Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (12) : 151    https://doi.org/10.1007/s11783-024-1911-5
Advances in bimetallic metal organic frameworks (BMOFs) based photocatalytic materials for energy production and waste water treatment
Pankaj Sharma1,3, Amit Kumar1,2(), Tongtong Wang2(), Mika Sillanpää4, Gaurav Sharma1, Pooja Dhiman1
1. International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
2. Institute for Interdisciplinary and Innovate Research, Xi’an University of Architecture and Technology, Xi’an 710055, China
3. School of Physics & Materials Science, Shoolini University, Solan 173229, India
4. Department of Biological and Chemical Engineering, Aarhus University, Aarhus 8000, Denmark
 Download: PDF(6938 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● BMOFs offer high conductivity, active sites, and photo-responsiveness.

● BMOFs have adjustable active sites for high photocatalytic activity.

● Various tailoring strategies for improving BMOFs properties were summarized.

● Advances in BMOFs materials for photocatalytic applications are discussed.

● BMOFs are integrated to form Z and S-scheme heterojunctions.

Photocatalysis contributes significantly to global economic development and has promising environment application like degradation of organic contamination and energy production. The initiatives are concentrated on accelerating the reaction rates and designing novel photocatalysts for improving the ability and enhance the selectivity toward specific products. Recently, bimetallic nanoparticles (NP)/metal-organic frameworks (BMOFs), gained broader interests in heterogeneous catalysis due to their unique photocatalytic properties. Coupling of bimetallic nanoparticles with metal-organic frameworks has found to be a highly effective strategy to improve the photocatalytic activity and broaden the reaction scope. In addition, BMOFs have been found to have exceptional capabilities in breaking down organic pollutants, reducing heavy metals and producing energy. These remarkable abilities are believed to be a result of the combined effects of the bimetallic centers. This review summarizes and analyses the recent advancements in BMOFs based materials especially heterojunctions for degradation of organic pollutants and also in energy production. Different synthesis techniques of designing BMOFs composites are highlighted in this study. The underlying mechanism synergistically enhanced performance in heterogeneous catalysis is thoroughly examined. This review also explores the challenges and possible future pathways in photocatalysis using BMOFs. There are several important challenges that need to be addressed in order to improve the durability of BMOFs in real-world conditions, optimize the synthesis process for industrial applications and gain a deeper understanding of the complicated structures that influence their photocatalytic processes.

Keywords Metal organic frameworks      Heterojunctions      Photocatalysis      Bimetallic      Energy production      Water treatment     
Corresponding Author(s): Amit Kumar,Tongtong Wang   
Issue Date: 15 October 2024
 Cite this article:   
Pooja Dhiman,Gaurav Sharma,Mika Sillanpää, et al. Advances in bimetallic metal organic frameworks (BMOFs) based photocatalytic materials for energy production and waste water treatment[J]. Front. Environ. Sci. Eng., 2024, 18(12): 151.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1911-5
https://academic.hep.com.cn/fese/EN/Y2024/V18/I12/151
Fig.1  BMOFs as photocatalysts for environmental application, various photocatalytic properties of BMOFs and synthetic strategies for constructing BMOF and their heterostructures with other semiconductors, BMOFs used as photocatalyst for energy production and organic pollutant reduction.
Fig.2  (a) Photocatalytic organic pollutant degradation mechanism, (b) photocatalytic hydrogen evolution mechanism, (c) photocatalytic CO2 reduction mechanism.
Fig.3  (a) Charge transfer mechanism in Schottky junction, (b) Charge transfer mechanism convention Z-scheme heterostructures, (c) Charge transfer mechanism in S-scheme heterojunction.
Fig.4  (a) Solvothermal synthesis of CdS NPs decorated Fe/Mn-MOF, (b) average particle size distribution of CdS/FeMn-MOF, (c) SEM picture of Fe/Mn-MOF, (d) SEM image of CdS NPs decorated Fe/Mn-MOF, (e) HRTEM image of 10%FeMn-MOF/CdS, Reprinted from Zhang et al. (2024) with permission from Elsevier; (f) construction of FeCu-BDC bimetallic MOF, (g) SEM image of FeCu- BDC bimetallic MOFs, (h) elemental mapping of FeCu-BDC bimetallic MOFs, Reprinted from Tong et al. (2024) with permission from Elsevier.
Fig.5  (a) Synthesis of bimetallic (Zn/Co)2(blm)4 bimetallic MOF through vapor transformation technique, Reprinted from Ma et al. (2022) with permission from Elsevier; (b) schematic fabrication of Cu-ZIF-67, Reprinted from Guo et al. (2024) with permission from Elsevier.
Fig.6  Advantages of BMOFs over other photocatalysts.
Fig.7  (a) Photocurrent response of Zn/Co –ZIF MOF, (b) MB degradation efficiency over Zn/Co (1:1)-ZIF, (c) degradation percentage of different pollutants by Zn/Co (1:1)-ZIF, Reprinted from Zhu et al. (2023) with permission from Elsevier; (d) degradation of NOR by Fe/Ti-MOFs (1.5:1), (e) degradation pathway of NOR during photocatalytic process, (f) photocatalytic mechanism of NOR degradation using bimetallic Fe/Ti-MOFs (1.5:1) under visible light, Reprinted from Gao et al. (2023a) with permission from Elsevier; (g) efficiency of reducing Cr(VI) in the presence of NH2-MIL-125 (Ti/Ce) and NH2-MIL-125 (Ti), (h) photocatalytic mechanism for the Cr(VI) reduction by NH2-MIL-125 (Ti/Ce) photocatalyst, Reprinted from Meng et al. (2023) with permission from Elsevier.
No. Photocatalysts Photocatalysts dosage Fabrication method Pollutant/conc. Solution pH Light source/intensity performance Ref.
1 Zr/Cu-MOFs 40 mg Precipitation refluxing method TC, 20 mg/L 7 UV light 95% degradation in 80 min Kaushal et al. (2022)
2 Ti-In MOF 5 mg Solvothermal BPA, 50 mg/L 7 Xe lamp, 300 W 80% removal in 80 min Li et al. (2022a)
3 Zn-Zr MOFs 0.9 g/L One pot hydrothermal RhB, 40 mg/L Xe lamp, 300 W 98.1% degradation in 60 min Zhang et al. (2022b)
4 CuFe2O4@MIL-100(Cu, Fe) 5 mg Hydrothermal MB, 50 ppm 1 Xe lamp, 300 W 95% in 40 min Shi et al. (2021)
5 FeNi-MOF 80 mg/L Solvothermal ENR, 30 mg/L 11 95% in 40 min Aldhalmi et al. (2023)
6 Fe/Mn-MOF@CdS 20 mg Self-assembly TC, 20 mg/L 5 Xe lamp, 300 W 90.95% in 160 min Zhang et al. (2024)
7 GCN/Mn-Fe-BTC 0.5 g/L Microwave assisted hydrothermal RR-195, 20 mg/L 3 Sunlight 100% in 30 min Nguyen et al. (2024)
8 Ag50-Zn50-BTC/GO Microwave assisted hydrothermal RY-145, 20 mg/L 3 Fluorescent lamp, 60 W 100% in 35 min Nguyen et al. (2021b)
9 Fe/Ti-MOF-NH2(3:1)/PS/vis 100 mg/L Solvothermal Orange II, 50 mg/L 5 Xe lamp, 300 W 100% in 10 min Wang et al. (2018a)
10 Ni/Fe-MOF 5 mg Microwave assisted solvothermal RhB, 3×10−5 mol/L 3 LED lamp, 40 W 96% in120 min Nguyen et al. (2021a)
11 Ti-Ni-MOF 10 mg One-step solvothermal TC Xe lamp, 300 W 83% degradation in 60 min Zhao et al. (2024)
12 NH2-MIL-125(Ti/Ce) 2.0 mg Partial substitution Cr (VI), 50 mg/L 2 Mercury lamp 97% removal in 60 min Meng et al. (2023)
13 NH2-MIL-125(Ti/Zr) 250 mg/L Partial substitution Acetaminophen (ACE), 5 mg/L 7 Xe lamp, 600? W/m2 100% degradation in 180 min Gómez-Avilés et al. (2019)
14 Fe/Ce-MOFs 0.8 g DBD plasma MO, 20 mg/L Xe lamp, 300 W 93% degradation in 30 min Tang et al. (2022)
15 Co-MIL-53(Fe)–NH2/UIO-66-NH2 10 mg Hydrothermal TC, 25 mg/LOTC, 25 mg/L 7 Xe lamp, 400? W/m2 96% and 83% degradation of TC and OTC in 16 min Ye et al. (2022)
16 MIL-53(Fe/Co)/CeO2, Solvothermal Atrazine (ATZ), 10 mg/L 12 Visible light, 80 W 99.8% degradation in 60 min Roy et al. (2022)
17 BiOBr@ZnFe-MOF 15 mg One step solvothermal RhB, 5 mg/L Xe lamp, 300 W 84.9% degradation in 90 min Shi et al. (2022)
18 Ti/Ni-MOL/In2Se3 10 mg TC, 150 mg/L Xe lamp 96.4% degradation in 90 min Li et al. (2022c)
Tab.1  Recent advances in bimetallic MOF based materials for photocatalytic pollutant degradation
Fig.8  (a, b) HER of synthesized NH2-MIL-125-Ni10%/Ti and pure NH2-MIL-125, NH2-MIL-125(Ti), (c) SVP spectra of NH2-MIL-125 Ni10%/Ti, Reprinted from Chang et al. (2022) with permission from Elsevier; (d) H2 production rate of In/Ni-MOF, In/In-MOF, In/Co-MOF, In/Fe-MOF and In/Mn-MOF, (e) photocatalytic H2 production mechanism over In/Ni-MOF, Reproduced Chen et al. (2024b) with permission from Elsevier; (f) N2 adsorption-desorption plots of various synthesized catalysts Zr(2.5%–10%)/Cu-H2BDC-BPD, (g) effect of EY concentration on hydrogen evolution, (h) effect of sacrificial agents on HER during photocatalysis, (i) photocatalytic hydrogen evolution mechanism over Zr/Cu-(H2BDC-BPD) photocatalyst, Reprinted from Yallur et al. (2023) with permission from Elsevier.
Fig.9  (a) LVS plots of H2ATA, Zr-ZTZ, Zr/Fe-ATA, Zr/Cu-ATA and Zr/Co-ATA, (b) photocatalytic HCOO production rate of Zr/Cu-ATA, Reprinted from Ezugwu et al. (2023) with permission from Elsevier; (c) photocatalytic CO production rate of Fe-MOX, Ni/Fe-MOF, Co/Fe-MOF photocatalysts, (d, e) time-yield curves of (Co/Fe-MOF) and (Fe-MOF) and Ni/Fe-MOF for the total CO produced by photoreduction, (f) photocatalytic CO2 reduction mechanism of Co/Fe-MOF photocatalyst, Reprinted from Yang et al. (2023b) with permission from Elsevier.
AQY Apparent quantum efficiency
BET Brunauer-Emmett-Teller
BMOF Bimetallic metal organic frameworks
CB Conduction Band
CIP Ciprofloxacin
EDS Energy dispersive Spectra
EF Fermi energy
Eg Energy gap
eV Electron volt
e Electrons
h Hour
h+ Holes
HER Hydrogen evolution rate
HUMO Highest occupied molecular orbit
LMCT Ligand to metal charge transfer
LUMO Lowest unoccupied molecular orbit
MB Methylene Blue
min Minutes
MMCT Metal to metal charge transfer
MO Methylene Orange
MOF Metallic organic frameworks
NOR Norfloxacin
NPs Nanoparticles
OP Oxidation Photocatalyst
OTC Oxytetracyclin
ROS Reactive oxygen species
RP Reduction Photocatalyst
SC Semiconductor
SEM Scanning electron microscopy
SHE Standard hydrogen electrode
TC Tetracycline
TEM Transmission electron microscopy
VB Valance band
  
1 R M Abdelhameed, M Abu-Elghait, M El-Shahat. (2020). Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH2): enhancement the biological and visible‐light photocatalytic activity. Journal of Environmental Chemical Engineering, 8(5): 104107
https://doi.org/10.1016/j.jece.2020.104107
2 N S Abdul Mubarak, K Y Foo, R Schneider, R M Abdelhameed, S Sabar. (2022). The chemistry of MIL-125 based materials: structure, synthesis, modification strategies and photocatalytic applications. Journal of Environmental Chemical Engineering, 10(1): 106883
https://doi.org/10.1016/j.jece.2021.106883
3 I Ahmad, Y Zou, J Yan, Y Liu, S Shukrullah, M Y Naz, H Hussain, W Q Khan, N R Khalid. (2023). Semiconductor photocatalysts: a critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Advances in Colloid and Interface Science, 311: 102830
https://doi.org/10.1016/j.cis.2022.102830
4 M A Al-Nuaim, A A Alwasiti, Z Y Shnain. (2023). The photocatalytic process in the treatment of polluted water. Chemicke Zvesti, 77(2): 677–701
https://doi.org/10.1007/s11696-022-02468-7
5 A K Aldhalmi, S Alkhayyat, Albahadly W K Younis, M A Jawad, K M Alsaraf, Muedii Z A H Riyad, F A Ali, M Ahmed, M Asiri. et al.. (2023). A novel fabricate of iron and nickel-introduced bimetallic MOFs for quickly catalytic degradation via the peroxymonosulfate, antibacterial efficiency, and cytotoxicity assay. Inorganic Chemistry Communications, 153: 110823
https://doi.org/10.1016/j.inoche.2023.110823
6 I A Alsafari, K Chaudhary, M F Warsi, A Z Warsi, M Waqas, M Hasan, A Jamil, M Shahid. (2023). A facile strategy to fabricate ternary WO3/CuO/rGO nano-composite for the enhanced photocatalytic degradation of multiple organic pollutants and antimicrobial activity. Journal of Alloys and Compounds, 938: 168537
https://doi.org/10.1016/j.jallcom.2022.168537
7 P Amo-Ochoa, G Givaja, P J S Miguel, O Castillo, F Zamora. (2007). Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF. Inorganic Chemistry Communications, 10(8): 921–924
https://doi.org/10.1016/j.inoche.2007.04.024
8 K An, H Ren, D Yang, Z Zhao, Y Gao, Y Chen, J Tan, W Wang, Z Jiang. (2021). Nitrogenase-inspired bimetallic metal organic frameworks for visible-light-driven nitrogen fixation. Applied Catalysis B: Environmental, 292: 120167
https://doi.org/10.1016/j.apcatb.2021.120167
9 N Arif, Y Z Lin, K Wang, Y C Dou, Y Zhang, K Li, S Liu, F T Liu. (2021). Bimetallic zeolite-imidazole framework-based heterostructure with enhanced photocatalytic hydrogen production activity. RSC Advances, 11(16): 9048–9056
https://doi.org/10.1039/D1RA00781E
10 G Ayoub, B Karadeniz, A J Howarth, O K Farha, I Đilović, L S Germann, R E Dinnebier, K Užarević, T Friščić. (2019). Rational synthesis of mixed-metal microporous metal–organic frameworks with controlled composition using mechanochemistry. Chemistry of Materials, 31(15): 5494–5501
https://doi.org/10.1021/acs.chemmater.9b01068
11 S Bai, N Zhang, C Gao, Y Xiong. (2018). Defect engineering in photocatalytic materials. Nano Energy, 53: 296–336
https://doi.org/10.1016/j.nanoen.2018.08.058
12 A Balapure, J Ray Dutta, R Ganesan. (2024). Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. RSC Applied Interfaces, 1(1): 43–69
https://doi.org/10.1039/D3LF00126A
13 S Banerjee, S C Pillai, P Falaras, K E O’Shea, J A Byrne, D D Dionysiou. (2014). New insights into the mechanism of visible light photocatalysis. Journal of Physical Chemistry Letters, 5(15): 2543–2554
https://doi.org/10.1021/jz501030x
14 G Bjørklund, Y Semenova, L Pivina, M Dadar, M M Rahman, J Aaseth, S Chirumbolo. (2020). Uranium in drinking water: a public health threat. Archives of Toxicology, 94(5): 1551–1560
https://doi.org/10.1007/s00204-020-02676-8
15 Y Cao, L Yue, Z Li, Y Han, J Lian, H Qin, S He. (2023). Construction of Sn-Bi-MOF/Ti3C2 schottky junction for photocatalysis of tetracycline: performance and degradation mechanism. Applied Surface Science, 609: 155191
https://doi.org/10.1016/j.apsusc.2022.155191
16 H Chang, Y Li, X Jia, Q Shen, Q Li, X Liu, J Xue. (2022). Construction of an amino-rich Ni/Ti bimetallic MOF composite with expanded light absorption and enhanced carrier separation for efficient photocatalytic H2 evolution. Materials Science in Semiconductor Processing, 150: 106914
https://doi.org/10.1016/j.mssp.2022.106914
17 C Chen, N Suo, X Han, X He, Z Dou, Z Lin, L Cui. (2021a). Tuning the morphology and electron structure of metal-organic framework-74 as bifunctional electrocatalyst for OER and HER using bimetallic collaboration strategy. Journal of Alloys and Compounds, 865: 158795
https://doi.org/10.1016/j.jallcom.2021.158795
18 C Chen, S Wang, F Han, X Zhou, B Li. (2024a). Synergy of rapid adsorption and photo-Fenton-like degradation in CoFe-MOF/TiO2/PVDF composite membrane for efficient removal of antibiotics from water. Separation and Purification Technology, 333: 125942
https://doi.org/10.1016/j.seppur.2023.125942
19 J Chen, J Wei, H Zhang, X Wang, L Fu, T H Yang. (2022). Construction of CuCd-BMOF/GO composites based on phosphonate and their boosted visible-light photocatalytic degradation. Applied Surface Science, 594: 153493
https://doi.org/10.1016/j.apsusc.2022.153493
20 J Chen, Y Zhu, S Kaskel. (2021b). Porphyrin‐based metal–organic frameworks for biomedical applications. Angewandte Chemie International Edition, 60(10): 5010–5035
https://doi.org/10.1002/anie.201909880
21 L Chen, X Ren, N S Alharbi, C Chen. (2021c). Fabrication of a novel Co/Ni-MOFs@BiOI composite with boosting photocatalytic degradation of methylene blue under visible light. Journal of Environmental Chemical Engineering, 9(5): 106194
https://doi.org/10.1016/j.jece.2021.106194
22 L Chen, H F Wang, C Li, Q Xu. (2020). Bimetallic metal–organic frameworks and their derivatives. Chemical Science, 11(21): 5369–5403
https://doi.org/10.1039/D0SC01432J
23 S Chen, X Xu, H Gao, J Wang, A Li, X Zhang. (2021d). Fine-tuning the metal oxo cluster composition and phase structure of Ni/Ti bimetallic MOFs for efficient CO2 reduction. Journal of Physical Chemistry C, 125(17): 9200–9209
https://doi.org/10.1021/acs.jpcc.1c03239
24 T Chen, C Lu, J Wang, Y Kong, T Liu, S Ying, X Ma, F Y Yi. (2024b). Bimetal-regulated indium-based metal-organic framework family realizing highly efficient photo/electrocatalytic hydrogen evolution reaction. Electrochimica Acta, 480: 143927
https://doi.org/10.1016/j.electacta.2024.143927
25 W Cheng, Y Wang, S Ge, X Ding, Z Cui, Q Shao. (2021). One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties. Advanced Composites and Hybrid Materials, 4(1): 150–161
https://doi.org/10.1007/s42114-020-00199-5
26 W K Chong, B J Ng, L L Tan, S P Chai. (2022). Recent advances in nanoscale engineering of ternary metal sulfide-based heterostructures for photocatalytic water splitting applications. Energy & Fuels, 36(8): 4250–4267
https://doi.org/10.1021/acs.energyfuels.2c00291
27 T R Cook, Y R Zheng, P J Stang. (2013). Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chemical Reviews, 113(1): 734–777
https://doi.org/10.1021/cr3002824
28 B Dai, Y Li, J Xu, C Sun, S Li, W Zhao. (2022a). Photocatalytic oxidation of tetracycline, reduction of hexavalent chromium and hydrogen evolution by Cu2O/g-C3N4 S-scheme photocatalyst: performance and mechanism insight. Applied Surface Science, 592: 153309
https://doi.org/10.1016/j.apsusc.2022.153309
29 R Dai, H Han, Y Zhu, X Wang, Z Wang. (2022b). Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds. Frontiers of Environmental Science & Engineering, 16(4): 40
30 E A Dolgopolova, A J Brandt, O A Ejegbavwo, A S Duke, T D Maddumapatabandi, R P Galhenage, B W Larson, O G Reid, S C Ammal, A Heyden. et al.. (2017). Electronic properties of bimetallic metal–organic frameworks (MOFs): tailoring the density of electronic states through MOF modularity. Journal of the American Chemical Society, 139(14): 5201–5209
https://doi.org/10.1021/jacs.7b01125
31 M Duan, L Jiang, G Zeng, D Wang, W Tang, J Liang, H Wang, D He, Z Liu, L Tang. (2020). Bimetallic nanoparticles/metal-organic frameworks: Synthesis, applications and challenges. Applied Materials Today, 19: 100564
https://doi.org/10.1016/j.apmt.2020.100564
32 W A El-Yazeed, A I Ahmed. (2019). Monometallic and bimetallic Cu–Ag MOF/MCM-41 composites: structural characterization and catalytic activity. RSC Advances, 9(33): 18803–18813
https://doi.org/10.1039/C9RA03310F
33 C I Ezugwu, S Ghosh, S Bera, M Faraldos, M E G Mosquera, R Rosal. (2023). Bimetallic metal-organic frameworks for efficient visible-light-driven photocatalytic CO2 reduction and H2 generation. Separation and Purification Technology, 308: 122868
https://doi.org/10.1016/j.seppur.2022.122868
34 M Fan, J Yan, Q Cui, R Shang, Q Zuo, L Gong, W Zhang. (2023). Synthesis and peroxide activation mechanism of bimetallic MOF for water contaminant degradation: a review. Molecules (Basel, Switzerland), 28(8): 3622
https://doi.org/10.3390/molecules28083622
35 L Feng, G Ren, F Wang, W Yang, G Zhu, Q Pan. (2019). Two bimetallic metal–organic frameworks capable of direct photocatalytic degradation of dyes under visible light. Transition Metal Chemistry, 44(3): 275–281
https://doi.org/10.1007/s11243-018-0292-7
36 S D Gallegos-Cerda, J D Hernández-Varela, Pérez J J Chanona, C A Huerta-Aguilar, Victoriano L González, B Arredondo-Tamayo, Hernández O Reséndiz. (2024). Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO2 nanoparticles for the degradation of organic dyes. Carbohydrate Polymers, 324: 121476
https://doi.org/10.1016/j.carbpol.2023.121476
37 W Gao, F Wang, M Ou, Q Wu, L Wang, H Zhu, Y Li, N Kong, J Qiu, S Hu, S Song. (2023a). Enhancing degradation of norfloxacin using chrysanthemum-shaped bimetallic NH2-MIL-53(Fe/Ti) photocatalysts under visible light irradiation. Journal of Environmental Chemical Engineering, 11(5): 111050
https://doi.org/10.1016/j.jece.2023.111050
38 Y Gao, Y Huang, M Bao, X Zhang, X Zhou, L Liu, Z Zhang, L Zeng, J Ke. (2023b). Ti-doped Zr-UiO-66-NH2 boosting charge transfer for enhancing the synergistic removal of Cr(VI) and TC-HCl in wastewater. Process Safety and Environmental Protection, 172: 857–868
https://doi.org/10.1016/j.psep.2023.02.090
39 V García-Salcido, P Mercado-Oliva, J L Guzmán-Mar, B I Kharisov, L Hinojosa-Reyes. (2022). MOF-based composites for visible-light-driven heterogeneous photocatalysis: synthesis, characterization and environmental application studies. Journal of Solid State Chemistry, 307: 122801
https://doi.org/10.1016/j.jssc.2021.122801
40 S Głowniak, B Szczęśniak, J Choma, M Jaroniec. (2021). Mechanochemistry: toward green synthesis of metal–organic frameworks. Materials Today, 46: 109–124
https://doi.org/10.1016/j.mattod.2021.01.008
41 A Gómez-Avilés, M Peñas-Garzón, J Bedia, D D Dionysiou, J J Rodríguez, C Belver. (2019). Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Applied Catalysis B: Environmental, 253: 253–262
https://doi.org/10.1016/j.apcatb.2019.04.040
42 N Goodarzi, Z Ashrafi-Peyman, E Khani, A Z Moshfegh. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7): 1102
https://doi.org/10.3390/catal13071102
43 Y Gu, Y N Wu, L Li, W Chen, F Li, S Kitagawa. (2017). Controllable modular growth of hierarchical MOF-on-MOF architectures. Angewandte Chemie International Edition, 56(49): 15658–15662
https://doi.org/10.1002/anie.201709738
44 C Guo, Y Ma, Y Zou, T Wang, J Wang. (2024). Preparation strategy of bimetallic MOF hollow photocatalysts for hydrogen evolution. International Journal of Hydrogen Energy, 51: 950–961
https://doi.org/10.1016/j.ijhydene.2023.09.076
45 S H Guo, X J Qi, H M Zhou, J Zhou, X H Wang, M Dong, X Zhao, C Y Sun, X L Wang, Z M Su. (2020). A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8(23): 11712–11718
https://doi.org/10.1039/D0TA00205D
46 S Gupta, R Kumar. (2024). Enhanced photocatalytic performance of the N-rGO/g-C3N4 nanocomposite for efficient solar-driven water remediation. Nanoscale, 16(12): 6109–6131
https://doi.org/10.1039/D3NR06203A
47 C Hou, W Chen, L Fu, S Zhang, C Liang, Y Wang. (2020). Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A. Carbohydrate Polymers, 247: 116731
https://doi.org/10.1016/j.carbpol.2020.116731
48 H Hou, X Zhang. (2020). Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chemical Engineering Journal, 395: 125030
https://doi.org/10.1016/j.cej.2020.125030
49 B Hu, J Y Yuan, J Y Tian, M Wang, X Wang, L He, Z Zhang, Z W Wang, C S Liu. (2018). Co/Fe-bimetallic organic framework-derived carbon-incorporated cobalt–ferric mixed metal phosphide as a highly efficient photocatalyst under visible light. Journal of Colloid and Interface Science, 531: 148–159
https://doi.org/10.1016/j.jcis.2018.07.037
50 Y Huo, J Zhang, Z Wang, K Dai, C Pan, C Liang. (2021). Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. Journal of Colloid and Interface Science, 585: 684–693
https://doi.org/10.1016/j.jcis.2020.10.048
51 M Z Hussain, Z Yang, Z Huang, Q Jia, Y Zhu, Y Xia. (2021). Recent advances in metal–organic frameworks derived nanocomposites for photocatalytic applications in energy and environment. Advanced Science, 8(14): 2100625
https://doi.org/10.1002/advs.202100625
52 V P Indrakanti, J D Kubicki, H H Schobert. (2011). Photoinduced activation of CO2 on TiO2 surfaces: quantum chemical modeling of CO2 adsorption on oxygen vacancies. Fuel Processing Technology, 92(4): 805–811
https://doi.org/10.1016/j.fuproc.2010.09.007
53 M Ismael. (2023). Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: a review. Journal of Alloys and Compounds, 931: 167469
https://doi.org/10.1016/j.jallcom.2022.167469
54 A Jagan Mohan Reddy, K Suresh, N Sujith Benarzee, M S Surendra Babu. (2023). Synthesis and characterization of Zn-based bimetallic microporous MOF composites for effective formaldehyde sensing at room temperature. Inorganic Chemistry Communications, 158: 111612
https://doi.org/10.1016/j.inoche.2023.111612
55 L Jiao, Y Wang, H L Jiang, Q Xu. (2018). Metal–organic frameworks as platforms for catalytic applications. Advanced Materials, 30(37): 1703663
https://doi.org/10.1002/adma.201703663
56 S Kampouri, K C Stylianou. (2019). Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catalysis, 9(5): 4247–4270
https://doi.org/10.1021/acscatal.9b00332
57 Y Kang, Y Yang, L C Yin, X Kang, L Wang, G Liu, H M Cheng. (2016). Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Advanced Materials, 28(30): 6471–6477
https://doi.org/10.1002/adma.201601567
58 S Karamat, T Akhter, Hassan S Ul, M Faheem, A Mahmood, W Al-Masry, S Razzaque, S Ashraf, T Kim, S K Han. et al.. (2024). Recycling of polyethylene terephthalate to bismuth-embedded bimetallic MOFs as photocatalysts toward removal of cationic dye in water. Journal of Industrial and Engineering Chemistry, 137: 503–513
https://doi.org/10.1016/j.jiec.2024.03.037
59 E Karamian, S Sharifnia. (2016). On the general mechanism of photocatalytic reduction of CO2. Journal of CO2 Utilization, 16: 194–203
https://doi.org/10.1016/j.jcou.2016.07.004
60 S Kaushal, P Pal Singh, N Kaur. (2022). Metal organic framework-derived Zr/Cu bimetallic photocatalyst for the degradation of tetracycline and organic dyes. Environmental Nanotechnology, Monitoring & Management, 18: 100727
https://doi.org/10.1016/j.enmm.2022.100727
61 M S Khan, Y Li, D S Li, J Qiu, X Xu, H Y Yang. (2023). A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. Nanoscale Advances, 5: 6318–6348
https://doi.org/10.1039/D3NA00627A
62 Ü Kökçam-Demir, A Goldman, L Esrafili, M Gharib, A Morsali, O Weingart, C Janiak. (2020). Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews, 49(9): 2751–2798
https://doi.org/10.1039/C9CS00609E
63 Ž Kovačič, B Likozar, M Huš. (2020). Photocatalytic CO2 reduction: A review of Ab Initio mechanism, kinetics, and multiscale modeling simulations. ACS Catalysis, 10(24): 14984–15007
https://doi.org/10.1021/acscatal.0c02557
64 A Kumar, S Rana, G Sharma, P Dhiman, M I Shekh, F J Stadler. (2023). Recent advances in zeolitic imidazole frameworks based photocatalysts for organic pollutant degradation and clean energy production. Journal of Environmental Chemical Engineering, 11(5): 110770
https://doi.org/10.1016/j.jece.2023.110770
65 A Kumar, P Sharma, T Wang, C W Lai, G Sharma, P Dhiman. (2024). Recent progresses in improving the photocatalytic potential of Bi4Ti3O12 as emerging material for environmental and energy applications. Journal of Industrial and Engineering Chemistry, 138: 1–16
https://doi.org/10.1016/j.jiec.2024.03.054
66 A Kumari, S Kaushal, P P Singh. (2021). Bimetallic metal organic frameworks heterogeneous catalysts: Design, construction, and applications. Materials Today. Energy, 20: 100667
https://doi.org/10.1016/j.mtener.2021.100667
67 P Kumari, N Bahadur, L Kong, L A O’Dell, A Merenda, L F Dumée. (2022). Engineering Schottky-like and heterojunction materials for enhanced photocatalysis performance: a review. Materials Advances, 3(5): 2309–2323
https://doi.org/10.1039/D1MA01062J
68 J S M Lee, Y I Fujiwara, S Kitagawa, S Horike. (2019). Homogenized bimetallic catalysts from metal–organic framework alloys. Chemistry of Materials, 31(11): 4205–4212
https://doi.org/10.1021/acs.chemmater.9b01093
69 K Lei, M Kou, Z Ma, Y Deng, L Ye, Y Kong. (2019). A comparative study on photocatalytic hydrogen evolution activity of synthesis methods of CDs/ZnIn2S4 photocatalysts. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 574: 105–114
https://doi.org/10.1016/j.colsurfa.2019.04.073
70 M Li, J Yuan, G Wang, L Yang, J Shao, H Li, J Lu. (2022a). One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A. Separation and Purification Technology, 298: 121658
https://doi.org/10.1016/j.seppur.2022.121658
71 P Li, L Dong, H Jin, J Yang, Y Tu, C Wang, Y He. (2022b). Fluorescence detection of phosphate in an aqueous environment by an aluminum-based metal-organic framework with amido functionalized ligands. Frontiers of Environmental Science & Engineering, 16(12): 159
72 S Li, H Li, Y Wang, Q Liang, M Zhou, D Guo, Z Li. (2024a). Mixed-valence bimetallic Ce/Zr-NH2-UiO-66 modified with CdIn2S4 to form S-scheme heterojunction for boosting photocatalytic CO2 reduction. Separation and Purification Technology, 333: 125994
https://doi.org/10.1016/j.seppur.2023.125994
73 S Li, R Yan, M Cai, W Jiang, M Zhang, X Li. (2023). Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification. Journal of Materials Science and Technology, 164: 59–67
https://doi.org/10.1016/j.jmst.2023.05.009
74 T Li, N Tsubaki, Z Jin. (2024b). S-scheme heterojunction in photocatalytic hydrogen production. Journal of Materials Science and Technology, 169: 82–104
https://doi.org/10.1016/j.jmst.2023.04.049
75 X Li, J Xie, C Jiang, J Yu, P Zhang. (2018). Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental Science & Engineering, 12(5): 14
https://doi.org/10.1007/s11783-018-1076-1
76 Z Li, D Li, R Xue, L Zang, H Ma, S Guo, L Shi. (2022c). Ni-MOL/In2Se3 heterostructure construction with mixed metal (Ti/Ni) for efficient photocatalytic tetracycline degradation. Chemosphere, 291: 132743
https://doi.org/10.1016/j.chemosphere.2021.132743
77 Q Liang, L Zhong, C Du, Y Luo, Y Zheng, S Li, Q Yan. (2018). Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy, 47: 257–265
https://doi.org/10.1016/j.nanoen.2018.02.048
78 L Liu, X L Chen, M Cai, R K Yan, H L Cui, H Yang, J J Wang. (2023). Zn-MOFs composites loaded with silver nanoparticles are used for fluorescence sensing pesticides, Trp, EDA and photocatalytic degradation of organic dyes. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 289: 122228
https://doi.org/10.1016/j.saa.2022.122228
79 S Liu, Y Qiu, Y Liu, W Zhang, Z Dai, D Srivastava, A Kumar, Y Pan, J Liu. (2022). Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 46(29): 13818–13837
https://doi.org/10.1039/D2NJ01994A
80 Y Liu, L Yang, Y Hou, Z Zhang, X Xiao, H Yue, X Liu. (2024). 2‐Pyran‐4‐Ylidene malononitrile based conjugated microporous polymers as metal‐free heterogeneous photocatalysts for organic synthesis. Macromolecular Rapid Communications, 45(12): 2400083
https://doi.org/10.1002/marc.202400083
81 J Lu, S Gu, H Li, Y Wang, M Guo, G Zhou. (2023a). Review on multi-dimensional assembled S-scheme heterojunction photocatalysts. Journal of Materials Science and Technology, 160: 214–239
https://doi.org/10.1016/j.jmst.2023.03.027
82 W Lu, Z Wei, Z Y Gu, T F Liu, J Park, J Park, J Tian, M Zhang, Q Zhang, Iii T Gentle. et al.. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 43(16): 5561–5593
https://doi.org/10.1039/C4CS00003J
83 Y Lu, X Li, C Giovanni, B Wang. (2023b). Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science & Engineering, 17(7): 89
84 J Luo, X Luo, Y Gan, X Xu, B Xu, Z Liu, C Ding, Y Cui, C Sun. (2023). Advantages of bimetallic organic frameworks in the adsorption, catalysis and detection for water contaminants. Nanomaterials, 13(15): 2194
https://doi.org/10.3390/nano13152194
85 S Lv, Y Sun, D Liu, C Song, D Wang. (2023). Construction of S-Scheme heterojunction Ni11(HPO3)8(OH)6/CdS photocatalysts with open framework surface for enhanced H2 evolution activity. Journal of Colloid and Interface Science, 634: 148–158
https://doi.org/10.1016/j.jcis.2022.12.041
86 C Ma, G Gao, H Liu, Y Liu, X Zhang. (2022). Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 644: 120167
https://doi.org/10.1016/j.memsci.2021.120167
87 M D Makhafola, S A Balogun, K D Modibane. (2024). A comprehensive review of bimetallic nanoparticle–graphene oxide and bimetallic nanoparticle–metal–organic framework nanocomposites as photo-, electro-, and photoelectrocatalysts for hydrogen evolution reaction. Energies, 17: 1646
https://doi.org/10.3390/en17071646
88 M Y Masoomi, A Morsali, A Dhakshinamoorthy, H Garcia. (2019). Mixed‐metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design. Angewandte Chemie, 131(43): 15330–15347
https://doi.org/10.1002/ange.201902229
89 X Meng, C Lv, X Wen, X Hou, C Li, J He. (2023). Construction of novel bimetallic Ti/Ce-MOFs for ratiometric fluorescence sensing of trace copper and photocatalytic reduction of chromium (VI). Microchemical Journal, 193: 109143
https://doi.org/10.1016/j.microc.2023.109143
90 M Mihaylov, K Chakarova, S Andonova, N Drenchev, E Ivanova, A Sabetghadam, B Seoane, J Gascon, F Kapteijn, K Hadjiivanov. (2016). Adsorption forms of CO2 on MIL-53(Al) and NH2-MIL-53(Al) as revealed by FTIR spectroscopy. Journal of Physical Chemistry C, 120(41): 23584–23595
https://doi.org/10.1021/acs.jpcc.6b07492
91 K Mishra, N Devi, S S Siwal, V K Gupta, V K Thakur. (2023). Hybrid semiconductor photocatalyst nanomaterials for energy and environmental applications: fundamentals, designing, and prospects. Advanced Sustainable Systems, 7(8): 2300095
https://doi.org/10.1002/adsu.202300095
92 M M H Mondol, S H Jhung. (2021). Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chemical Engineering Journal, 421: 129688
https://doi.org/10.1016/j.cej.2021.129688
93 S Nahar, M F M Zain, H Kadhum A a, H A Hasan, M R Hasan. (2017). Advances in photocatalytic CO2 reduction with water: a aeview. Materials, 10(6): 629
https://doi.org/10.3390/ma10060629
94 H T T Nguyen, K N T Tran, L Van Tan, V A Tran, V D Doan, T Lee, T D Nguyen. (2021a). Microwave-assisted solvothermal synthesis of bimetallic metal-organic framework for efficient photodegradation of organic dyes. Materials Chemistry and Physics, 272: 125040
https://doi.org/10.1016/j.matchemphys.2021.125040
95 M B Nguyen, G H Le, T D Nguyen, Q K Nguyen, T T T Pham, T Lee, T A Vu. (2021b). Bimetallic Ag-Zn-BTC/GO composite as highly efficient photocatalyst in the photocatalytic degradation of reactive yellow 145 dye in water. Journal of Hazardous Materials, 420: 126560
https://doi.org/10.1016/j.jhazmat.2021.126560
96 M B Nguyen, L H T Nguyen, M T Le, N Q Tran, N H T Tran, P H Tran, A T T Pham, L D Tran, T L H Doan. (2024). Engineering direct Z-scheme GCN/ bimetallic-MOF heterojunctions as efficient and recyclable photocatalysts for enhancing degradation of RR 195 under visible light. Journal of Industrial and Engineering Chemistry, 134: 217–230
https://doi.org/10.1016/j.jiec.2023.12.052
97 M B Nguyen, D T Sy, V T K Thoa, N T Hong, H V Doan. (2022). Bimetallic Co-Fe-BTC/CN nanocomposite synthesised via a microwave-assisted hydrothermal method for highly efficient Reactive Yellow 145 dye photodegradation. Journal of the Taiwan Institute of Chemical Engineers, 140: 104543
https://doi.org/10.1016/j.jtice.2022.104543
98 R A Oliveira, M A M Castro, D L Porto, C F S Aragão, R P Souza, U C Silva, M R D Bomio, F V Motta. (2024). Immobilization of Bi2MoO6/ZnO heterojunctions on glass substrate: design of drug and dye mixture degradation by solar-driven photocatalysis. Journal of Photochemistry and Photobiology A Chemistry, 452: 115619
https://doi.org/10.1016/j.jphotochem.2024.115619
99 T Panda, S Horike, K Hagi, N Ogiwara, K Kadota, T Itakura, M Tsujimoto, S Kitagawa. (2017). Mechanical alloying of metal–organic frameworks. Angewandte Chemie, 129(9): 2453–2457
https://doi.org/10.1002/ange.201612587
100 M Pavel, C Anastasescu, R N State, A Vasile, F Papa, I Balint. (2023). Photocatalytic degradation of organic and inorganic pollutants to harmless end products: assessment of Practical Application Potential for Water and Air Cleaning. Materials, 13(2): 380
101 R Peña, R Romero, D Amado-Piña, R Natividad. (2024). Cu/TiO2 photo-catalyzed CO2 chemical reduction in a multiphase capillary reactor. Topics in Catalysis, 67: 377–393
https://doi.org/10.1007/s11244-023-01875-8
102 M Y Qi, M Conte, M Anpo, Z R Tang, Y J Xu. (2021). Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chemical Reviews, 121(21): 13051–13085
https://doi.org/10.1021/acs.chemrev.1c00197
103 Y Qi, Z Cai, C Zheng, Z Cheng, S Fan, Y S Feng. (2024). Bimetallic synergy significantly enhances the photocatalytic performance of lanthanide porphyrin-based MOFs: efficient photocatalytic oxidation of benzyl alcohol and benzylamine under mild conditions in air. Journal of Catalysis, 429: 115226
https://doi.org/10.1016/j.jcat.2023.115226
104 S Rana, A Kumar, G Sharma, P Dhiman, A García-Penas, F J Stadler. (2023). Recent advances in perovskite-based Z-scheme and S-scheme heterojunctions for photocatalytic CO2 reduction. Chemosphere, 339: 139765
https://doi.org/10.1016/j.chemosphere.2023.139765
105 S Rana, A Kumar, T T Wang, G Sharma, P Dhiman, A García-Penas. (2024). A review of carbon material-based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation. New Carbon Materials, 39(3): 458–482
https://doi.org/10.1016/S1872-5805(24)60857-7
106 M A Rauf, S S Ashraf. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151(1−3): 10–18
https://doi.org/10.1016/j.cej.2009.02.026
107 S Ren, J Dong, X Duan, T Cao, H Yu, Y Lu, D Zhou. (2023). A novel (Zr/Ce)UiO-66(NH2)@g-C3N4 Z-scheme heterojunction for boosted tetracycline photodegradation via effective electron transfer. Chemical Engineering Journal, 460: 141884
https://doi.org/10.1016/j.cej.2023.141884
108 M Ronda-Lloret, I Pellicer-Carreño, A Grau-Atienza, R Boada, S Diaz-Moreno, J Narciso-Romero, J C Serrano-Ruiz, A Sepúlveda-Escribano, E V Ramos-Fernandez. (2021). Mixed-valence Ce/Zr metal-organic frameworks: controlling the oxidation state of cerium in one-pot synthesis approach. Advanced Functional Materials, 31(29): 2102582
https://doi.org/10.1002/adfm.202102582
109 D Roy, S Neogi, S De. (2022). Visible light assisted activation of peroxymonosulfate by bimetallic MOF based heterojunction MIL-53(Fe/Co)/CeO2 for atrazine degradation: Pivotal roles of dual redox cycle for reactive species generation. Chemical Engineering Journal, 430: 133069
https://doi.org/10.1016/j.cej.2021.133069
110 S Roy, P Pachfule, Q Xu. (2016). High catalytic performance of MIL-101-immobilized NiRu alloy nanoparticles towards the hydrolytic dehydrogenation of Aammonia borane. European Journal of Inorganic Chemistry, 2016(27): 4353–4357
https://doi.org/10.1002/ejic.201600180
111 I Saini, V Singh, S Hamad, S Ram. (2024). Recent development in bimetallic metal organic frameworks as photocatalytic material. Inorganic Chemistry Communications, 160: 111897
https://doi.org/10.1016/j.inoche.2023.111897
112 J Shao, P Shao, M Peng, M Li, Z Yao, X Xiong, C Qiu, Y Zheng, L Yang, X Luo. (2023). A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions. Frontiers of Environmental Science & Engineering, 17(3): 33
113 P Sharma, A Kumar, P Dhiman, G Sharma, G Tessema Mola, F J Stadler. (2024a). Recent progress in photocatalytic applications of metal tungstates based Z-scheme and S-scheme heterojunctions. Journal of Industrial and Engineering Chemistry, 132: 1–21
https://doi.org/10.1016/j.jiec.2023.11.004
114 P Sharma, A Kumar, G Sharma, T Wang, P Dhiman, F J Stadler. (2024b). Recent advances in oxygen vacancies rich Z-scheme and S-scheme heterojunctions for water treatment and hydrogen production. Inorganic Chemistry Communications, 161: 112112
https://doi.org/10.1016/j.inoche.2024.112112
115 Y Shen, Z F Li, S Y Guo, Y R Shao, T L Hu. (2021). Encapsulation of ultrafine metal–organic framework nanoparticles within multichamber carbon spheres by a two-step double-solvent strategy for high-performance catalysts. ACS Applied Materials & Interfaces, 13(10): 12169–12180
https://doi.org/10.1021/acsami.1c01451
116 S Shi, X Han, J Liu, X Lan, J Feng, Y Li, W Zhang, J Wang. (2021). Photothermal-boosted effect of binary CuFe bimetallic magnetic MOF heterojunction for high-performance photo-Fenton degradation of organic pollutants. Science of the Total Environment, 795: 148883
https://doi.org/10.1016/j.scitotenv.2021.148883
117 Y Shi, L Wang, S Dong, X Miao, M Zhang, K Sun, Y Zhang, Z Cao, J Sun. (2022). Wool-ball-like BiOBr@ZnFe-MOF composites for degradation organic pollutant under visible-light: synthesis, performance, characterization and mechanism. Optical Materials, 131: 112580
https://doi.org/10.1016/j.optmat.2022.112580
118 N K Singh, S Gupta, V K Pecharsky, V P Balema. (2017). Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks. Journal of Alloys and Compounds, 696: 118–122
https://doi.org/10.1016/j.jallcom.2016.11.220
119 J Sun, L Semenchenko, W T Lim, M F Ballesteros Rivas, V Varela-Guerrero, H K Jeong. (2018). Facile synthesis of Cd-substituted zeolitic-imidazolate framework Cd-ZIF-8 and mixed-metal CdZn-ZIF-8. Microporous and Mesoporous Materials, 264: 35–42
https://doi.org/10.1016/j.micromeso.2017.12.032
120 K Sun, Y Qian, H L Jiang. (2023). Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angewandte Chemie International Edition, 62(15): e202217565
https://doi.org/10.1002/anie.202217565
121 X Tan, S Wang, N Han. (2023). Metal organic frameworks derived functional materials for energy and environment related sustainable applications. Chemosphere, 313: 137330
https://doi.org/10.1016/j.chemosphere.2022.137330
122 L Tang, Q C Lin, Z Jiang, J Hu, Z Liu, W M Liao, H Q Zhou, L H Chung, Z Xu, L Yu, J He. (2023). Nanoscaling and heterojunction for photocatalytic hydrogen evolution by bimetallic metal–organic frameworks. Advanced Functional Materials, 33(22): 2214450
https://doi.org/10.1002/adfm.202214450
123 T Tang, X Jin, X Tao, L Huang, S Shang. (2022). Low-crystalline Ce-based bimetallic MOFs synthesized via DBD plasma for excellent visible photocatalytic performance. Journal of Alloys and Compounds, 895: 162452
https://doi.org/10.1016/j.jallcom.2021.162452
124 Z Tong, H Wang, W An, G Li, W Cui, J Hu. (2024). FeCu bimetallic metal organic frameworks photo-Fenton synergy efficiently degrades organic pollutants: Structure, properties, and mechanism insight. Journal of Colloid and Interface Science, 661: 1011–1024
https://doi.org/10.1016/j.jcis.2024.01.212
125 S P Tripathy, S Subudhi, A Ray, P Behera, A Bhaumik, K Parida. (2022). Mixed-valence bimetallic Ce/Zr MOF-based nanoarchitecture: a visible-light-active photocatalyst for ciprofloxacin degradation and hydrogen evolution. Langmuir, 38(5): 1766–1780
https://doi.org/10.1021/acs.langmuir.1c02873
126 D Van Thiet, N T Tung, N Q Tuan, D N Tu. (2024). Facile synthesis of Cu-Zn bimetallic metal-organic framework for effective catalyst toward electrochemical reduction of CO2. Journal of Alloys and Compounds, 976: 173053
https://doi.org/10.1016/j.jallcom.2023.173053
127 T K Vo, D C Hau, V C Nguyen, D T Quang, J Kim. (2021). Double-solvent-assisted synthesis of bimetallic CuFe-incorporated MIL-101(Cr) for improved CO-adsorption performance and oxygen-resistant stability. Applied Surface Science, 546: 149087
https://doi.org/10.1016/j.apsusc.2021.149087
128 S Wadhawan, A Jain, J Nayyar, S K Mehta. (2020). Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: a review. Journal of Water Process Engineering, 33: 101038
https://doi.org/10.1016/j.jwpe.2019.101038
129 F Wang, Q Li, D Xu. (2017). Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Advanced Energy Materials, 7(23): 1700529
https://doi.org/10.1002/aenm.201700529
130 J Wang, R Abazari, S Sanati, A Ejsmont, J Goscianska, Y Zhou, D P Dubal. (2023). Water‐stable fluorous metal–organic frameworks with open metal sites and amine groups for efficient urea electrocatalytic oxidation. Small, 19(43): 2300673
https://doi.org/10.1002/smll.202300673
131 J X Wang, J Yin, O Shekhah, O M Bakr, M Eddaoudi, O F Mohammed. (2022a). Energy transfer in metal–organic frameworks for fluorescence sensing. ACS Applied Materials & Interfaces, 14(8): 9970–9986
https://doi.org/10.1021/acsami.1c24759
132 M Wang, L Yang, C Guo, X Liu, L He, Y Song, Q Zhang, X Qu, H Zhang, Z Zhang, S Fang. (2018a). Bimetallic Fe/Ti-Based metal–organic framework for persulfate-assisted visible light photocatalytic degradation of orange II. ChemistrySelect, 3(13): 3664–3674
https://doi.org/10.1002/slct.201703134
133 Q Wang, D Astruc. (2020). State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 120(2): 1438–1511
https://doi.org/10.1021/acs.chemrev.9b00223
134 T Wang, X Li, W Dai, Y Fang, H Huang. (2015). Enhanced adsorption of dibenzothiophene with zinc/copper-based metal–organic frameworks. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(42): 21044–21050
https://doi.org/10.1039/C5TA05204A
135 X Wang, C An, S Zhang, S Wang, J Li, Y Zhu. (2024a). Metal-free heterostructured 2D/1D polymeric carbon nitride/fibrous phosphorus for boosted photocatalytic hydrogen production from pure water. Separation and Purification Technology, 340: 126733
https://doi.org/10.1016/j.seppur.2024.126733
136 Y Wang, F Xu, L Zhou, H Li, Q Meng, L Jing, Z Tian, C Hou. (2024b). 2D N-doped graphene/CoFe MOFs heterostructure functionalized CNF aerogels impart highly efficient photocatalytic oxidation of gaseous VOCs. Journal of Environmental Chemical Engineering, 12(2): 112225
https://doi.org/10.1016/j.jece.2024.112225
137 Y Wang, J Xia, Y Gao. (2022b). Decoding and quantitative detection of antibiotics by a luminescent mixed-lanthanide-organic framework. Frontiers of Environmental Science & Engineering, 16(12): 154
138 Z Wang, C Wu, Z Zhang, Y Chen, W Deng, W Chen. (2021). Bimetallic Fe/Co-MOFs for tetracycline elimination. Journal of Materials Science, 56(28): 15684–15697
https://doi.org/10.1007/s10853-021-06280-8
139 Z Wang, X Yue, Q Xiang. (2024c). MOFs-based S-scheme heterojunction photocatalysts. Coordination Chemistry Reviews, 504: 215674
https://doi.org/10.1016/j.ccr.2024.215674
140 Z Wang, J H Zhang, J J Jiang, H P Wang, Z W Wei, X Zhu, M Pan, C Y Su. (2018b). A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(36): 17698–17705
https://doi.org/10.1039/C8TA06249H
141 F Wei, K Wang, W Li, Q Ren, L Qin, M Yu, Z Liang, M Nie, S Wang. (2023). Preparation of Fe/Ni-MOFs for the adsorption of ciprofloxacin from wastewater. Molecules, 28(11): 4411
https://doi.org/10.3390/molecules28114411
142 Q Wu, M S Siddique, Y Guo, M Wu, Y Yang, H Yang. (2021a). Low-crystalline bimetallic metal-organic frameworks as an excellent platform for photo-Fenton degradation of organic contaminants: Intensified synergism between hetero-metal nodes. Applied Catalysis B: Environmental, 286: 119950
https://doi.org/10.1016/j.apcatb.2021.119950
143 Q Wu, M S Siddique, W Yu. (2021b). Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: kinetics and mechanistic studies. Journal of Hazardous Materials, 401: 123261
https://doi.org/10.1016/j.jhazmat.2020.123261
144 X Wu, Z Bao, B Yuan, J Wang, Y Sun, H Luo, S Deng. (2013). Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation. Microporous and Mesoporous Materials, 180: 114–122
https://doi.org/10.1016/j.micromeso.2013.06.023
145 P Xia, M Liu, B Cheng, J Yu, L Zhang. (2018). Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2-production activity. ACS Sustainable Chemistry & Engineering, 6(7): 8945–8953
https://doi.org/10.1021/acssuschemeng.8b01300
146 Y Xu, L He, Z Yang, X Lu, C Li, X Yao, C Wu, Z Yao. (2025). Full solar-spectrum available Z-scheme MOF-on-MOF heterostructure for highly efficient photocatalytic VSCs removal. Separation and Purification Technology, 354: 128942
https://doi.org/10.1016/j.seppur.2024.128942
147 B C Yallur, V Adimule, W Nabgan, M S Raghu, F A Alharthi, B H Jeon, L Parashuram. (2023). Solar-light-sensitive Zr/Cu-(H2BDC-BPD) metal organic framework for photocatalytic dye degradation and hydrogen evolution. Surfaces and Interfaces, 36: 102587
https://doi.org/10.1016/j.surfin.2022.102587
148 X Yan, B Lin, C Ning, X Wang, Z Chen. (2024). Ternary-role of NiCo-MOFs for boosting the photocatalytic H2-evolution and long term stability of CdS. International Journal of Hydrogen Energy, 51: 1471–1483
https://doi.org/10.1016/j.ijhydene.2023.09.219
149 H Yang, X W He, F Wang, Y Kang, J Zhang. (2012). Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 22(41): 21849–21851
https://doi.org/10.1039/c2jm35602c
150 H Yang, D Zhang, Y Luo, W Yang, X Zhan, W Yang, H Hou. (2022). Highly efficient and selective visible‐light driven photoreduction of CO2 to CO by metal–organic frameworks–derived Ni–Co–O porous microrods. Small, 18(40): 2202939
https://doi.org/10.1002/smll.202202939
151 H Yang, M Zhang, Z Guan, J Yang. (2023a). Cu–Fe bimetallic MOF enhances the selectivity of photocatalytic CO2 reduction toward CO production. Catalysis Science & Technology, 13(21): 6238–6246
https://doi.org/10.1039/D3CY00842H
152 K Yang, L Chen, X Duan, G Song, J Sun, A Chen, X Xie. (2023b). Ligand-controlled bimetallic Co/Fe MOF xerogels for CO2 photocatalytic reduction. Ceramics International, 49(10): 16061–16069
https://doi.org/10.1016/j.ceramint.2023.01.204
153 M Yazdani-Aval, S Alizadeh, A Bahrami, D Nematollahi, F Ghorbani-Shahna. (2021). Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 247: 167841
https://doi.org/10.1016/j.ijleo.2021.167841
154 Z Ye, S Feng, W Wu, Y Zhou, Y Wang, X Dai, X Cao. (2022). Synthesis of Double MOFs composite material for visible light photocatalytic degradation of tetracycline. Solid State Sciences, 127: 106842
https://doi.org/10.1016/j.solidstatesciences.2022.106842
155 S A Younis, D K Lim, K H Kim, A Deep. (2020). Metalloporphyrinic metal-organic frameworks: controlled synthesis for catalytic applications in environmental and biological media. Advances in Colloid and Interface Science, 277: 102108
https://doi.org/10.1016/j.cis.2020.102108
156 K Yu, I Ahmed, D I Won, W I Lee, W S Ahn. (2020). Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere, 250: 126133
https://doi.org/10.1016/j.chemosphere.2020.126133
157 X Yue, L Cheng, J Fan, Q Xiang. (2022). 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and Fermi level modulation. Applied Catalysis B: Environmental, 304: 120979
https://doi.org/10.1016/j.apcatb.2021.120979
158 Y Zeng, N Guo, H Li, Q Wang, X Xu, Y Yu, X Han, H Yu. (2019). Construction of flower-like MoS2/Ag2S/Ag Z-scheme photocatalysts with enhanced visible-light photocatalytic activity for water purification. Science of the Total Environment, 659: 20–32
https://doi.org/10.1016/j.scitotenv.2018.12.333
159 D Zhang, M Wang, G Wei, R Li, N Wang, X Yang, Z Li, Y Zhang, Y Peng. (2023). High visible light responsive ZnIn2S4/TiO2–x induced by oxygen defects to boost photocatalytic hydrogen evolution. Applied Surface Science, 622: 156839
https://doi.org/10.1016/j.apsusc.2023.156839
160 L Zhang, J Zhang, H Yu, J Yu. (2022a). Emerging S-scheme photocatalyst. Advanced Materials, 34(11): 2107668
https://doi.org/10.1002/adma.202107668
161 M Zhang, Q Shang, Y Wan, Q Cheng, G Liao, Z Pan. (2019). Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Applied Catalysis B: Environmental, 241: 149–158
https://doi.org/10.1016/j.apcatb.2018.09.036
162 R Zhang, K Jia, Z Xue, Z Hu, N Yuan. (2024). Modulation of CdS nanoparticles decorated bimetallic Fe/Mn-MOFs Z-scheme heterojunctions for enhancing photocatalytic degradation of tetracycline. Journal of Alloys and Compounds, 992: 174462
https://doi.org/10.1016/j.jallcom.2024.174462
163 X Zhang, R Yu, D Wang, W Li, Y Zhang. (2022b). Green photocatalysis of organic pollutants by bimetallic Zn-Zr metal-organic framework catalyst. Frontiers in Chemistry, 10: 918941
https://doi.org/10.3389/fchem.2022.918941
164 J H Zhao, Y Wang, X Tang, Y H Li, F T Liu, Y Zhang, K Li. (2019). Enhanced photocatalytic hydrogen evolution over bimetallic zeolite imidazole framework-encapsulated CdS nanorods. Dalton Transactions, 48(11): 3560–3565
https://doi.org/10.1039/C8DT04964E
165 X Zhao, Z Li, Y Dou, X Jiang, F Bu, Z Liu, L Yu. (2024). Enhancing photocatalytic performance of Ni-Ti bimetallic metal-organic frameworks for tetracycline degradation under visible light irradiation. Materials Today. Communications, 39: 109015
https://doi.org/10.1016/j.mtcomm.2024.109015
166 W Zhen, H Gao, B Tian, J Ma, G Lu. (2016). Fabrication of low adsorption energy Ni–Mo cluster cocatalyst in metal–organic frameworks for visible photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 8(17): 10808–10819
https://doi.org/10.1021/acsami.5b12524
167 H Zhong, M Ghorbani-Asl, K H Ly, J Zhang, J Ge, M Wang, Z Liao, D Makarov, E Zschech, E Brunner. et al.. (2020). Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nature Communications, 11: 1409
https://doi.org/10.1038/s41467-020-15141-y
168 Y Zhou, R Abazari, J Chen, M Tahir, A Kumar, R R Ikreedeegh, E Rani, H Singh, A M Kirillov. (2022). Bimetallic metal–organic frameworks and MOF-derived composites: recent progress on electro- and photoelectrocatalytic applications. Coordination Chemistry Reviews, 451: 214264
https://doi.org/10.1016/j.ccr.2021.214264
169 Q L Zhu, J Li, Q Xu. (2013). Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance. Journal of the American Chemical Society, 135(28): 10210–10213
https://doi.org/10.1021/ja403330m
170 T Zhu, J Jiang, J Wang, Z Zhang, J Zhang, J Chang. (2022). Fe/Co redox and surficial hydroxyl potentiation in the FeCo2O4 enhanced Co3O4/persulfate process for TC degradation. Journal of Environmental Management, 313: 114855
https://doi.org/10.1016/j.jenvman.2022.114855
171 W Zhu, Y Wu, G Yi, X Su, Q Pan, S Shi, O Oderinde, G Xiao, C Zhang, Y Zhang. (2023). Synergistic photocatalysis of bimetal mixed ZIFs in enhancing degradation of organic pollutants: experimental and computational studies. Journal of Industrial and Engineering Chemistry, 119: 274–285
https://doi.org/10.1016/j.jiec.2022.11.045
172 Y Zou, E Rukundo, S Feng, X Chen, Y Liu. (2024). An unlocked core–shell Cu2O/NiCu-MOF ternary heterojunction on g-C3N4 enables highly efficient photocatalytic reduction of CO2 under visible light. Chemical Engineering Journal, 492: 152435
https://doi.org/10.1016/j.cej.2024.152435
[1] Jun Wang, Mingtao Huang, Bolin Li, Hassan Ibrahim Mohamed, Huanjie Song, Gezi Li, Ying Yu, Han Zhang, Weimin Xie. Distribution characteristics and removal rate of antibiotics and antibiotic resistance genes in different treatment processes of two drinking water plants[J]. Front. Environ. Sci. Eng., 2024, 18(9): 117-.
[2] Shuang Liu, Junhan Luo, Daniel-James Maguire, Liyuan Zheng, Zhe Wang, Yuexiang Lu. Synthesis of carbon nitride in potassium hydroxide molten salt for efficient uranium extraction from radioactive wastewater[J]. Front. Environ. Sci. Eng., 2024, 18(8): 99-.
[3] Jiuhui Qu, Jiaping Chen. Pathways toward a pollution-free planet and challenges[J]. Front. Environ. Sci. Eng., 2024, 18(6): 67-.
[4] Zheng-Yang Huo, Xiaoxiong Wang, Xia Huang, Menachem Elimelech. Intensifying electrified flow-through water treatment technologies via local environment modification[J]. Front. Environ. Sci. Eng., 2024, 18(6): 69-.
[5] Hui Huang, Rui Ma, Hongqiang Ren. Scientific and technological innovations of wastewater treatment in China[J]. Front. Environ. Sci. Eng., 2024, 18(6): 72-.
[6] Zhiguo Su, Lyujun Chen, Donghui Wen. Impact of wastewater treatment plant effluent discharge on the antibiotic resistome in downstream aquatic environments: a mini review[J]. Front. Environ. Sci. Eng., 2024, 18(3): 36-.
[7] Junchen Li, Sijie Lin, Liang Zhang, Yuheng Liu, Yongzhen Peng, Qing Hu. Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data[J]. Front. Environ. Sci. Eng., 2024, 18(3): 31-.
[8] Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen. Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction[J]. Front. Environ. Sci. Eng., 2024, 18(2): 17-.
[9] Abudukeremu Kadier, Gulizar Kurtoglu Akkaya, Raghuveer Singh, Noorzalila Muhammad Niza, Anand Parkash, Ghizlane Achagri, Prashant Basavaraj Bhagawati, Perumal Asaithambi, Zakaria Al-Qodah, Naser Almanaseer, Magdalena Osial, Sunday Joseph Olusegun, Agnieszka Pregowska, Eduardo Alberto López-Maldonado. Micro and nano-sized bubbles for sanitation and water reuse: from fundamentals to application[J]. Front. Environ. Sci. Eng., 2024, 18(12): 147-.
[10] Yunxin Huang, Shouyan Zhao, Keyu Chen, Baocheng Huang, Rencun Jin. A review of persulfate-based advanced oxidation system for decontaminating organic wastewater via non-radical regime[J]. Front. Environ. Sci. Eng., 2024, 18(11): 134-.
[11] Xufang Wang, Dongli Guo, Jinna Zhang, Yuan Yao, Yanbiao Liu. Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane for enhanced micropollutants degradation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 106-.
[12] Pelin Koyuncuoğlu, Gülbin Erden. Microplastics in municipal wastewater treatment plants: a case study of Denizli/Turkey[J]. Front. Environ. Sci. Eng., 2023, 17(8): 99-.
[13] Xiaohua Fu, Qingxing Zheng, Guomin Jiang, Kallol Roy, Lei Huang, Chang Liu, Kun Li, Honglei Chen, Xinyu Song, Jianyu Chen, Zhenxing Wang. Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model[J]. Front. Environ. Sci. Eng., 2023, 17(8): 98-.
[14] Zhou Zhang, Kai Huo, Tingxuan Yan, Xuwen Liu, Maocong Hu, Zhenhua Yao, Xuguang Liu, Tao Ye. Mechanistic insights into the selective photocatalytic degradation of dyes over TiO2/ZSM-11[J]. Front. Environ. Sci. Eng., 2023, 17(8): 101-.
[15] Shengqi Zhang, Qian Yin, Siqin Wang, Xin Yu, Mingbao Feng. Integrated risk assessment framework for transformation products of emerging contaminants: what we know and what we should know[J]. Front. Environ. Sci. Eng., 2023, 17(7): 91-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed