu, P He, X Duan, Z Yang, D Jia, P Colombo, Y Zhou (2023). Additive manufacturing of geopolymers with hierarchical porosity for highly efficient removal of Cs. Journal of Hazardous Materials, 443(Pt B): 130161
https://doi.org/10.1016/j.jhazmat.2022.130161 pmid: 36327833
57 X G Meng, Y Liu, M J Meng, Z Y Gu, L Ni, G X Zhong, F F Liu, Z Y Hu, R Chen, Y S Yan. (2015). Synthesis of novel ion-imprinted polymers by two different RAFT polymerization strategies for the removal of Cs(I) from aqueous solutions. RSC Advances, 5(17): 12517–12529
https://doi.org/10.1039/C4RA11459K
58 H Mimura, M Saito, K Akiba, Y Onodera. (2001). Selective uptake of cesium by ammonium molybdophosphate (AMP)-calcium alginate composites. Journal of Nuclear Science and Technology, 38(10): 872–878
https://doi.org/10.1080/18811248.2001.9715108
59 R J Morton, C P Straub. (1956). Removal of radionuclides from water by water treatment processes. Journal–American Water Works Association, 48(5): 545–558
https://doi.org/10.1002/j.1551-8833.1956.tb15480.x
60 S Naeimi, H Faghihian. (2017). Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Separation and Purification Technology, 175: 255–265
https://doi.org/10.1016/j.seppur.2016.11.028
61 N Ngwenya, E M N Chirwa. (2010). Single and binary component sorption of the fission products Sr2+, Cs+ and Co2+ from aqueous solutions onto sulphate reducing bacteria. Minerals Engineering, 23(6): 463–470
https://doi.org/10.1016/j.mineng.2009.11.006
62 R Novikau, G Lujanienė, V Pakštas, M Talaikis, K Mažeika, A Drabavičius, A Naujokaitis, S Šemčuk. (2022). Adsorption of caesium and cobalt ions on the muscovite mica clay-graphene oxide-γ-Fe2O3-Fe3O4 composite. Environmental Science and Pollution Research International, 29(49): 74933–74950
https://doi.org/10.1007/s11356-022-21078-0
63 K N Palansooriya, I H Yoon, S M Kim, C H Wang, H Kwon, S H Lee, A D Igalavithana, R Mukhopadhyay, B Sarkar, Y S Ok (2022). Designer biochar with enhanced functionality for efficient removal of radioactive cesium and strontium from water. Environmental Research, 214(Pt 4): 114072
https://doi.org/10.1016/j.envres.2022.114072 pmid: 35987372
64 S Pandey. (2017). A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. Journal of Molecular Liquids, 241: 1091–1113
https://doi.org/10.1016/j.molliq.2017.06.115
65 D Parajuli, A Takahashi, H Noguchi, A Kitajima, H Tanaka, M Takasaki, K Yoshino, T Kawamoto. (2016). Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination. Chemical Engineering Journal, 283: 1322–1328
https://doi.org/10.1016/j.cej.2015.08.076
66 B Park, M Y Lee, S J Choi. (2023). Selective removal of cesium by magnetic biochar functionalized with Prussian blue in aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 332(8): 3335–3348
https://doi.org/10.1007/s10967-023-08986-2
67 H T Qiao, Y S Qiao, C Z Sun, X H Ma, J Shang, X Y Li, F M Li, H Zheng. (2023). Biochars derived from carp residues: characteristics and copper immobilization performance in water environments. Frontiers of Environmental Science & Engineering, 17(6): 72
https://doi.org/10.1007/s11783-023-1672-6
68 I Roy, J F Stoddart. (2021). Cyclodextrin metal-organic frameworks and their applications. Accounts of Chemical Research, 54(6): 1440–1453
https://doi.org/10.1021/acs.accounts.0c00695
69 A F Seliman, Y F Lasheen, M A E Youssief, M M Abo-Aly, F A Shehata. (2014). Removal of some radionuclides from contaminated solution using natural clay: bentonite. Journal of Radioanalytical and Nuclear Chemistry, 300(3): 969–979
