Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (4) : 297-309    https://doi.org/10.1007/s11515-015-1368-9
REVIEW
A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease
Stuart J. Grice,Ji-Long Liu()
MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
 Download: PDF(964 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Genome-wide analyses of metazoan messenger RNA (mRNA) species are unveiling the extensive transcriptional diversity generated by alternative splicing (AS). Research is also beginning to identify the splicing factors and AS events required to maintain the balance between stem cell renewal (i.e stemness properties) and differentiation. One set of proteins at the center of spliceosome biogenesis are the survival motor neuron (SMN) complex constituents, which have a critical role in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) in all cells. In this review we discuss what is currently known about how AS controls pluripotency and cell fate and consider how an increased requirement for splicing factors, including SMN, helps to maintain an enrichment of stem cell-specific AS events. Furthermore, we highlight studies showing that mutations in specific splicing factors can lead to the aberrant development, and cause targeted degeneration of the nervous system. Using SMN as an example, we discuss the perspective of how stem cell-specific changes in splicing factors can lead to developmental defects and the selective degeneration of particular tissues. Finally we consider the expanding role of SMN, and other splicing factors, in the regulation of gene expression in stem cell biology, thereby providing insight into a number of debilitating diseases.

Keywords stem cells      splicing      survival motor neuron (SMN)      spinal muscular atrophy (SMA)     
Corresponding Author(s): Ji-Long Liu   
Just Accepted Date: 20 July 2015   Online First Date: 05 August 2015    Issue Date: 14 August 2015
 Cite this article:   
Stuart J. Grice,Ji-Long Liu. A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease[J]. Front. Biol., 2015, 10(4): 297-309.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1368-9
https://academic.hep.com.cn/fib/EN/Y2015/V10/I4/297
Fig.1  The relationships between SMN and splicing function. The SMN complex is involved in the assembly of spliceosomal snRNPs, and the LSm non-coding RNP associated with histone mRNA processing. The SMN complex with the bound Sm proteins recruits cytoplasmic snRNAs and facilitates the formation of snRNA. The SMN complex, with the snRNPs, is transported into the nucleus. The final processing of the splicosomal snRNPs occurs in the Cajal body, before they are utilized in mRNA splicing. The snRNAs, along with many additional splicing factors facilitate both the removal of the introns and the processing of the mRNA. Cytoplasmic U7 snRNAs are also assembled by an SMN complex, and are also transported to the nucleus. These localize to the histone locus body (HLB). The storage of both the spliceosomal snRNPs and the LSm non-coding RNPs occurs in the cytoplasmic U-body, which is physically and functionally linked to the RNA stability and transport related P-Body.
Fig.2  SMN levels in Drosophila motor neurons and neuronal stem cells (neuroblasts). Motor neuron-specific GFP (UAS-CD8-GFP, red) and RFP (UAS-H2B-RFP; blue) using D42-GAL4. Cell body levels of SMN (green) in the majority of motor neurons (blue nuclei) are at a basal low level when compared to neuroblasts (arrow) and immature neurons within the CNS.
Fig.3  Distribution of SMN in mouse stem cells. (A, B and C) Immunofluorescent staining of SMN at late stage of blastocyst embryos, which produce embryonic stem cells (ESCs). The higher expression of SMN (A, green) is located in the region of inner cell mass (ICM, arrow), which expresses high level of pluripotent marker OCT4 (B, red). (D, E and F) Mouse ESCs with antibodies against SMN (D) and OCT4 (E). Scale bar= 25 μm. Courtesy of Wei-Fang Chang and Li-Ying Sung.
Fig.4  A model for tissue selectivity in SMA. (A) The intensity of the green depicts SMN enrichment in the developing neuroblasts is required for normal neurogenesis. SMN also aids the correct functioning of the differentiated motor circuit, which has lower levels of SMN. (B) The motor system may be particularly sensitive to moderate SMN reduction, while subclinical defects in neurogenesis may occur. During this period the nervous system is ill-equipped for normal function, leading to degeneration over time. (C) Multiple tissue defects occur when SMN is reduced to very low levels. Defects in peripheral tissues also impact on the health of the individual, which may also compound motor defects.
1 Barash Y, Calarco J A, Gao W, Pan Q, Wang X, Shai O, Blencowe B J, Frey B J (2010). Deciphering the splicing code. Nature, 465(7294): 53–59
https://doi.org/10.1038/nature09000 pmid: 20445623
2 B?umer D, Lee S, Nicholson G, Davies J L, Parkinson N J, Murray L M, Gillingwater T H, Ansorge O, Davies K E, Talbot K (2009). Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet, 5(12): e1000773
https://doi.org/10.1371/journal.pgen.1000773 pmid: 20019802
3 Beggs J D (2005). Lsm proteins and RNA processing. Biochem Soc Trans, 33(Pt 3): 433–438
https://doi.org/10.1042/BST0330433 pmid: 15916535
4 Borg R, Cauchi R J (2014). GEMINs: potential therapeutic targets for spinal muscular atrophy? Front Neurosci, 8: 325
https://doi.org/10.3389/fnins.2014.00325 pmid: 25360080
5 Boulisfane N, Choleza M, Rage F, Neel H, Soret J, Bordonné R (2011). Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient. Hum Mol Genet, 20(4): 641–648
https://doi.org/10.1093/hmg/ddq508 pmid: 21098506
6 Bricceno K V, Martinez T, Leikina E, Duguez S, Partridge T A, Chernomordik L V, Fischbeck K H, Sumner C J, Burnett B G (2014). Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Genet, 23(18): 4745–4757
https://doi.org/10.1093/hmg/ddu189 pmid: 24760765
7 Burghes A H, Beattie C E (2009). Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci, 10(8): 597–609
https://doi.org/10.1038/nrn2670 pmid: 19584893
8 Burlet P, Huber C, Bertrandy S, Ludosky M A, Zwaenepoel I, Clermont O, Roume J, Delezoide A L, Cartaud J, Munnich A, Lefebvre S (1998). The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet, 7(12): 1927–1933
https://doi.org/10.1093/hmg/7.12.1927 pmid: 9811937
9 Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano M T, Carmo-Fonseca M (1999). The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol, 147(4): 715–728
https://doi.org/10.1083/jcb.147.4.715 pmid: 10562276
10 Cauchi R J ( 2010). SMN and Gemins: ‘we are family’ ... or are we?: insights into the partnership between Gemins and the spinal muscular atrophy disease protein SMN. BioEssays, 32: 1077–1089
11 Cauchi R J, Sanchez-Pulido L, Liu J L (2010). Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies. Exp Cell Res, 316(14): 2354–2364
https://doi.org/10.1016/j.yexcr.2010.05.001 pmid: 20452345
12 Chang W F, Xu J, Chang C C, Yang S H, Li H Y, Hsieh-Li H M, Tsai M H, Wu S C, Cheng W T, Liu J L, Sung L Y (2015). SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Struct Funct, 220(3): 1539–1553
https://doi.org/10.1007/s00429-014-0743-7 pmid: 24633826
13 Chen C, Nott T J, Jin J, Pawson T (2011). Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol, 12(10): 629–642
https://doi.org/10.1038/nrm3185 pmid: 21915143
14 Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V B, Wong E, Orlov Y L, Zhang W, Jiang J, Loh Y H, Yeo H C, Yeo Z X, Narang V, Govindarajan K R, Leong B, Shahab A, Ruan Y, Bourque G, Sung W K, Clarke N D, Wei C L, Ng H H (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6): 1106–1117
https://doi.org/10.1016/j.cell.2008.04.043 pmid: 18555785
15 Coady T H, Lorson C L (2011). SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA, 2(4): 546–564
https://doi.org/10.1002/wrna.76 pmid: 21957043
16 Cusin V, Clermont O, Gérard B, Chantereau D, Elion J (2003). Prevalence of SMN1 deletion and duplication in carrier and normal populations: implication for genetic counselling. J Med Genet, 40(4): e39
https://doi.org/10.1136/jmg.40.4.e39 pmid: 12676912
17 David C J, Manley J L (2010). Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev, 24(21): 2343–2364
https://doi.org/10.1101/gad.1973010 pmid: 21041405
18 Dixon J R, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget J E, Lee A Y, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov V V, Ecker J R, Thomson J A, Ren B (2015). Chromatin architecture reorganization during stem cell differentiation. Nature, 518(7539): 331–336
https://doi.org/10.1038/nature14222 pmid: 25693564
19 Edery P, Marcaillou C, Sahbatou M, Labalme A, Chastang J, Touraine R, Tubacher E, Senni F, Bober M B, Nampoothiri S, Jouk P S, Steichen E, Berland S, Toutain A, Wise C A, Sanlaville D, Rousseau F, Clerget-Darpoux F, Leutenegger A L (2011). Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science, 332(6026): 240–243
https://doi.org/10.1126/science.1202205 pmid: 21474761
20 Fallini C, Bassell G J, Rossoll W (2012). Spinal muscular atrophy: the role of SMN in axonal mRNA regulation. Brain Res, 1462: 81–92
https://doi.org/10.1016/j.brainres.2012.01.044 pmid: 22330725
21 Faustino N A, Cooper T A (2003). Pre-mRNA splicing and human disease. Genes Dev, 17(4): 419–437
https://doi.org/10.1101/gad.1048803 pmid: 12600935
22 Feng D, Xie J (2013). Aberrant splicing in neurological diseases. Wiley Interdiscip Rev RNA, 4(6): 631–649
pmid: 23821330
23 Fischer U, Englbrecht C, Chari A (2011). Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip Rev RNA, 2(5): 718–731
https://doi.org/10.1002/wrna.87 pmid: 21823231
24 Fischer U, Liu Q, Dreyfuss G (1997). The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell, 90(6): 1023–1029
https://doi.org/10.1016/S0092-8674(00)80368-2 pmid: 9323130
25 Forbes D J, Kirschner M W, Caput D, Dahlberg J E, Lund E (1984). Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevis. Cell, 38(3): 681–689
https://doi.org/10.1016/0092-8674(84)90263-0 pmid: 6207932
26 Gabanella F, Butchbach M E, Saieva L, Carissimi C, Burghes A H, Pellizzoni L (2007). Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS ONE, 2(9): e921
https://doi.org/10.1371/journal.pone.0000921 pmid: 17895963
27 Gabanella F, Carissimi C, Usiello A, Pellizzoni L (2005). The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum Mol Genet, 14(23): 3629–3642
https://doi.org/10.1093/hmg/ddi390 pmid: 16236758
28 Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132–146
https://doi.org/10.1016/j.cell.2011.08.023 pmid: 21924763
29 Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X (2010). Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res, 20(7): 763–783
https://doi.org/10.1038/cr.2010.64 pmid: 20440302
30 Ghosh S, Marchand V, Gáspár I, Ephrussi A (2012). Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat Struct Mol Biol, 19(4): 441–449
https://doi.org/10.1038/nsmb.2257 pmid: 22426546
31 Gogliotti R G, Quinlan K A, Barlow C B, Heier C R, Heckman C J, Didonato C J (2012). Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci, 32(11): 3818–3829
https://doi.org/10.1523/JNEUROSCI.5775-11.2012 pmid: 22423102
32 Graubert T A, Shen D, Ding L, Okeyo-Owuor T, Lunn C L, Shao J, Krysiak K, Harris C C, Koboldt D C, Larson D E, McLellan M D, Dooling D J, Abbott R M, Fulton R S, Schmidt H, Kalicki-Veizer J, O’Laughlin M, Grillot M, Baty J, Heath S, Frater J L, Nasim T, Link D C, Tomasson M H, Westervelt P, DiPersio J F, Mardis E R, Ley T J, Wilson R K, Walter M J (2012). Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet, 44(1): 53–57
https://doi.org/10.1038/ng.1031 pmid: 22158538
33 Graveley B R (2011). Splicing up pluripotency. Cell, 147(1): 22–24
https://doi.org/10.1016/j.cell.2011.09.004 pmid: 21962502
34 Graveley B R, Hertel K J, Maniatis T (2001). The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA, 7(6): 806–818
https://doi.org/10.1017/S1355838201010317 pmid: 11421359
35 Grice S J, Liu J L (2011). Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila. PLoS Genet, 7(4): e1002030
https://doi.org/10.1371/journal.pgen.1002030 pmid: 21490958
36 Grice S J, Sleigh J N, Liu J L, Sattelle D B (2011). Invertebrate models of spinal muscular atrophy: insights into mechanisms and potential therapeutics. BioEssays, 33: 956–965
37 Grice S J, Sleigh J N, Motley W W, Liu J L, Burgess R W, Talbot K, Cader M Z (2015). Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet, 24(15): 4397–4406
https://doi.org/10.1093/hmg/ddv176 pmid: 25972375
38 Halfar K, Rommel C, Stocker H, Hafen E (2001). Ras controls growth, survival and differentiation in the Drosophila eye by different thresholds of MAP kinase activity. Development, 128(9): 1687–1696
pmid: 11290305
39 Hamilton G, Gillingwater T H (2013). Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med, 19(1): 40–50
https://doi.org/10.1016/j.molmed.2012.11.002 pmid: 23228902
40 Han H, Irimia M, Ross P J, Sung H K, Alipanahi B, David L, Golipour A, Gabut M, Michael I P, Nachman E N, Wang E, Trcka D, Thompson T, O’Hanlon D, Slobodeniuc V, Barbosa-Morais N L, Burge C B, Moffat J, Frey B J, Nagy A, Ellis J, Wrana J L, Blencowe B J (2013). MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 498(7453): 241–245
https://doi.org/10.1038/nature12270 pmid: 23739326
41 Hayhurst M, Wagner A K, Cerletti M, Wagers A J, Rubin L L (2012). A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. Dev Biol, 368(2): 323–334
https://doi.org/10.1016/j.ydbio.2012.05.037 pmid: 22705478
42 He H, Liyanarachchi S, Akagi K, Nagy R, Li J, Dietrich R C, Li W, Sebastian N, Wen B, Xin B, Singh J, Yan P, Alder H, Haan E, Wieczorek D, Albrecht B, Puffenberger E, Wang H, Westman J A, Padgett R A, Symer D E, de la Chapelle A (2011). Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science, 332(6026): 238–240
https://doi.org/10.1126/science.1200587 pmid: 21474760
43 Hinas A, Larsson P, Avesson L, Kirsebom L A, Virtanen A, S?derbom F (2006). Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs. Eukaryot Cell, 5(6): 924–934
https://doi.org/10.1128/EC.00065-06 pmid: 16757740
44 Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett C F, Krainer A R (2011). Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature, 478(7367): 123–126
https://doi.org/10.1038/nature10485 pmid: 21979052
45 Huen M S, Sy S M, Leung K M, Ching Y P, Tipoe G L, Man C, Dong S, Chen J (2010). SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle, 9(13): 2679–2685
https://doi.org/10.4161/cc.9.13.12151 pmid: 20581448
46 Hunter G, Aghamaleky Sarvestany A, Roche S L, Symes R C, Gillingwater T H (2014). SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Hum Mol Genet, 23(9): 2235–2250
https://doi.org/10.1093/hmg/ddt612 pmid: 24301677
47 Huo Q, Kayikci M, Odermatt P, Meyer K, Michels O, Saxena S, Ule J, Schümperli D (2014). Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: evidence for involvement of splicing regulatory proteins. RNA Biol, 11(11): 1430–1446
pmid: 25692239
48 Jia Y, Mu J C, Ackerman S L (2012). Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell, 148(1–2): 296–308
https://doi.org/10.1016/j.cell.2011.11.057 pmid: 22265417
49 Jodelka F M, Ebert A D, Duelli D M, Hastings M L (2010). A feedback loop regulates splicing of the spinal muscular atrophy-modifying gene, SMN2. Hum Mol Genet, 19(24): 4906–4917
https://doi.org/10.1093/hmg/ddq425 pmid: 20884664
50 Jones K W, Gorzynski K, Hales C M, Fischer U, Badbanchi F, Terns R M, Terns M P (2001). Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J Biol Chem, 276(42): 38645–38651
https://doi.org/10.1074/jbc.M106161200 pmid: 11509571
51 Jurica M S, Moore M J (2003). Pre-mRNA splicing: awash in a sea of proteins. Mol Cell, 12(1): 5–14
https://doi.org/10.1016/S1097-2765(03)00270-3 pmid: 12887888
52 Kerins J A, Hanazawa M, Dorsett M, Schedl T (2010). PRP-17 and the pre-mRNA splicing pathway are preferentially required for the proliferation versus meiotic development decision and germline sex determination in Caenorhabditis elegans. Dev Dyn, 239: 1555–1572
53 Krastev D B, Slabicki M, Paszkowski-Rogacz M, Hubner N C, Junqueira M, Shevchenko A, Mann M, Neugebauer K M, Buchholz F (2011). A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol, 13(7): 809–818
https://doi.org/10.1038/ncb2264 pmid: 21642980
54 Laggerbauer B, Liu S, Makarov E, Vornlocher H P, Makarova O, Ingelfinger D, Achsel T, Lührmann R (2005). The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation. RNA, 11(5): 598–608
https://doi.org/10.1261/rna.2300805 pmid: 15840814
55 Lanner F, Rossant J (2010). The role of FGF/Erk signaling in pluripotent cells. Development, 137(20): 3351–3360
https://doi.org/10.1242/dev.050146 pmid: 20876656
56 Le T T, McGovern V L, Alwine I E, Wang X, Massoni-Laporte A, Rich M M, Burghes A H (2011). Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet, 20(18): 3578–3591
https://doi.org/10.1093/hmg/ddr275 pmid: 21672919
57 Lee L, Davies S E, Liu J L (2009). The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway. Dev Biol, 332(1): 142–155
https://doi.org/10.1016/j.ydbio.2009.05.553 pmid: 19464282
58 Lee S, Sayin A, Cauchi R J, Grice S, Burdett H, Baban D, van den Heuvel M (2008). Genome-wide expression analysis of a spinal muscular atrophy model: towards discovery of new drug targets. PLoS ONE, 3(1): e1404
https://doi.org/10.1371/journal.pone.0001404 pmid: 18167563
59 Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80(1): 155–165
https://doi.org/10.1016/0092-8674(95)90460-3 pmid: 7813012
60 Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997). Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet, 16(3): 265–269
https://doi.org/10.1038/ng0797-265 pmid: 9207792
61 Lefebvre S, Burlet P, Viollet L, Bertrandy S, Huber C, Belser C, Munnich A (2002). A novel association of the SMN protein with two major non-ribosomal nucleolar proteins and its implication in spinal muscular atrophy. Hum Mol Genet, 11(9): 1017–1027
https://doi.org/10.1093/hmg/11.9.1017 pmid: 11978761
62 Liu J L, Gall J G (2007). U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci USA, 104(28): 11655–11659
https://doi.org/10.1073/pnas.0704977104 pmid: 17595295
63 Liu J L, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall J G (2006). The Drosophila melanogaster Cajal body. J Cell Biol, 172(6): 875–884
https://doi.org/10.1083/jcb.200511038 pmid: 16533947
64 Liu J L, Wu Z, Nizami Z, Deryusheva S, Rajendra T K, Beumer K J, Gao H, Matera A G, Carroll D, Gall J G (2009). Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell, 20(6): 1661–1670
https://doi.org/10.1091/mbc.E08-05-0525 pmid: 19158395
65 Liu Q, Dreyfuss G (1996). A novel nuclear structure containing the survival of motor neurons protein. EMBO J, 15(14): 3555–3565
pmid: 8670859
66 Livyatan I, Meshorer E (2013). SON sheds light on RNA splicing and pluripotency. Nat Cell Biol, 15(10): 1139–1140
https://doi.org/10.1038/ncb2851 pmid: 24084863
67 Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 38(4): 431–440
https://doi.org/10.1038/ng1760 pmid: 16518401
68 Lorson C L, Androphy E J (2000). An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet, 9(2): 259–265
https://doi.org/10.1093/hmg/9.2.259 pmid: 10607836
69 Lotti F, Imlach W L, Saieva L, Beck E S, Hao T, Li D K, Jiao W, Mentis G Z, Beattie C E, McCabe B D, Pellizzoni L (2012). An SMN-dependent U12 splicing event essential for motor circuit function. Cell, 151(2): 440–454
https://doi.org/10.1016/j.cell.2012.09.012 pmid: 23063131
70 Lund E, Kahan B, Dahlberg J E (1985). Differential control of U1 small nuclear RNA expression during mouse development. Science, 229(4719): 1271–1274
https://doi.org/10.1126/science.2412294 pmid: 2412294
71 Martínez-Hernández R, Bernal S, Also-Rallo E, Alías L, Barceló M J, Hereu M, Esquerda J E, Tizzano E F (2013). Synaptic defects in type I spinal muscular atrophy in human development. J Pathol, 229(1): 49–61
https://doi.org/10.1002/path.4080 pmid: 22847626
72 Maurer-Stroh S, Dickens N J, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting C P (2003). The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci, 28(2): 69–74
https://doi.org/10.1016/S0968-0004(03)00004-5 pmid: 12575993
73 Mayshar Y, Rom E, Chumakov I, Kronman A, Yayon A, Benvenisty N (2008). Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells, 26(3): 767–774
https://doi.org/10.1634/stemcells.2007-1037 pmid: 18192227
74 McGivern J V, Patitucci T N, Nord J A, Barabas M E, Stucky C L, Ebert A D (2013). Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia, 61(9): 1418–1428
https://doi.org/10.1002/glia.22522 pmid: 23839956
75 Monani U R, Coovert D D, Burghes A H (2000). Animal models of spinal muscular atrophy. Hum Mol Genet, 9(16): 2451–2457
https://doi.org/10.1093/hmg/9.16.2451 pmid: 11005801
76 Morency E, Sabra M, Catez F, Texier P, Lomonte P (2007). A novel cell response triggered by interphase centromere structural instability. J Cell Biol, 177(5): 757–768
https://doi.org/10.1083/jcb.200612107 pmid: 17548509
77 Neumüller R A, Richter C, Fischer A, Novatchkova M, Neumüller K G, Knoblich J A (2011). Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell, 8(5): 580–593
https://doi.org/10.1016/j.stem.2011.02.022 pmid: 21549331
78 Niwa H, Miyazaki J, Smith A G (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372–376
https://doi.org/10.1038/74199 pmid: 10742100
79 O’Reilly D, Dienstbier M, Cowley S A, Vazquez P, Drozdz M, Taylor S, James W S, Murphy S (2013). Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res, 23(2): 281–291
https://doi.org/10.1101/gr.142968.112 pmid: 23070852
80 Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366
https://doi.org/10.1016/j.celrep.2013.09.016 pmid: 24139801
81 Ozsolak F, Milos P M (2011). RNA sequencing: advances, challenges and opportunities. Nat Rev Genet, 12(2): 87–98
https://doi.org/10.1038/nrg2934 pmid: 21191423
82 Patel A A, Steitz J A (2003). Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol, 4(12): 960–970
https://doi.org/10.1038/nrm1259 pmid: 14685174
83 Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998). A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell, 95(5): 615–624
https://doi.org/10.1016/S0092-8674(00)81632-3 pmid: 9845364
84 Praveen K, Wen Y, Matera A G (2012). A Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects. Cell Reports, 1(6): 624–631
https://doi.org/10.1016/j.celrep.2012.05.014 pmid: 22813737
85 Ruggiu M, McGovern V L, Lotti F, Saieva L, Li D K, Kariya S, Monani U R, Burghes A H, Pellizzoni L (2012). A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol, 32(1): 126–138
https://doi.org/10.1128/MCB.06077-11 pmid: 22037760
86 Sabra M, Texier P, El Maalouf J, Lomonte P (2013). The Tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated lysine 79 of histone H3. J Cell Sci, 126(Pt 16): 3664–3677
https://doi.org/10.1242/jcs.126003 pmid: 23750013
87 Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514–10519
https://doi.org/10.1073/pnas.0912260107 pmid: 20498046
88 Salzler H R, Tatomer D C, Malek P Y, McDaniel S L, Orlando A N, Marzluff W F, Duronio R J (2013). A sequence in the Drosophila H3-H4 Promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs. Dev Cell, 24(6): 623–634
https://doi.org/10.1016/j.devcel.2013.02.014 pmid: 23537633
89 Scamborova P, Wong A, Steitz J A (2004). An intronic enhancer regulates splicing of the twintron of Drosophila melanogaster prospero pre-mRNA by two different spliceosomes. Mol Cell Biol, 24(5): 1855–1869
https://doi.org/10.1128/MCB.24.5.1855-1869.2004 pmid: 14966268
90 Shafey D, C?té P D, Kothary R (2005). Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. Exp Cell Res, 311(1): 49–61
https://doi.org/10.1016/j.yexcr.2005.08.019 pmid: 16219305
91 Shirai C L, Ley J N, White B S, Kim S, Tibbitts J, Shao J, Ndonwi M, Wadugu B, Duncavage E J, Okeyo-Owuor T, Liu T, Griffith M, McGrath S, Magrini V, Fulton R S, Fronick C, O’Laughlin M, Graubert T A, Walter M J (2015). Mutant U2AF1 Expression Alters Hematopoiesis and Pre-mRNA Splicing In Vivo. Cancer Cell, 27(5): 631–643
https://doi.org/10.1016/j.ccell.2015.04.008 pmid: 25965570
92 Sierra-Montes J M, Pereira-Simon S, Smail S S, Herrera R J (2005). The silk moth Bombyx mori U1 and U2 snRNA variants are differentially expressed. Gene, 352: 127–136
https://doi.org/10.1016/j.gene.2005.02.013 pmid: 15894437
93 Sleigh J N, Barreiro-Iglesias A, Oliver P L, Biba A, Becker T, Davies K E, Becker C G, Talbot K (2014a). Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet, 23(4): 855–869
https://doi.org/10.1093/hmg/ddt477 pmid: 24067532
94 Sleigh J N, Gillingwater T H, Talbot K (2011). The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech, 4(4): 457–467
https://doi.org/10.1242/dmm.007245 pmid: 21708901
95 Sleigh J N, Grice S J, Burgess R W, Talbot K, Cader M Z (2014b). Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice. Hum Mol Genet, 23(10): 2639–2650
https://doi.org/10.1093/hmg/ddt659 pmid: 24368416
96 Sleigh J N, Grice S J, Davies K E, Talbot K (2013). Spinal muscular atrophy at the crossroads of basic science and therapy. Neuromuscul Disord, 23(1): 96
https://doi.org/10.1016/j.nmd.2012.08.008 pmid: 22981697
97 Sousa-Nunes R, Cheng L Y, Gould A P (2010). Regulating neural proliferation in the Drosophila CNS. Curr Opin Neurobiol, 20(1): 50–57
https://doi.org/10.1016/j.conb.2009.12.005 pmid: 20079625
98 Sterne-Weiler T, Sanford J R (2014). Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol, 15(1): 201
https://doi.org/10.1186/gb4150 pmid: 24456648
99 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872
https://doi.org/10.1016/j.cell.2007.11.019 pmid: 18035408
100 Thornton G K, Woods C G (2009). Primary microcephaly: do all roads lead to Rome? Trends Genet, 25(11): 501–510
https://doi.org/10.1016/j.tig.2009.09.011 pmid: 19850369
101 Tisdale S, Lotti F, Saieva L, Van Meerbeke J P, Crawford T O, Sumner C J, Mentis G Z, Pellizzoni L (2013). SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3′-end formation of histone mRNAs. Cell Reports, 5(5): 1187–1195
https://doi.org/10.1016/j.celrep.2013.11.012 pmid: 24332368
102 Turunen J J, Niemel? E H, Verma B, Frilander M J (2013). The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA, 4(1): 61–76
https://doi.org/10.1002/wrna.1141 pmid: 23074130
103 Valadkhan S, Jaladat Y (2010). The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics, 10(22): 4128–4141
https://doi.org/10.1002/pmic.201000354 pmid: 21080498
104 Venables J P, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M, Vignal E, Thibault P, Prinos P, Chabot B, Abou Elela S, Roux P, Lemaitre J M, Tazi J (2013). MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun, 4: 2480
https://doi.org/10.1038/ncomms3480 pmid: 24048253
105 Verheggen C, Mouaikel J, Thiry M, Blanchard J M, Tollervey D, Bordonné R, Lafontaine D L, Bertrand E (2001). Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J, 20(19): 5480–5490
https://doi.org/10.1093/emboj/20.19.5480 pmid: 11574480
106 Wahl M C, Will C L, Lührmann R (2009). The spliceosome: design principles of a dynamic RNP machine. Cell, 136(4): 701–718
https://doi.org/10.1016/j.cell.2009.02.009 pmid: 19239890
107 Wan L, Battle D J, Yong J, Gubitz A K, Kolb S J, Wang J, Dreyfuss G (2005). The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol, 25(13): 5543–5551
https://doi.org/10.1128/MCB.25.13.5543-5551.2005 pmid: 15964810
108 Wang C, Wilson-Berry L, Schedl T, Hansen D(2012). TEG-1 CD2BP2 regulates stem cell proliferation and sex determination in the C. elegans germ line and physically interacts with the UAF-1 U2AF65 splicing factor. Deve Dyn, 241: 505–521
109 Wang E T, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221): 470–476
https://doi.org/10.1038/nature07509 pmid: 18978772
110 Will C L, Schneider C, Reed R, Lührmann R (1999). Identification of both shared and distinct proteins in the major and minor spliceosomes. Science, 284(5422): 2003–2005
https://doi.org/10.1126/science.284.5422.2003 pmid: 10373121
111 Winkler C, Eggert C, Gradl D, Meister G, Giegerich M, Wedlich D, Laggerbauer B, Fischer U (2005). Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev, 19(19): 2320–2330
https://doi.org/10.1101/gad.342005 pmid: 16204184
112 Wishart T M, Huang J P, Murray L M, Lamont D J, Mutsaers C A, Ross J, Geldsetzer P, Ansorge O, Talbot K, Parson S H, Gillingwater T H (2010). SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet, 19(21): 4216–4228
https://doi.org/10.1093/hmg/ddq340 pmid: 20705736
113 Wollnik B (2010). A common mechanism for microcephaly. Nat Genet, 42(11): 923–924
https://doi.org/10.1038/ng1110-923 pmid: 20980985
114 Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254–5259
https://doi.org/10.1073/pnas.0914114107 pmid: 20194744
115 Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951–1967
https://doi.org/10.1371/journal.pcbi.0030196 pmid: 17967047
116 Younis I, Dittmar K, Wang W, Foley S W, Berg M G, Hu K Y, Wei Z, Wan L, Dreyfuss G (2013). Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. eLife, 2: e00780
https://doi.org/10.7554/eLife.00780 pmid: 23908766
117 Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M, Dreyfuss G (2008). SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell, 133(4): 585–600
https://doi.org/10.1016/j.cell.2008.03.031 pmid: 18485868
118 Zhang Z, Pinto A M, Wan L, Wang W, Berg M G, Oliva I, Singh L N, Dengler C, Wei Z, Dreyfuss G (2013). Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci USA, 110(48): 19348–19353
https://doi.org/10.1073/pnas.1319280110 pmid: 24191055
[1] Tyler Harvey, Chen-Ming Fan. Origin of tendon stem cells in situ[J]. Front. Biol., 2018, 13(4): 263-276.
[2] Thai Q. Dao, Jennifer C. Fletcher. CLE peptide-mediated signaling in shoot and vascular meristem development[J]. Front. Biol., 2017, 12(6): 406-420.
[3] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[4] Kyle R. Denton,Chongchong Xu,Harsh Shah,Xue-Jun Li. Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 339-354.
[5] Gabrielle Rushing,Rebecca A. Ihrie. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone[J]. Front. Biol., 2016, 11(4): 261-284.
[6] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[7] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[8] Jin He. Function of Polycomb repressive complexes in stem cells[J]. Front. Biol., 2016, 11(2): 65-74.
[9] Yicheng Ding,Linda Howard,Louise Gallagher,Sanbing Shen. Regulation and postsynaptic binding of neurexins – drug targets for neurodevelopmental and neuropsychiatric disorders[J]. Front. Biol., 2015, 10(3): 239-251.
[10] Massimo Bonora,Paolo Pinton,Keisuke Ito. Mitochondrial control of hematopoietic stem cell balance and hematopoiesis[J]. Front. Biol., 2015, 10(2): 117-124.
[11] Gary R. HIME,Nicole SIDDALL,Katja HORVAY,Helen E. ABUD. Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms[J]. Front. Biol., 2015, 10(1): 1-10.
[12] Brandoch D. COOK. Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems[J]. Front. Biol., 2014, 9(5): 339-346.
[13] Wei Bin FANG,Min YAO,Nikki CHENG. Priming cancer cells for drug resistance: role of the fibroblast niche[J]. Front. Biol., 2014, 9(2): 114-126.
[14] Adalto PONTES, Yonggang ZHANG, Wenhui HU. Novel functions of GABA signaling in adult neurogenesis[J]. Front Biol, 2013, 8(5): 496-507.
[15] Bipasha MUKHERJEE-CLAVIN, Mark TOMISHIMA, Gabsang LEE. Current approaches for efficient genetic editing in human pluripotent stem cells[J]. Front Biol, 2013, 8(5): 461-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed