|
|
Advances in bimetallic metal organic frameworks (BMOFs) based photocatalytic materials for energy production and waste water treatment |
Pankaj Sharma1,3, Amit Kumar1,2( ), Tongtong Wang2( ), Mika Sillanpää4, Gaurav Sharma1, Pooja Dhiman1 |
1. International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India 2. Institute for Interdisciplinary and Innovate Research, Xi’an University of Architecture and Technology, Xi’an 710055, China 3. School of Physics & Materials Science, Shoolini University, Solan 173229, India 4. Department of Biological and Chemical Engineering, Aarhus University, Aarhus 8000, Denmark |
|
|
Abstract ● BMOFs offer high conductivity, active sites, and photo-responsiveness. ● BMOFs have adjustable active sites for high photocatalytic activity. ● Various tailoring strategies for improving BMOFs properties were summarized. ● Advances in BMOFs materials for photocatalytic applications are discussed. ● BMOFs are integrated to form Z and S-scheme heterojunctions. Photocatalysis contributes significantly to global economic development and has promising environment application like degradation of organic contamination and energy production. The initiatives are concentrated on accelerating the reaction rates and designing novel photocatalysts for improving the ability and enhance the selectivity toward specific products. Recently, bimetallic nanoparticles (NP)/metal-organic frameworks (BMOFs), gained broader interests in heterogeneous catalysis due to their unique photocatalytic properties. Coupling of bimetallic nanoparticles with metal-organic frameworks has found to be a highly effective strategy to improve the photocatalytic activity and broaden the reaction scope. In addition, BMOFs have been found to have exceptional capabilities in breaking down organic pollutants, reducing heavy metals and producing energy. These remarkable abilities are believed to be a result of the combined effects of the bimetallic centers. This review summarizes and analyses the recent advancements in BMOFs based materials especially heterojunctions for degradation of organic pollutants and also in energy production. Different synthesis techniques of designing BMOFs composites are highlighted in this study. The underlying mechanism synergistically enhanced performance in heterogeneous catalysis is thoroughly examined. This review also explores the challenges and possible future pathways in photocatalysis using BMOFs. There are several important challenges that need to be addressed in order to improve the durability of BMOFs in real-world conditions, optimize the synthesis process for industrial applications and gain a deeper understanding of the complicated structures that influence their photocatalytic processes.
|
Keywords
Metal organic frameworks
Heterojunctions
Photocatalysis
Bimetallic
Energy production
Water treatment
|
Corresponding Author(s):
Amit Kumar,Tongtong Wang
|
Issue Date: 15 October 2024
|
|
1 |
R M Abdelhameed, M Abu-Elghait, M El-Shahat. (2020). Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH2): enhancement the biological and visible‐light photocatalytic activity. Journal of Environmental Chemical Engineering, 8(5): 104107
https://doi.org/10.1016/j.jece.2020.104107
|
2 |
N S Abdul Mubarak, K Y Foo, R Schneider, R M Abdelhameed, S Sabar. (2022). The chemistry of MIL-125 based materials: structure, synthesis, modification strategies and photocatalytic applications. Journal of Environmental Chemical Engineering, 10(1): 106883
https://doi.org/10.1016/j.jece.2021.106883
|
3 |
I Ahmad, Y Zou, J Yan, Y Liu, S Shukrullah, M Y Naz, H Hussain, W Q Khan, N R Khalid. (2023). Semiconductor photocatalysts: a critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Advances in Colloid and Interface Science, 311: 102830
https://doi.org/10.1016/j.cis.2022.102830
|
4 |
M A Al-Nuaim, A A Alwasiti, Z Y Shnain. (2023). The photocatalytic process in the treatment of polluted water. Chemicke Zvesti, 77(2): 677–701
https://doi.org/10.1007/s11696-022-02468-7
|
5 |
A K Aldhalmi, S Alkhayyat, Albahadly W K Younis, M A Jawad, K M Alsaraf, Muedii Z A H Riyad, F A Ali, M Ahmed, M Asiri. et al.. (2023). A novel fabricate of iron and nickel-introduced bimetallic MOFs for quickly catalytic degradation via the peroxymonosulfate, antibacterial efficiency, and cytotoxicity assay. Inorganic Chemistry Communications, 153: 110823
https://doi.org/10.1016/j.inoche.2023.110823
|
6 |
I A Alsafari, K Chaudhary, M F Warsi, A Z Warsi, M Waqas, M Hasan, A Jamil, M Shahid. (2023). A facile strategy to fabricate ternary WO3/CuO/rGO nano-composite for the enhanced photocatalytic degradation of multiple organic pollutants and antimicrobial activity. Journal of Alloys and Compounds, 938: 168537
https://doi.org/10.1016/j.jallcom.2022.168537
|
7 |
P Amo-Ochoa, G Givaja, P J S Miguel, O Castillo, F Zamora. (2007). Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF. Inorganic Chemistry Communications, 10(8): 921–924
https://doi.org/10.1016/j.inoche.2007.04.024
|
8 |
K An, H Ren, D Yang, Z Zhao, Y Gao, Y Chen, J Tan, W Wang, Z Jiang. (2021). Nitrogenase-inspired bimetallic metal organic frameworks for visible-light-driven nitrogen fixation. Applied Catalysis B: Environmental, 292: 120167
https://doi.org/10.1016/j.apcatb.2021.120167
|
9 |
N Arif, Y Z Lin, K Wang, Y C Dou, Y Zhang, K Li, S Liu, F T Liu. (2021). Bimetallic zeolite-imidazole framework-based heterostructure with enhanced photocatalytic hydrogen production activity. RSC Advances, 11(16): 9048–9056
https://doi.org/10.1039/D1RA00781E
|
10 |
G Ayoub, B Karadeniz, A J Howarth, O K Farha, I Đilović, L S Germann, R E Dinnebier, K Užarević, T Friščić. (2019). Rational synthesis of mixed-metal microporous metal–organic frameworks with controlled composition using mechanochemistry. Chemistry of Materials, 31(15): 5494–5501
https://doi.org/10.1021/acs.chemmater.9b01068
|
11 |
S Bai, N Zhang, C Gao, Y Xiong. (2018). Defect engineering in photocatalytic materials. Nano Energy, 53: 296–336
https://doi.org/10.1016/j.nanoen.2018.08.058
|
12 |
A Balapure, J Ray Dutta, R Ganesan. (2024). Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. RSC Applied Interfaces, 1(1): 43–69
https://doi.org/10.1039/D3LF00126A
|
13 |
S Banerjee, S C Pillai, P Falaras, K E O’Shea, J A Byrne, D D Dionysiou. (2014). New insights into the mechanism of visible light photocatalysis. Journal of Physical Chemistry Letters, 5(15): 2543–2554
https://doi.org/10.1021/jz501030x
|
14 |
G Bjørklund, Y Semenova, L Pivina, M Dadar, M M Rahman, J Aaseth, S Chirumbolo. (2020). Uranium in drinking water: a public health threat. Archives of Toxicology, 94(5): 1551–1560
https://doi.org/10.1007/s00204-020-02676-8
|
15 |
Y Cao, L Yue, Z Li, Y Han, J Lian, H Qin, S He. (2023). Construction of Sn-Bi-MOF/Ti3C2 schottky junction for photocatalysis of tetracycline: performance and degradation mechanism. Applied Surface Science, 609: 155191
https://doi.org/10.1016/j.apsusc.2022.155191
|
16 |
H Chang, Y Li, X Jia, Q Shen, Q Li, X Liu, J Xue. (2022). Construction of an amino-rich Ni/Ti bimetallic MOF composite with expanded light absorption and enhanced carrier separation for efficient photocatalytic H2 evolution. Materials Science in Semiconductor Processing, 150: 106914
https://doi.org/10.1016/j.mssp.2022.106914
|
17 |
C Chen, N Suo, X Han, X He, Z Dou, Z Lin, L Cui. (2021a). Tuning the morphology and electron structure of metal-organic framework-74 as bifunctional electrocatalyst for OER and HER using bimetallic collaboration strategy. Journal of Alloys and Compounds, 865: 158795
https://doi.org/10.1016/j.jallcom.2021.158795
|
18 |
C Chen, S Wang, F Han, X Zhou, B Li. (2024a). Synergy of rapid adsorption and photo-Fenton-like degradation in CoFe-MOF/TiO2/PVDF composite membrane for efficient removal of antibiotics from water. Separation and Purification Technology, 333: 125942
https://doi.org/10.1016/j.seppur.2023.125942
|
19 |
J Chen, J Wei, H Zhang, X Wang, L Fu, T H Yang. (2022). Construction of CuCd-BMOF/GO composites based on phosphonate and their boosted visible-light photocatalytic degradation. Applied Surface Science, 594: 153493
https://doi.org/10.1016/j.apsusc.2022.153493
|
20 |
J Chen, Y Zhu, S Kaskel. (2021b). Porphyrin‐based metal–organic frameworks for biomedical applications. Angewandte Chemie International Edition, 60(10): 5010–5035
https://doi.org/10.1002/anie.201909880
|
21 |
L Chen, X Ren, N S Alharbi, C Chen. (2021c). Fabrication of a novel Co/Ni-MOFs@BiOI composite with boosting photocatalytic degradation of methylene blue under visible light. Journal of Environmental Chemical Engineering, 9(5): 106194
https://doi.org/10.1016/j.jece.2021.106194
|
22 |
L Chen, H F Wang, C Li, Q Xu. (2020). Bimetallic metal–organic frameworks and their derivatives. Chemical Science, 11(21): 5369–5403
https://doi.org/10.1039/D0SC01432J
|
23 |
S Chen, X Xu, H Gao, J Wang, A Li, X Zhang. (2021d). Fine-tuning the metal oxo cluster composition and phase structure of Ni/Ti bimetallic MOFs for efficient CO2 reduction. Journal of Physical Chemistry C, 125(17): 9200–9209
https://doi.org/10.1021/acs.jpcc.1c03239
|
24 |
T Chen, C Lu, J Wang, Y Kong, T Liu, S Ying, X Ma, F Y Yi. (2024b). Bimetal-regulated indium-based metal-organic framework family realizing highly efficient photo/electrocatalytic hydrogen evolution reaction. Electrochimica Acta, 480: 143927
https://doi.org/10.1016/j.electacta.2024.143927
|
25 |
W Cheng, Y Wang, S Ge, X Ding, Z Cui, Q Shao. (2021). One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties. Advanced Composites and Hybrid Materials, 4(1): 150–161
https://doi.org/10.1007/s42114-020-00199-5
|
26 |
W K Chong, B J Ng, L L Tan, S P Chai. (2022). Recent advances in nanoscale engineering of ternary metal sulfide-based heterostructures for photocatalytic water splitting applications. Energy & Fuels, 36(8): 4250–4267
https://doi.org/10.1021/acs.energyfuels.2c00291
|
27 |
T R Cook, Y R Zheng, P J Stang. (2013). Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chemical Reviews, 113(1): 734–777
https://doi.org/10.1021/cr3002824
|
28 |
B Dai, Y Li, J Xu, C Sun, S Li, W Zhao. (2022a). Photocatalytic oxidation of tetracycline, reduction of hexavalent chromium and hydrogen evolution by Cu2O/g-C3N4 S-scheme photocatalyst: performance and mechanism insight. Applied Surface Science, 592: 153309
https://doi.org/10.1016/j.apsusc.2022.153309
|
29 |
R Dai, H Han, Y Zhu, X Wang, Z Wang. (2022b). Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds. Frontiers of Environmental Science & Engineering, 16(4): 40
|
30 |
E A Dolgopolova, A J Brandt, O A Ejegbavwo, A S Duke, T D Maddumapatabandi, R P Galhenage, B W Larson, O G Reid, S C Ammal, A Heyden. et al.. (2017). Electronic properties of bimetallic metal–organic frameworks (MOFs): tailoring the density of electronic states through MOF modularity. Journal of the American Chemical Society, 139(14): 5201–5209
https://doi.org/10.1021/jacs.7b01125
|
31 |
M Duan, L Jiang, G Zeng, D Wang, W Tang, J Liang, H Wang, D He, Z Liu, L Tang. (2020). Bimetallic nanoparticles/metal-organic frameworks: Synthesis, applications and challenges. Applied Materials Today, 19: 100564
https://doi.org/10.1016/j.apmt.2020.100564
|
32 |
W A El-Yazeed, A I Ahmed. (2019). Monometallic and bimetallic Cu–Ag MOF/MCM-41 composites: structural characterization and catalytic activity. RSC Advances, 9(33): 18803–18813
https://doi.org/10.1039/C9RA03310F
|
33 |
C I Ezugwu, S Ghosh, S Bera, M Faraldos, M E G Mosquera, R Rosal. (2023). Bimetallic metal-organic frameworks for efficient visible-light-driven photocatalytic CO2 reduction and H2 generation. Separation and Purification Technology, 308: 122868
https://doi.org/10.1016/j.seppur.2022.122868
|
34 |
M Fan, J Yan, Q Cui, R Shang, Q Zuo, L Gong, W Zhang. (2023). Synthesis and peroxide activation mechanism of bimetallic MOF for water contaminant degradation: a review. Molecules (Basel, Switzerland), 28(8): 3622
https://doi.org/10.3390/molecules28083622
|
35 |
L Feng, G Ren, F Wang, W Yang, G Zhu, Q Pan. (2019). Two bimetallic metal–organic frameworks capable of direct photocatalytic degradation of dyes under visible light. Transition Metal Chemistry, 44(3): 275–281
https://doi.org/10.1007/s11243-018-0292-7
|
36 |
S D Gallegos-Cerda, J D Hernández-Varela, Pérez J J Chanona, C A Huerta-Aguilar, Victoriano L González, B Arredondo-Tamayo, Hernández O Reséndiz. (2024). Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO2 nanoparticles for the degradation of organic dyes. Carbohydrate Polymers, 324: 121476
https://doi.org/10.1016/j.carbpol.2023.121476
|
37 |
W Gao, F Wang, M Ou, Q Wu, L Wang, H Zhu, Y Li, N Kong, J Qiu, S Hu, S Song. (2023a). Enhancing degradation of norfloxacin using chrysanthemum-shaped bimetallic NH2-MIL-53(Fe/Ti) photocatalysts under visible light irradiation. Journal of Environmental Chemical Engineering, 11(5): 111050
https://doi.org/10.1016/j.jece.2023.111050
|
38 |
Y Gao, Y Huang, M Bao, X Zhang, X Zhou, L Liu, Z Zhang, L Zeng, J Ke. (2023b). Ti-doped Zr-UiO-66-NH2 boosting charge transfer for enhancing the synergistic removal of Cr(VI) and TC-HCl in wastewater. Process Safety and Environmental Protection, 172: 857–868
https://doi.org/10.1016/j.psep.2023.02.090
|
39 |
V García-Salcido, P Mercado-Oliva, J L Guzmán-Mar, B I Kharisov, L Hinojosa-Reyes. (2022). MOF-based composites for visible-light-driven heterogeneous photocatalysis: synthesis, characterization and environmental application studies. Journal of Solid State Chemistry, 307: 122801
https://doi.org/10.1016/j.jssc.2021.122801
|
40 |
S Głowniak, B Szczęśniak, J Choma, M Jaroniec. (2021). Mechanochemistry: toward green synthesis of metal–organic frameworks. Materials Today, 46: 109–124
https://doi.org/10.1016/j.mattod.2021.01.008
|
41 |
A Gómez-Avilés, M Peñas-Garzón, J Bedia, D D Dionysiou, J J Rodríguez, C Belver. (2019). Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Applied Catalysis B: Environmental, 253: 253–262
https://doi.org/10.1016/j.apcatb.2019.04.040
|
42 |
N Goodarzi, Z Ashrafi-Peyman, E Khani, A Z Moshfegh. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7): 1102
https://doi.org/10.3390/catal13071102
|
43 |
Y Gu, Y N Wu, L Li, W Chen, F Li, S Kitagawa. (2017). Controllable modular growth of hierarchical MOF-on-MOF architectures. Angewandte Chemie International Edition, 56(49): 15658–15662
https://doi.org/10.1002/anie.201709738
|
44 |
C Guo, Y Ma, Y Zou, T Wang, J Wang. (2024). Preparation strategy of bimetallic MOF hollow photocatalysts for hydrogen evolution. International Journal of Hydrogen Energy, 51: 950–961
https://doi.org/10.1016/j.ijhydene.2023.09.076
|
45 |
S H Guo, X J Qi, H M Zhou, J Zhou, X H Wang, M Dong, X Zhao, C Y Sun, X L Wang, Z M Su. (2020). A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8(23): 11712–11718
https://doi.org/10.1039/D0TA00205D
|
46 |
S Gupta, R Kumar. (2024). Enhanced photocatalytic performance of the N-rGO/g-C3N4 nanocomposite for efficient solar-driven water remediation. Nanoscale, 16(12): 6109–6131
https://doi.org/10.1039/D3NR06203A
|
47 |
C Hou, W Chen, L Fu, S Zhang, C Liang, Y Wang. (2020). Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A. Carbohydrate Polymers, 247: 116731
https://doi.org/10.1016/j.carbpol.2020.116731
|
48 |
H Hou, X Zhang. (2020). Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chemical Engineering Journal, 395: 125030
https://doi.org/10.1016/j.cej.2020.125030
|
49 |
B Hu, J Y Yuan, J Y Tian, M Wang, X Wang, L He, Z Zhang, Z W Wang, C S Liu. (2018). Co/Fe-bimetallic organic framework-derived carbon-incorporated cobalt–ferric mixed metal phosphide as a highly efficient photocatalyst under visible light. Journal of Colloid and Interface Science, 531: 148–159
https://doi.org/10.1016/j.jcis.2018.07.037
|
50 |
Y Huo, J Zhang, Z Wang, K Dai, C Pan, C Liang. (2021). Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. Journal of Colloid and Interface Science, 585: 684–693
https://doi.org/10.1016/j.jcis.2020.10.048
|
51 |
M Z Hussain, Z Yang, Z Huang, Q Jia, Y Zhu, Y Xia. (2021). Recent advances in metal–organic frameworks derived nanocomposites for photocatalytic applications in energy and environment. Advanced Science, 8(14): 2100625
https://doi.org/10.1002/advs.202100625
|
52 |
V P Indrakanti, J D Kubicki, H H Schobert. (2011). Photoinduced activation of CO2 on TiO2 surfaces: quantum chemical modeling of CO2 adsorption on oxygen vacancies. Fuel Processing Technology, 92(4): 805–811
https://doi.org/10.1016/j.fuproc.2010.09.007
|
53 |
M Ismael. (2023). Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: a review. Journal of Alloys and Compounds, 931: 167469
https://doi.org/10.1016/j.jallcom.2022.167469
|
54 |
A Jagan Mohan Reddy, K Suresh, N Sujith Benarzee, M S Surendra Babu. (2023). Synthesis and characterization of Zn-based bimetallic microporous MOF composites for effective formaldehyde sensing at room temperature. Inorganic Chemistry Communications, 158: 111612
https://doi.org/10.1016/j.inoche.2023.111612
|
55 |
L Jiao, Y Wang, H L Jiang, Q Xu. (2018). Metal–organic frameworks as platforms for catalytic applications. Advanced Materials, 30(37): 1703663
https://doi.org/10.1002/adma.201703663
|
56 |
S Kampouri, K C Stylianou. (2019). Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catalysis, 9(5): 4247–4270
https://doi.org/10.1021/acscatal.9b00332
|
57 |
Y Kang, Y Yang, L C Yin, X Kang, L Wang, G Liu, H M Cheng. (2016). Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Advanced Materials, 28(30): 6471–6477
https://doi.org/10.1002/adma.201601567
|
58 |
S Karamat, T Akhter, Hassan S Ul, M Faheem, A Mahmood, W Al-Masry, S Razzaque, S Ashraf, T Kim, S K Han. et al.. (2024). Recycling of polyethylene terephthalate to bismuth-embedded bimetallic MOFs as photocatalysts toward removal of cationic dye in water. Journal of Industrial and Engineering Chemistry, 137: 503–513
https://doi.org/10.1016/j.jiec.2024.03.037
|
59 |
E Karamian, S Sharifnia. (2016). On the general mechanism of photocatalytic reduction of CO2. Journal of CO2 Utilization, 16: 194–203
https://doi.org/10.1016/j.jcou.2016.07.004
|
60 |
S Kaushal, P Pal Singh, N Kaur. (2022). Metal organic framework-derived Zr/Cu bimetallic photocatalyst for the degradation of tetracycline and organic dyes. Environmental Nanotechnology, Monitoring & Management, 18: 100727
https://doi.org/10.1016/j.enmm.2022.100727
|
61 |
M S Khan, Y Li, D S Li, J Qiu, X Xu, H Y Yang. (2023). A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. Nanoscale Advances, 5: 6318–6348
https://doi.org/10.1039/D3NA00627A
|
62 |
Ü Kökçam-Demir, A Goldman, L Esrafili, M Gharib, A Morsali, O Weingart, C Janiak. (2020). Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews, 49(9): 2751–2798
https://doi.org/10.1039/C9CS00609E
|
63 |
Ž Kovačič, B Likozar, M Huš. (2020). Photocatalytic CO2 reduction: A review of Ab Initio mechanism, kinetics, and multiscale modeling simulations. ACS Catalysis, 10(24): 14984–15007
https://doi.org/10.1021/acscatal.0c02557
|
64 |
A Kumar, S Rana, G Sharma, P Dhiman, M I Shekh, F J Stadler. (2023). Recent advances in zeolitic imidazole frameworks based photocatalysts for organic pollutant degradation and clean energy production. Journal of Environmental Chemical Engineering, 11(5): 110770
https://doi.org/10.1016/j.jece.2023.110770
|
65 |
A Kumar, P Sharma, T Wang, C W Lai, G Sharma, P Dhiman. (2024). Recent progresses in improving the photocatalytic potential of Bi4Ti3O12 as emerging material for environmental and energy applications. Journal of Industrial and Engineering Chemistry, 138: 1–16
https://doi.org/10.1016/j.jiec.2024.03.054
|
66 |
A Kumari, S Kaushal, P P Singh. (2021). Bimetallic metal organic frameworks heterogeneous catalysts: Design, construction, and applications. Materials Today. Energy, 20: 100667
https://doi.org/10.1016/j.mtener.2021.100667
|
67 |
P Kumari, N Bahadur, L Kong, L A O’Dell, A Merenda, L F Dumée. (2022). Engineering Schottky-like and heterojunction materials for enhanced photocatalysis performance: a review. Materials Advances, 3(5): 2309–2323
https://doi.org/10.1039/D1MA01062J
|
68 |
J S M Lee, Y I Fujiwara, S Kitagawa, S Horike. (2019). Homogenized bimetallic catalysts from metal–organic framework alloys. Chemistry of Materials, 31(11): 4205–4212
https://doi.org/10.1021/acs.chemmater.9b01093
|
69 |
K Lei, M Kou, Z Ma, Y Deng, L Ye, Y Kong. (2019). A comparative study on photocatalytic hydrogen evolution activity of synthesis methods of CDs/ZnIn2S4 photocatalysts. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 574: 105–114
https://doi.org/10.1016/j.colsurfa.2019.04.073
|
70 |
M Li, J Yuan, G Wang, L Yang, J Shao, H Li, J Lu. (2022a). One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A. Separation and Purification Technology, 298: 121658
https://doi.org/10.1016/j.seppur.2022.121658
|
71 |
P Li, L Dong, H Jin, J Yang, Y Tu, C Wang, Y He. (2022b). Fluorescence detection of phosphate in an aqueous environment by an aluminum-based metal-organic framework with amido functionalized ligands. Frontiers of Environmental Science & Engineering, 16(12): 159
|
72 |
S Li, H Li, Y Wang, Q Liang, M Zhou, D Guo, Z Li. (2024a). Mixed-valence bimetallic Ce/Zr-NH2-UiO-66 modified with CdIn2S4 to form S-scheme heterojunction for boosting photocatalytic CO2 reduction. Separation and Purification Technology, 333: 125994
https://doi.org/10.1016/j.seppur.2023.125994
|
73 |
S Li, R Yan, M Cai, W Jiang, M Zhang, X Li. (2023). Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification. Journal of Materials Science and Technology, 164: 59–67
https://doi.org/10.1016/j.jmst.2023.05.009
|
74 |
T Li, N Tsubaki, Z Jin. (2024b). S-scheme heterojunction in photocatalytic hydrogen production. Journal of Materials Science and Technology, 169: 82–104
https://doi.org/10.1016/j.jmst.2023.04.049
|
75 |
X Li, J Xie, C Jiang, J Yu, P Zhang. (2018). Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental Science & Engineering, 12(5): 14
https://doi.org/10.1007/s11783-018-1076-1
|
76 |
Z Li, D Li, R Xue, L Zang, H Ma, S Guo, L Shi. (2022c). Ni-MOL/In2Se3 heterostructure construction with mixed metal (Ti/Ni) for efficient photocatalytic tetracycline degradation. Chemosphere, 291: 132743
https://doi.org/10.1016/j.chemosphere.2021.132743
|
77 |
Q Liang, L Zhong, C Du, Y Luo, Y Zheng, S Li, Q Yan. (2018). Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy, 47: 257–265
https://doi.org/10.1016/j.nanoen.2018.02.048
|
78 |
L Liu, X L Chen, M Cai, R K Yan, H L Cui, H Yang, J J Wang. (2023). Zn-MOFs composites loaded with silver nanoparticles are used for fluorescence sensing pesticides, Trp, EDA and photocatalytic degradation of organic dyes. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 289: 122228
https://doi.org/10.1016/j.saa.2022.122228
|
79 |
S Liu, Y Qiu, Y Liu, W Zhang, Z Dai, D Srivastava, A Kumar, Y Pan, J Liu. (2022). Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 46(29): 13818–13837
https://doi.org/10.1039/D2NJ01994A
|
80 |
Y Liu, L Yang, Y Hou, Z Zhang, X Xiao, H Yue, X Liu. (2024). 2‐Pyran‐4‐Ylidene malononitrile based conjugated microporous polymers as metal‐free heterogeneous photocatalysts for organic synthesis. Macromolecular Rapid Communications, 45(12): 2400083
https://doi.org/10.1002/marc.202400083
|
81 |
J Lu, S Gu, H Li, Y Wang, M Guo, G Zhou. (2023a). Review on multi-dimensional assembled S-scheme heterojunction photocatalysts. Journal of Materials Science and Technology, 160: 214–239
https://doi.org/10.1016/j.jmst.2023.03.027
|
82 |
W Lu, Z Wei, Z Y Gu, T F Liu, J Park, J Park, J Tian, M Zhang, Q Zhang, Iii T Gentle. et al.. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 43(16): 5561–5593
https://doi.org/10.1039/C4CS00003J
|
83 |
Y Lu, X Li, C Giovanni, B Wang. (2023b). Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science & Engineering, 17(7): 89
|
84 |
J Luo, X Luo, Y Gan, X Xu, B Xu, Z Liu, C Ding, Y Cui, C Sun. (2023). Advantages of bimetallic organic frameworks in the adsorption, catalysis and detection for water contaminants. Nanomaterials, 13(15): 2194
https://doi.org/10.3390/nano13152194
|
85 |
S Lv, Y Sun, D Liu, C Song, D Wang. (2023). Construction of S-Scheme heterojunction Ni11(HPO3)8(OH)6/CdS photocatalysts with open framework surface for enhanced H2 evolution activity. Journal of Colloid and Interface Science, 634: 148–158
https://doi.org/10.1016/j.jcis.2022.12.041
|
86 |
C Ma, G Gao, H Liu, Y Liu, X Zhang. (2022). Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 644: 120167
https://doi.org/10.1016/j.memsci.2021.120167
|
87 |
M D Makhafola, S A Balogun, K D Modibane. (2024). A comprehensive review of bimetallic nanoparticle–graphene oxide and bimetallic nanoparticle–metal–organic framework nanocomposites as photo-, electro-, and photoelectrocatalysts for hydrogen evolution reaction. Energies, 17: 1646
https://doi.org/10.3390/en17071646
|
88 |
M Y Masoomi, A Morsali, A Dhakshinamoorthy, H Garcia. (2019). Mixed‐metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design. Angewandte Chemie, 131(43): 15330–15347
https://doi.org/10.1002/ange.201902229
|
89 |
X Meng, C Lv, X Wen, X Hou, C Li, J He. (2023). Construction of novel bimetallic Ti/Ce-MOFs for ratiometric fluorescence sensing of trace copper and photocatalytic reduction of chromium (VI). Microchemical Journal, 193: 109143
https://doi.org/10.1016/j.microc.2023.109143
|
90 |
M Mihaylov, K Chakarova, S Andonova, N Drenchev, E Ivanova, A Sabetghadam, B Seoane, J Gascon, F Kapteijn, K Hadjiivanov. (2016). Adsorption forms of CO2 on MIL-53(Al) and NH2-MIL-53(Al) as revealed by FTIR spectroscopy. Journal of Physical Chemistry C, 120(41): 23584–23595
https://doi.org/10.1021/acs.jpcc.6b07492
|
91 |
K Mishra, N Devi, S S Siwal, V K Gupta, V K Thakur. (2023). Hybrid semiconductor photocatalyst nanomaterials for energy and environmental applications: fundamentals, designing, and prospects. Advanced Sustainable Systems, 7(8): 2300095
https://doi.org/10.1002/adsu.202300095
|
92 |
M M H Mondol, S H Jhung. (2021). Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chemical Engineering Journal, 421: 129688
https://doi.org/10.1016/j.cej.2021.129688
|
93 |
S Nahar, M F M Zain, H Kadhum A a, H A Hasan, M R Hasan. (2017). Advances in photocatalytic CO2 reduction with water: a aeview. Materials, 10(6): 629
https://doi.org/10.3390/ma10060629
|
94 |
H T T Nguyen, K N T Tran, L Van Tan, V A Tran, V D Doan, T Lee, T D Nguyen. (2021a). Microwave-assisted solvothermal synthesis of bimetallic metal-organic framework for efficient photodegradation of organic dyes. Materials Chemistry and Physics, 272: 125040
https://doi.org/10.1016/j.matchemphys.2021.125040
|
95 |
M B Nguyen, G H Le, T D Nguyen, Q K Nguyen, T T T Pham, T Lee, T A Vu. (2021b). Bimetallic Ag-Zn-BTC/GO composite as highly efficient photocatalyst in the photocatalytic degradation of reactive yellow 145 dye in water. Journal of Hazardous Materials, 420: 126560
https://doi.org/10.1016/j.jhazmat.2021.126560
|
96 |
M B Nguyen, L H T Nguyen, M T Le, N Q Tran, N H T Tran, P H Tran, A T T Pham, L D Tran, T L H Doan. (2024). Engineering direct Z-scheme GCN/ bimetallic-MOF heterojunctions as efficient and recyclable photocatalysts for enhancing degradation of RR 195 under visible light. Journal of Industrial and Engineering Chemistry, 134: 217–230
https://doi.org/10.1016/j.jiec.2023.12.052
|
97 |
M B Nguyen, D T Sy, V T K Thoa, N T Hong, H V Doan. (2022). Bimetallic Co-Fe-BTC/CN nanocomposite synthesised via a microwave-assisted hydrothermal method for highly efficient Reactive Yellow 145 dye photodegradation. Journal of the Taiwan Institute of Chemical Engineers, 140: 104543
https://doi.org/10.1016/j.jtice.2022.104543
|
98 |
R A Oliveira, M A M Castro, D L Porto, C F S Aragão, R P Souza, U C Silva, M R D Bomio, F V Motta. (2024). Immobilization of Bi2MoO6/ZnO heterojunctions on glass substrate: design of drug and dye mixture degradation by solar-driven photocatalysis. Journal of Photochemistry and Photobiology A Chemistry, 452: 115619
https://doi.org/10.1016/j.jphotochem.2024.115619
|
99 |
T Panda, S Horike, K Hagi, N Ogiwara, K Kadota, T Itakura, M Tsujimoto, S Kitagawa. (2017). Mechanical alloying of metal–organic frameworks. Angewandte Chemie, 129(9): 2453–2457
https://doi.org/10.1002/ange.201612587
|
100 |
M Pavel, C Anastasescu, R N State, A Vasile, F Papa, I Balint. (2023). Photocatalytic degradation of organic and inorganic pollutants to harmless end products: assessment of Practical Application Potential for Water and Air Cleaning. Materials, 13(2): 380
|
101 |
R Peña, R Romero, D Amado-Piña, R Natividad. (2024). Cu/TiO2 photo-catalyzed CO2 chemical reduction in a multiphase capillary reactor. Topics in Catalysis, 67: 377–393
https://doi.org/10.1007/s11244-023-01875-8
|
102 |
M Y Qi, M Conte, M Anpo, Z R Tang, Y J Xu. (2021). Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chemical Reviews, 121(21): 13051–13085
https://doi.org/10.1021/acs.chemrev.1c00197
|
103 |
Y Qi, Z Cai, C Zheng, Z Cheng, S Fan, Y S Feng. (2024). Bimetallic synergy significantly enhances the photocatalytic performance of lanthanide porphyrin-based MOFs: efficient photocatalytic oxidation of benzyl alcohol and benzylamine under mild conditions in air. Journal of Catalysis, 429: 115226
https://doi.org/10.1016/j.jcat.2023.115226
|
104 |
S Rana, A Kumar, G Sharma, P Dhiman, A García-Penas, F J Stadler. (2023). Recent advances in perovskite-based Z-scheme and S-scheme heterojunctions for photocatalytic CO2 reduction. Chemosphere, 339: 139765
https://doi.org/10.1016/j.chemosphere.2023.139765
|
105 |
S Rana, A Kumar, T T Wang, G Sharma, P Dhiman, A García-Penas. (2024). A review of carbon material-based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation. New Carbon Materials, 39(3): 458–482
https://doi.org/10.1016/S1872-5805(24)60857-7
|
106 |
M A Rauf, S S Ashraf. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151(1−3): 10–18
https://doi.org/10.1016/j.cej.2009.02.026
|
107 |
S Ren, J Dong, X Duan, T Cao, H Yu, Y Lu, D Zhou. (2023). A novel (Zr/Ce)UiO-66(NH2)@g-C3N4 Z-scheme heterojunction for boosted tetracycline photodegradation via effective electron transfer. Chemical Engineering Journal, 460: 141884
https://doi.org/10.1016/j.cej.2023.141884
|
108 |
M Ronda-Lloret, I Pellicer-Carreño, A Grau-Atienza, R Boada, S Diaz-Moreno, J Narciso-Romero, J C Serrano-Ruiz, A Sepúlveda-Escribano, E V Ramos-Fernandez. (2021). Mixed-valence Ce/Zr metal-organic frameworks: controlling the oxidation state of cerium in one-pot synthesis approach. Advanced Functional Materials, 31(29): 2102582
https://doi.org/10.1002/adfm.202102582
|
109 |
D Roy, S Neogi, S De. (2022). Visible light assisted activation of peroxymonosulfate by bimetallic MOF based heterojunction MIL-53(Fe/Co)/CeO2 for atrazine degradation: Pivotal roles of dual redox cycle for reactive species generation. Chemical Engineering Journal, 430: 133069
https://doi.org/10.1016/j.cej.2021.133069
|
110 |
S Roy, P Pachfule, Q Xu. (2016). High catalytic performance of MIL-101-immobilized NiRu alloy nanoparticles towards the hydrolytic dehydrogenation of Aammonia borane. European Journal of Inorganic Chemistry, 2016(27): 4353–4357
https://doi.org/10.1002/ejic.201600180
|
111 |
I Saini, V Singh, S Hamad, S Ram. (2024). Recent development in bimetallic metal organic frameworks as photocatalytic material. Inorganic Chemistry Communications, 160: 111897
https://doi.org/10.1016/j.inoche.2023.111897
|
112 |
J Shao, P Shao, M Peng, M Li, Z Yao, X Xiong, C Qiu, Y Zheng, L Yang, X Luo. (2023). A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions. Frontiers of Environmental Science & Engineering, 17(3): 33
|
113 |
P Sharma, A Kumar, P Dhiman, G Sharma, G Tessema Mola, F J Stadler. (2024a). Recent progress in photocatalytic applications of metal tungstates based Z-scheme and S-scheme heterojunctions. Journal of Industrial and Engineering Chemistry, 132: 1–21
https://doi.org/10.1016/j.jiec.2023.11.004
|
114 |
P Sharma, A Kumar, G Sharma, T Wang, P Dhiman, F J Stadler. (2024b). Recent advances in oxygen vacancies rich Z-scheme and S-scheme heterojunctions for water treatment and hydrogen production. Inorganic Chemistry Communications, 161: 112112
https://doi.org/10.1016/j.inoche.2024.112112
|
115 |
Y Shen, Z F Li, S Y Guo, Y R Shao, T L Hu. (2021). Encapsulation of ultrafine metal–organic framework nanoparticles within multichamber carbon spheres by a two-step double-solvent strategy for high-performance catalysts. ACS Applied Materials & Interfaces, 13(10): 12169–12180
https://doi.org/10.1021/acsami.1c01451
|
116 |
S Shi, X Han, J Liu, X Lan, J Feng, Y Li, W Zhang, J Wang. (2021). Photothermal-boosted effect of binary CuFe bimetallic magnetic MOF heterojunction for high-performance photo-Fenton degradation of organic pollutants. Science of the Total Environment, 795: 148883
https://doi.org/10.1016/j.scitotenv.2021.148883
|
117 |
Y Shi, L Wang, S Dong, X Miao, M Zhang, K Sun, Y Zhang, Z Cao, J Sun. (2022). Wool-ball-like BiOBr@ZnFe-MOF composites for degradation organic pollutant under visible-light: synthesis, performance, characterization and mechanism. Optical Materials, 131: 112580
https://doi.org/10.1016/j.optmat.2022.112580
|
118 |
N K Singh, S Gupta, V K Pecharsky, V P Balema. (2017). Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks. Journal of Alloys and Compounds, 696: 118–122
https://doi.org/10.1016/j.jallcom.2016.11.220
|
119 |
J Sun, L Semenchenko, W T Lim, M F Ballesteros Rivas, V Varela-Guerrero, H K Jeong. (2018). Facile synthesis of Cd-substituted zeolitic-imidazolate framework Cd-ZIF-8 and mixed-metal CdZn-ZIF-8. Microporous and Mesoporous Materials, 264: 35–42
https://doi.org/10.1016/j.micromeso.2017.12.032
|
120 |
K Sun, Y Qian, H L Jiang. (2023). Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angewandte Chemie International Edition, 62(15): e202217565
https://doi.org/10.1002/anie.202217565
|
121 |
X Tan, S Wang, N Han. (2023). Metal organic frameworks derived functional materials for energy and environment related sustainable applications. Chemosphere, 313: 137330
https://doi.org/10.1016/j.chemosphere.2022.137330
|
122 |
L Tang, Q C Lin, Z Jiang, J Hu, Z Liu, W M Liao, H Q Zhou, L H Chung, Z Xu, L Yu, J He. (2023). Nanoscaling and heterojunction for photocatalytic hydrogen evolution by bimetallic metal–organic frameworks. Advanced Functional Materials, 33(22): 2214450
https://doi.org/10.1002/adfm.202214450
|
123 |
T Tang, X Jin, X Tao, L Huang, S Shang. (2022). Low-crystalline Ce-based bimetallic MOFs synthesized via DBD plasma for excellent visible photocatalytic performance. Journal of Alloys and Compounds, 895: 162452
https://doi.org/10.1016/j.jallcom.2021.162452
|
124 |
Z Tong, H Wang, W An, G Li, W Cui, J Hu. (2024). FeCu bimetallic metal organic frameworks photo-Fenton synergy efficiently degrades organic pollutants: Structure, properties, and mechanism insight. Journal of Colloid and Interface Science, 661: 1011–1024
https://doi.org/10.1016/j.jcis.2024.01.212
|
125 |
S P Tripathy, S Subudhi, A Ray, P Behera, A Bhaumik, K Parida. (2022). Mixed-valence bimetallic Ce/Zr MOF-based nanoarchitecture: a visible-light-active photocatalyst for ciprofloxacin degradation and hydrogen evolution. Langmuir, 38(5): 1766–1780
https://doi.org/10.1021/acs.langmuir.1c02873
|
126 |
D Van Thiet, N T Tung, N Q Tuan, D N Tu. (2024). Facile synthesis of Cu-Zn bimetallic metal-organic framework for effective catalyst toward electrochemical reduction of CO2. Journal of Alloys and Compounds, 976: 173053
https://doi.org/10.1016/j.jallcom.2023.173053
|
127 |
T K Vo, D C Hau, V C Nguyen, D T Quang, J Kim. (2021). Double-solvent-assisted synthesis of bimetallic CuFe-incorporated MIL-101(Cr) for improved CO-adsorption performance and oxygen-resistant stability. Applied Surface Science, 546: 149087
https://doi.org/10.1016/j.apsusc.2021.149087
|
128 |
S Wadhawan, A Jain, J Nayyar, S K Mehta. (2020). Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: a review. Journal of Water Process Engineering, 33: 101038
https://doi.org/10.1016/j.jwpe.2019.101038
|
129 |
F Wang, Q Li, D Xu. (2017). Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Advanced Energy Materials, 7(23): 1700529
https://doi.org/10.1002/aenm.201700529
|
130 |
J Wang, R Abazari, S Sanati, A Ejsmont, J Goscianska, Y Zhou, D P Dubal. (2023). Water‐stable fluorous metal–organic frameworks with open metal sites and amine groups for efficient urea electrocatalytic oxidation. Small, 19(43): 2300673
https://doi.org/10.1002/smll.202300673
|
131 |
J X Wang, J Yin, O Shekhah, O M Bakr, M Eddaoudi, O F Mohammed. (2022a). Energy transfer in metal–organic frameworks for fluorescence sensing. ACS Applied Materials & Interfaces, 14(8): 9970–9986
https://doi.org/10.1021/acsami.1c24759
|
132 |
M Wang, L Yang, C Guo, X Liu, L He, Y Song, Q Zhang, X Qu, H Zhang, Z Zhang, S Fang. (2018a). Bimetallic Fe/Ti-Based metal–organic framework for persulfate-assisted visible light photocatalytic degradation of orange II. ChemistrySelect, 3(13): 3664–3674
https://doi.org/10.1002/slct.201703134
|
133 |
Q Wang, D Astruc. (2020). State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 120(2): 1438–1511
https://doi.org/10.1021/acs.chemrev.9b00223
|
134 |
T Wang, X Li, W Dai, Y Fang, H Huang. (2015). Enhanced adsorption of dibenzothiophene with zinc/copper-based metal–organic frameworks. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(42): 21044–21050
https://doi.org/10.1039/C5TA05204A
|
135 |
X Wang, C An, S Zhang, S Wang, J Li, Y Zhu. (2024a). Metal-free heterostructured 2D/1D polymeric carbon nitride/fibrous phosphorus for boosted photocatalytic hydrogen production from pure water. Separation and Purification Technology, 340: 126733
https://doi.org/10.1016/j.seppur.2024.126733
|
136 |
Y Wang, F Xu, L Zhou, H Li, Q Meng, L Jing, Z Tian, C Hou. (2024b). 2D N-doped graphene/CoFe MOFs heterostructure functionalized CNF aerogels impart highly efficient photocatalytic oxidation of gaseous VOCs. Journal of Environmental Chemical Engineering, 12(2): 112225
https://doi.org/10.1016/j.jece.2024.112225
|
137 |
Y Wang, J Xia, Y Gao. (2022b). Decoding and quantitative detection of antibiotics by a luminescent mixed-lanthanide-organic framework. Frontiers of Environmental Science & Engineering, 16(12): 154
|
138 |
Z Wang, C Wu, Z Zhang, Y Chen, W Deng, W Chen. (2021). Bimetallic Fe/Co-MOFs for tetracycline elimination. Journal of Materials Science, 56(28): 15684–15697
https://doi.org/10.1007/s10853-021-06280-8
|
139 |
Z Wang, X Yue, Q Xiang. (2024c). MOFs-based S-scheme heterojunction photocatalysts. Coordination Chemistry Reviews, 504: 215674
https://doi.org/10.1016/j.ccr.2024.215674
|
140 |
Z Wang, J H Zhang, J J Jiang, H P Wang, Z W Wei, X Zhu, M Pan, C Y Su. (2018b). A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(36): 17698–17705
https://doi.org/10.1039/C8TA06249H
|
141 |
F Wei, K Wang, W Li, Q Ren, L Qin, M Yu, Z Liang, M Nie, S Wang. (2023). Preparation of Fe/Ni-MOFs for the adsorption of ciprofloxacin from wastewater. Molecules, 28(11): 4411
https://doi.org/10.3390/molecules28114411
|
142 |
Q Wu, M S Siddique, Y Guo, M Wu, Y Yang, H Yang. (2021a). Low-crystalline bimetallic metal-organic frameworks as an excellent platform for photo-Fenton degradation of organic contaminants: Intensified synergism between hetero-metal nodes. Applied Catalysis B: Environmental, 286: 119950
https://doi.org/10.1016/j.apcatb.2021.119950
|
143 |
Q Wu, M S Siddique, W Yu. (2021b). Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: kinetics and mechanistic studies. Journal of Hazardous Materials, 401: 123261
https://doi.org/10.1016/j.jhazmat.2020.123261
|
144 |
X Wu, Z Bao, B Yuan, J Wang, Y Sun, H Luo, S Deng. (2013). Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation. Microporous and Mesoporous Materials, 180: 114–122
https://doi.org/10.1016/j.micromeso.2013.06.023
|
145 |
P Xia, M Liu, B Cheng, J Yu, L Zhang. (2018). Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2-production activity. ACS Sustainable Chemistry & Engineering, 6(7): 8945–8953
https://doi.org/10.1021/acssuschemeng.8b01300
|
146 |
Y Xu, L He, Z Yang, X Lu, C Li, X Yao, C Wu, Z Yao. (2025). Full solar-spectrum available Z-scheme MOF-on-MOF heterostructure for highly efficient photocatalytic VSCs removal. Separation and Purification Technology, 354: 128942
https://doi.org/10.1016/j.seppur.2024.128942
|
147 |
B C Yallur, V Adimule, W Nabgan, M S Raghu, F A Alharthi, B H Jeon, L Parashuram. (2023). Solar-light-sensitive Zr/Cu-(H2BDC-BPD) metal organic framework for photocatalytic dye degradation and hydrogen evolution. Surfaces and Interfaces, 36: 102587
https://doi.org/10.1016/j.surfin.2022.102587
|
148 |
X Yan, B Lin, C Ning, X Wang, Z Chen. (2024). Ternary-role of NiCo-MOFs for boosting the photocatalytic H2-evolution and long term stability of CdS. International Journal of Hydrogen Energy, 51: 1471–1483
https://doi.org/10.1016/j.ijhydene.2023.09.219
|
149 |
H Yang, X W He, F Wang, Y Kang, J Zhang. (2012). Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 22(41): 21849–21851
https://doi.org/10.1039/c2jm35602c
|
150 |
H Yang, D Zhang, Y Luo, W Yang, X Zhan, W Yang, H Hou. (2022). Highly efficient and selective visible‐light driven photoreduction of CO2 to CO by metal–organic frameworks–derived Ni–Co–O porous microrods. Small, 18(40): 2202939
https://doi.org/10.1002/smll.202202939
|
151 |
H Yang, M Zhang, Z Guan, J Yang. (2023a). Cu–Fe bimetallic MOF enhances the selectivity of photocatalytic CO2 reduction toward CO production. Catalysis Science & Technology, 13(21): 6238–6246
https://doi.org/10.1039/D3CY00842H
|
152 |
K Yang, L Chen, X Duan, G Song, J Sun, A Chen, X Xie. (2023b). Ligand-controlled bimetallic Co/Fe MOF xerogels for CO2 photocatalytic reduction. Ceramics International, 49(10): 16061–16069
https://doi.org/10.1016/j.ceramint.2023.01.204
|
153 |
M Yazdani-Aval, S Alizadeh, A Bahrami, D Nematollahi, F Ghorbani-Shahna. (2021). Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 247: 167841
https://doi.org/10.1016/j.ijleo.2021.167841
|
154 |
Z Ye, S Feng, W Wu, Y Zhou, Y Wang, X Dai, X Cao. (2022). Synthesis of Double MOFs composite material for visible light photocatalytic degradation of tetracycline. Solid State Sciences, 127: 106842
https://doi.org/10.1016/j.solidstatesciences.2022.106842
|
155 |
S A Younis, D K Lim, K H Kim, A Deep. (2020). Metalloporphyrinic metal-organic frameworks: controlled synthesis for catalytic applications in environmental and biological media. Advances in Colloid and Interface Science, 277: 102108
https://doi.org/10.1016/j.cis.2020.102108
|
156 |
K Yu, I Ahmed, D I Won, W I Lee, W S Ahn. (2020). Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere, 250: 126133
https://doi.org/10.1016/j.chemosphere.2020.126133
|
157 |
X Yue, L Cheng, J Fan, Q Xiang. (2022). 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and Fermi level modulation. Applied Catalysis B: Environmental, 304: 120979
https://doi.org/10.1016/j.apcatb.2021.120979
|
158 |
Y Zeng, N Guo, H Li, Q Wang, X Xu, Y Yu, X Han, H Yu. (2019). Construction of flower-like MoS2/Ag2S/Ag Z-scheme photocatalysts with enhanced visible-light photocatalytic activity for water purification. Science of the Total Environment, 659: 20–32
https://doi.org/10.1016/j.scitotenv.2018.12.333
|
159 |
D Zhang, M Wang, G Wei, R Li, N Wang, X Yang, Z Li, Y Zhang, Y Peng. (2023). High visible light responsive ZnIn2S4/TiO2–x induced by oxygen defects to boost photocatalytic hydrogen evolution. Applied Surface Science, 622: 156839
https://doi.org/10.1016/j.apsusc.2023.156839
|
160 |
L Zhang, J Zhang, H Yu, J Yu. (2022a). Emerging S-scheme photocatalyst. Advanced Materials, 34(11): 2107668
https://doi.org/10.1002/adma.202107668
|
161 |
M Zhang, Q Shang, Y Wan, Q Cheng, G Liao, Z Pan. (2019). Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Applied Catalysis B: Environmental, 241: 149–158
https://doi.org/10.1016/j.apcatb.2018.09.036
|
162 |
R Zhang, K Jia, Z Xue, Z Hu, N Yuan. (2024). Modulation of CdS nanoparticles decorated bimetallic Fe/Mn-MOFs Z-scheme heterojunctions for enhancing photocatalytic degradation of tetracycline. Journal of Alloys and Compounds, 992: 174462
https://doi.org/10.1016/j.jallcom.2024.174462
|
163 |
X Zhang, R Yu, D Wang, W Li, Y Zhang. (2022b). Green photocatalysis of organic pollutants by bimetallic Zn-Zr metal-organic framework catalyst. Frontiers in Chemistry, 10: 918941
https://doi.org/10.3389/fchem.2022.918941
|
164 |
J H Zhao, Y Wang, X Tang, Y H Li, F T Liu, Y Zhang, K Li. (2019). Enhanced photocatalytic hydrogen evolution over bimetallic zeolite imidazole framework-encapsulated CdS nanorods. Dalton Transactions, 48(11): 3560–3565
https://doi.org/10.1039/C8DT04964E
|
165 |
X Zhao, Z Li, Y Dou, X Jiang, F Bu, Z Liu, L Yu. (2024). Enhancing photocatalytic performance of Ni-Ti bimetallic metal-organic frameworks for tetracycline degradation under visible light irradiation. Materials Today. Communications, 39: 109015
https://doi.org/10.1016/j.mtcomm.2024.109015
|
166 |
W Zhen, H Gao, B Tian, J Ma, G Lu. (2016). Fabrication of low adsorption energy Ni–Mo cluster cocatalyst in metal–organic frameworks for visible photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 8(17): 10808–10819
https://doi.org/10.1021/acsami.5b12524
|
167 |
H Zhong, M Ghorbani-Asl, K H Ly, J Zhang, J Ge, M Wang, Z Liao, D Makarov, E Zschech, E Brunner. et al.. (2020). Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nature Communications, 11: 1409
https://doi.org/10.1038/s41467-020-15141-y
|
168 |
Y Zhou, R Abazari, J Chen, M Tahir, A Kumar, R R Ikreedeegh, E Rani, H Singh, A M Kirillov. (2022). Bimetallic metal–organic frameworks and MOF-derived composites: recent progress on electro- and photoelectrocatalytic applications. Coordination Chemistry Reviews, 451: 214264
https://doi.org/10.1016/j.ccr.2021.214264
|
169 |
Q L Zhu, J Li, Q Xu. (2013). Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance. Journal of the American Chemical Society, 135(28): 10210–10213
https://doi.org/10.1021/ja403330m
|
170 |
T Zhu, J Jiang, J Wang, Z Zhang, J Zhang, J Chang. (2022). Fe/Co redox and surficial hydroxyl potentiation in the FeCo2O4 enhanced Co3O4/persulfate process for TC degradation. Journal of Environmental Management, 313: 114855
https://doi.org/10.1016/j.jenvman.2022.114855
|
171 |
W Zhu, Y Wu, G Yi, X Su, Q Pan, S Shi, O Oderinde, G Xiao, C Zhang, Y Zhang. (2023). Synergistic photocatalysis of bimetal mixed ZIFs in enhancing degradation of organic pollutants: experimental and computational studies. Journal of Industrial and Engineering Chemistry, 119: 274–285
https://doi.org/10.1016/j.jiec.2022.11.045
|
172 |
Y Zou, E Rukundo, S Feng, X Chen, Y Liu. (2024). An unlocked core–shell Cu2O/NiCu-MOF ternary heterojunction on g-C3N4 enables highly efficient photocatalytic reduction of CO2 under visible light. Chemical Engineering Journal, 492: 152435
https://doi.org/10.1016/j.cej.2024.152435
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|