https://doi.org/10.1007/s10967-014-3027-z
70 A Shahzad, M Moztahida, K Tahir, B Kim, H Jeon, A A Ghani, N Maile, J Jang, D S Lee. (2020). Highly effective prussian blue-coated MXene aerogel spheres for selective removal of cesium ions. Journal of Nuclear Materials, 539: 152277
https://doi.org/10.1016/j.jnucmat.2020.152277
71 M Shamsipur, H R Rajabi. (2013). Flame photometric determination of cesium ion after its preconcentration with nanoparticles imprinted with the cesium-dibenzo-24-crown-8 complex. Microchimica Acta, 180(3–4): 243–252
https://doi.org/10.1007/s00604-012-0927-x
72 S M Sheta, M A Hamouda, O I Ali, A T Kandil, R R Sheha, S M El-Sheikh. (2023). Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal-organic frameworks: a review. RSC Advances, 13(36): 25182–25208
https://doi.org/10.1039/D3RA04177H
73 A A Siyal, M R Shamsuddin, M I Khan, N E Rabat, M Zulfiqar, Z Man, J Siame, K A Azizli. (2018). A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. Journal of Environmental Management, 224: 327–339
https://doi.org/10.1016/j.jenvman.2018.07.046
74 Y Sun, D Shao, C Chen, S Yang, X Wang. (2013). Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environmental Science & Technology, 47(17): 9904–9910
https://doi.org/10.1021/es401174n
75 N Suzuki, S Ozawa, K Ochi, T Chikuma, Y Watanabe. (2013). Approaches for cesium uptake by vermiculite. Journal of Chemical Technology and Biotechnology, 88(9): 1603–1605
https://doi.org/10.1002/jctb.4145
76 P Sylvester, T Milner, J Jensen. (2013). Radioactive liquid waste treatment at Fukushima Daiichi. Journal of Chemical Technology and Biotechnology, 88(9): 1592–1596
https://doi.org/10.1002/jctb.4141
77 T Vincent, C Vincent, E Guibal. (2015). Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents: a mini-review. Molecules, 20(11): 20582–20613
https://doi.org/10.3390/molecules201119718
78 J L Wang, C Chen. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24(5): 427–451
https://doi.org/10.1016/j.biotechadv.2006.03.001
79 J L Wang, C Chen. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2): 195–226
https://doi.org/10.1016/j.biotechadv.2008.11.002
80 J L Wang, C Chen. (2014). Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology, 160(160): 129–141
https://doi.org/10.1016/j.biortech.2013.12.110
81 J L Wang, X Guo. (2020a). Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere, 258: 127279
https://doi.org/10.1016/j.chemosphere.2020.127279
82 J L Wang, X Guo. (2020b). Adsorption kinetic models: physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390: 122156
https://doi.org/10.1016/j.jhazmat.2020.122156
83 J L Wang, X Guo (2022). Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications. Chemosphere, 309(Pt 2): 136732
https://doi.org/10.1016/j.chemosphere.2022.136732 pmid: 36223824
84 J L Wang, X Guo. (2023). Adsorption kinetics and isotherm models of heavy metals by various adsorbents: an overview. Critical Reviews in Environmental Science and Technology, 53(21): 1837–1865
https://doi.org/10.1080/10643389.2023.2221157
85 J L Wang, X J Liu (2021). Forward osmosis technology for water treatment: recent advances and future perspectives. Journal of Cleaner Production, 280(Pt 1): 124354
https://doi.org/10.1016/j.jclepro.2020.124354
86 J L Wang, S Z Wang. (2019). Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production, 227: 1002–1022
https://doi.org/10.1016/j.jclepro.2019.04.282
87 J L Wang, S Z Wang. (2022). A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application. Coordination Chemistry Reviews, 453: 214338
https://doi.org/10.1016/j.ccr.2021.214338
88 J L Wang, S T Zhuang. (2017). Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Critical Reviews in Environmental Science and Technology, 47(23): 2331–2386
https://doi.org/10.1080/10643389.2017.1421845
89 J L Wang, S T Zhuang. (2019a). Covalent organic frameworks (COFs) for environmental applications. Coordination Chemistry Reviews, 400: 213046
https://doi.org/10.1016/j.ccr.2019.213046
90 J L Wang, S T Zhuang. (2019b). Extraction and adsorption of U(VI) from aqueous solution using affinity ligand-based technologies: an overview. Reviews in Environmental Science and Biotechnology, 18(3): 437–452
https://doi.org/10.1007/s11157-019-09507-y
91 J L Wang, S T Zhuang. (2019c). Removal of cesium ions from aqueous solutions using various separation technologies. Reviews in Environmental Science and Biotechnology, 18(2): 231–269
https://doi.org/10.1007/s11157-019-09499-9
92 J L Wang, S T Zhuang. (2022). Chitosan-based materials: preparation, modification and application. Journal of Cleaner Production, 355: 131825
https://doi.org/10.1016/j.jclepro.2022.131825
93 J L Wang, S T Zhuang, Y Liu. (2018). Metal hexacyanoferrates-based adsorbents for cesium removal. Coordination Chemistry Reviews, 374: 430–438
https://doi.org/10.1016/j.ccr.2018.07.014
94 K Wang, H Ma, S Pu, C Yan, M Wang, J Yu, X Wang, W Chu, A Zinchenko. (2019). Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water. Journal of Hazardous Materials, 362: 160–169
https://doi.org/10.1016/j.jhazmat.2018.08.067
95 M Z Wang, M Y Fu, J F Li, Y H Niu, Q R Zhang, Q N Sun (2023). New insight into polystyrene ion exchange resin for efficient cesium sequestration: the synergistic role of confined zirconium phosphate nanocrystalline. Chinese Chemical Letters, doi:10.1016/j.cclet.2023.108442
96 Y Wang, Z Liu, Y Li, Z Bai, W Liu, Y Wang, X Xu, C Xiao, D Sheng, J Diwu. et al.. (2015). Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. Journal of the American Chemical Society, 137(19): 6144–6147
https://doi.org/10.1021/jacs.5b02480
97 Y P Wang, K X Li, D Z Fang, X S Ye, H N Liu, X L Tan, Q Li, J Li, Z J Wu. (2022). Ammonium molybdophosphate/metal-organic framework composite as an effective adsorbent for capture of Rb+ and Cs+ from aqueous solution. Journal of Solid State Chemistry, 306: 122767
https://doi.org/10.1016/j.jssc.2021.122767
98 H Xi, F L Min, Z H Yao, J F Zhang. (2023). Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters. Frontiers of Environmental Science & Engineering, 17(6): 71
https://doi.org/10.1007/s11783-023-1671-7
99 M Xing, L Xu, J Wang. (2016). Mechanism of Co(II) adsorption by zero valent iron/graphene nanocomposite. Journal of Hazardous Materials, 301: 286–296
https://doi.org/10.1016/j.jhazmat.2015.09.004
100 M Xing, S T Zhuang, J L Wang. (2020). Efficient removal of Cs(I) from aqueous solution using graphene oxide. Progress in Nuclear Energy, 119: 103167
https://doi.org/10.1016/j.pnucene.2019.103167
101 L J Xu, J L Wang. (2017). The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Critical Reviews in Environmental Science and Technology, 47(12): 1042–1105
https://doi.org/10.1080/10643389.2017.1342514
102 S Yang, C Han, X Wang, M Nagatsu. (2014). Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. Journal of Hazardous Materials, 274: 46–52
https://doi.org/10.1016/j.jhazmat.2014.04.001
103 Y N Yin, J Hu, J L Wang. (2017). Removal of Sr2+, Co2+, and Cs+ from aqueous solution by immobilized saccharomyces cerevisiae with magnetic chitosan beads. Environmental Progress & Sustainable Energy, 36(4): 989–996
https://doi.org/10.1002/ep.12531
104 J Yu, J L Wang, Y Z Jiang. (2017). Removal of uranium from aqueous solution by alginate beads. Nuclear Engineering and Technology, 49(3): 534–540
https://doi.org/10.1016/j.net.2016.09.004
105 G Zakrzewska-Trznadel, M Harasimowicz, A G Chmielewski. (1999). Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation. Journal of Membrane Science, 163(2): 257–264
https://doi.org/10.1016/S0376-7388(99)00171-4
106 G Zakrzewska-Trznadel, M Harasimowicz, A G Chmielewski (2001). Membrane processes in nuclear technology-application for liquid radioactive waste treatment. Separation and Purification Technology, 22–23: 617–625
https://doi.org/10.1016/S1383-5866(00)00167-2
107 Y Zhu, J Hu, J Wang (2012). Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials, 221–222: 155–161
https://doi.org/10.1016/j.jhazmat.2012.04.026 pmid: 22564487
108 Y H Zhu, J Hu, J L Wang. (2014). Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Progress in Nuclear Energy, 71: 172–178
https://doi.org/10.1016/j.pnucene.2013.12.005
109 S T Zhuang, J L Wang. (2023a). Interaction between antibiotics and microplastics: recent advances and perspective. Science of the Total Environment, 897: 165414
https://doi.org/10.1016/j.scitotenv.2023.165414
110 S T Zhuang, K K Zhu, J Hu, J L Wang. (2022a). Selective and effective adsorption of cesium ions by metal hexacyanoferrates (MHCF, M=Cu, Co, Ni) modified chitosan fibrous biosorbent. Science of the Total Environment, 835: 155575
https://doi.org/10.1016/j.scitotenv.2022.155575
111 S T Zhuang, K K Zhu, L J Xu, J Hu, J L Wang. (2022b). Adsorption of Co2+ and Sr2+ in aqueous solution by a novel fibrous chitosan biosorbent. Science of the Total Environment, 825: 153998
https://doi.org/10.1016/j.scitotenv.2022.153998
112 S T Zhuang, J L Wang. (2018). Modified alginate beads as biosensor and biosorbent for simultaneous detection and removal of cobalt ions from aqueous solution. Environmental Progress & Sustainable Energy, 37(1): 260–266
https://doi.org/10.1002/ep.12666
113 S T Zhuang, J L Wang. (2019a). Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent. Journal of Molecular Liquids, 294: 111682
https://doi.org/10.1016/j.molliq.2019.111682
114 S T Zhuang, J L Wang. (2019b). Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent. Radiochimica Acta, 107(6): 459–467
https://doi.org/10.1515/ract-2018-3077
115 S T Zhuang, J L Wang. (2023b). Efficient adsorptive removal of Co2+ from aquatic solutions using graphene oxide. Environmental Science and Pollution Research, 30: 101433–101444
https://doi.org/10.1007/s11356-023-29374-z
116 S T Zhuang, Q Zhang, J L Wang. (2021). Adsorption of Co2+ and Sr2+ from aqueous solution by chitosan grafted with EDTA. Journal of Molecular Liquids, 325: 115197
https://doi.org/10.1016/j.molliq.2020.115197
[1] Xiaolong Yao, Kuan Wan, Wenxin Yu, Zheng Liu. Enhancing comprehension of water vapor on adsorption performance of VOC on porous carbon materials and its application challenge[J]. Front. Environ. Sci. Eng., 2024, 18(9): 110-.
[2] Sikai Cheng, Zhixian Li, Kaisheng Zhang, Qingrui Zhang, Xiaolin Zhang, Bingcai Pan. Solid Brønsted acidity boosts adsorption reactivity of nano-adsorbent for water decontamination[J]. Front. Environ. Sci. Eng., 2024, 18(7): 81-.
[3] Qiannan Duan, Pengwei Yan, Yichen Feng, Qianru Wan, Xiaoli Zhu. Machine learning assisted adsorption performance evaluation of biochar on heavy metal[J]. Front. Environ. Sci. Eng., 2024, 18(5): 55-.
[4] Timing Jiang, Xiang Wu, Shushan Yuan, Changfei Lai, Shijie Bian, Wenbo Yu, Sha Liang, Jingping Hu, Liang Huang, Huabo Duan, Yafei Shi, Jiakuan Yang. A potential threat from biodegradable microplastics: mechanism of cadmium adsorption and desorption in the simulated gastrointestinal environment[J]. Front. Environ. Sci. Eng., 2024, 18(2): 19-.
[5] Ying Hu, Shuli Guo, Dongsheng Shen, Jiali Shentu, Li Lu, Shengqi Qi, Min Zhu, Yuyang Long. Overlooked risk of microplastics from municipal solid waste–storage site[J]. Front. Environ. Sci. Eng., 2024, 18(10): 125-.
[6] Chen Zhou, Ermias Gebrekrstos Tesfamariam, Youneng Tang, Ang Li. Contributions of adsorption, bioreduction and desorption to uranium immobilization by extracellular polymeric substances[J]. Front. Environ. Sci. Eng., 2023, 17(9): 107-.
[7] Yuxin Lu, Xiang Li, Cagnetta Giovanni, Bo Wang. Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water[J]. Front. Environ. Sci. Eng., 2023, 17(7): 89-.
[8] Huan Xi, Fanlu Min, Zhanhu Yao, Jianfeng Zhang. Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters[J]. Front. Environ. Sci. Eng., 2023, 17(6): 71-.
[9] Haiguang Zhang, Lei Du, Jiajian Xing, Gaoliang Wei, Xie Quan. Electro-conductive crosslinked polyaniline/carbon nanotube nanofiltration membrane for electro-enhanced removal of bisphenol A[J]. Front. Environ. Sci. Eng., 2023, 17(5): 59-.
[10] Weiyi Liu, Ting Pan, Hang Liu, Mengyun Jiang, Tingting Zhang. Adsorption behavior of imidacloprid pesticide on polar microplastics under environmental conditions: critical role of photo-aging[J]. Front. Environ. Sci. Eng., 2023, 17(4): 41-.
[11] Shuang Zhang, Shuai Liang, Yifan Gao, Yang Wu, Xia Huang. Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment[J]. Front. Environ. Sci. Eng., 2023, 17(3): 30-.
[12] Aihua Zhang, Shihao Fang, Huan Xi, Jianke Huang, Yongfu Li, Guangyuan Ma, Jianfeng Zhang. Highly efficient and selective removal of phosphate from wastewater of sea cucumber aquaculture for microalgae culture using a new adsorption-membrane separation-coordinated strategy[J]. Front. Environ. Sci. Eng., 2023, 17(10): 120-.
[13] Mei Shi, Xiao Wang, Mengying Shao, Lun Lu, Habib Ullah, Hao Zheng, Fengmin Li. Resource utilization of typical biomass wastes as biochars in removing plasticizer diethyl phthalate from water: characterization and adsorption mechanisms[J]. Front. Environ. Sci. Eng., 2023, 17(1): 5-.
[14] Ning Wang, Jiangtao Feng, Wei Yan, Luohong Zhang, Yonghong Liu, Ruihua Mu. Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO2 hydrate: Adsorption behaviors, sites and mechanisms[J]. Front. Environ. Sci. Eng., 2022, 16(8): 105-.
[15] Jie Wu, Jian Lu, Jun Wu. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(8): 104-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed