|
|
|
A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease |
Stuart J. Grice,Ji-Long Liu( ) |
| MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK |
|
|
|
|
Abstract Genome-wide analyses of metazoan messenger RNA (mRNA) species are unveiling the extensive transcriptional diversity generated by alternative splicing (AS). Research is also beginning to identify the splicing factors and AS events required to maintain the balance between stem cell renewal (i.e stemness properties) and differentiation. One set of proteins at the center of spliceosome biogenesis are the survival motor neuron (SMN) complex constituents, which have a critical role in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) in all cells. In this review we discuss what is currently known about how AS controls pluripotency and cell fate and consider how an increased requirement for splicing factors, including SMN, helps to maintain an enrichment of stem cell-specific AS events. Furthermore, we highlight studies showing that mutations in specific splicing factors can lead to the aberrant development, and cause targeted degeneration of the nervous system. Using SMN as an example, we discuss the perspective of how stem cell-specific changes in splicing factors can lead to developmental defects and the selective degeneration of particular tissues. Finally we consider the expanding role of SMN, and other splicing factors, in the regulation of gene expression in stem cell biology, thereby providing insight into a number of debilitating diseases.
|
| Keywords
stem cells
splicing
survival motor neuron (SMN)
spinal muscular atrophy (SMA)
|
|
Corresponding Author(s):
Ji-Long Liu
|
|
Just Accepted Date: 20 July 2015
Online First Date: 05 August 2015
Issue Date: 14 August 2015
|
|
| 1 |
Barash Y, Calarco J A, Gao W, Pan Q, Wang X, Shai O, Blencowe B J, Frey B J (2010). Deciphering the splicing code. Nature, 465(7294): 53–59
https://doi.org/10.1038/nature09000
pmid: 20445623
|
| 2 |
B?umer D, Lee S, Nicholson G, Davies J L, Parkinson N J, Murray L M, Gillingwater T H, Ansorge O, Davies K E, Talbot K (2009). Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet, 5(12): e1000773
https://doi.org/10.1371/journal.pgen.1000773
pmid: 20019802
|
| 3 |
Beggs J D (2005). Lsm proteins and RNA processing. Biochem Soc Trans, 33(Pt 3): 433–438
https://doi.org/10.1042/BST0330433
pmid: 15916535
|
| 4 |
Borg R, Cauchi R J (2014). GEMINs: potential therapeutic targets for spinal muscular atrophy? Front Neurosci, 8: 325
https://doi.org/10.3389/fnins.2014.00325
pmid: 25360080
|
| 5 |
Boulisfane N, Choleza M, Rage F, Neel H, Soret J, Bordonné R (2011). Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient. Hum Mol Genet, 20(4): 641–648
https://doi.org/10.1093/hmg/ddq508
pmid: 21098506
|
| 6 |
Bricceno K V, Martinez T, Leikina E, Duguez S, Partridge T A, Chernomordik L V, Fischbeck K H, Sumner C J, Burnett B G (2014). Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Genet, 23(18): 4745–4757
https://doi.org/10.1093/hmg/ddu189
pmid: 24760765
|
| 7 |
Burghes A H, Beattie C E (2009). Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci, 10(8): 597–609
https://doi.org/10.1038/nrn2670
pmid: 19584893
|
| 8 |
Burlet P, Huber C, Bertrandy S, Ludosky M A, Zwaenepoel I, Clermont O, Roume J, Delezoide A L, Cartaud J, Munnich A, Lefebvre S (1998). The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet, 7(12): 1927–1933
https://doi.org/10.1093/hmg/7.12.1927
pmid: 9811937
|
| 9 |
Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano M T, Carmo-Fonseca M (1999). The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol, 147(4): 715–728
https://doi.org/10.1083/jcb.147.4.715
pmid: 10562276
|
| 10 |
Cauchi R J ( 2010). SMN and Gemins: ‘we are family’ ... or are we?: insights into the partnership between Gemins and the spinal muscular atrophy disease protein SMN. BioEssays, 32: 1077–1089
|
| 11 |
Cauchi R J, Sanchez-Pulido L, Liu J L (2010). Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies. Exp Cell Res, 316(14): 2354–2364
https://doi.org/10.1016/j.yexcr.2010.05.001
pmid: 20452345
|
| 12 |
Chang W F, Xu J, Chang C C, Yang S H, Li H Y, Hsieh-Li H M, Tsai M H, Wu S C, Cheng W T, Liu J L, Sung L Y (2015). SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Struct Funct, 220(3): 1539–1553
https://doi.org/10.1007/s00429-014-0743-7
pmid: 24633826
|
| 13 |
Chen C, Nott T J, Jin J, Pawson T (2011). Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol, 12(10): 629–642
https://doi.org/10.1038/nrm3185
pmid: 21915143
|
| 14 |
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V B, Wong E, Orlov Y L, Zhang W, Jiang J, Loh Y H, Yeo H C, Yeo Z X, Narang V, Govindarajan K R, Leong B, Shahab A, Ruan Y, Bourque G, Sung W K, Clarke N D, Wei C L, Ng H H (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6): 1106–1117
https://doi.org/10.1016/j.cell.2008.04.043
pmid: 18555785
|
| 15 |
Coady T H, Lorson C L (2011). SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA, 2(4): 546–564
https://doi.org/10.1002/wrna.76
pmid: 21957043
|
| 16 |
Cusin V, Clermont O, Gérard B, Chantereau D, Elion J (2003). Prevalence of SMN1 deletion and duplication in carrier and normal populations: implication for genetic counselling. J Med Genet, 40(4): e39
https://doi.org/10.1136/jmg.40.4.e39
pmid: 12676912
|
| 17 |
David C J, Manley J L (2010). Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev, 24(21): 2343–2364
https://doi.org/10.1101/gad.1973010
pmid: 21041405
|
| 18 |
Dixon J R, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget J E, Lee A Y, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov V V, Ecker J R, Thomson J A, Ren B (2015). Chromatin architecture reorganization during stem cell differentiation. Nature, 518(7539): 331–336
https://doi.org/10.1038/nature14222
pmid: 25693564
|
| 19 |
Edery P, Marcaillou C, Sahbatou M, Labalme A, Chastang J, Touraine R, Tubacher E, Senni F, Bober M B, Nampoothiri S, Jouk P S, Steichen E, Berland S, Toutain A, Wise C A, Sanlaville D, Rousseau F, Clerget-Darpoux F, Leutenegger A L (2011). Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science, 332(6026): 240–243
https://doi.org/10.1126/science.1202205
pmid: 21474761
|
| 20 |
Fallini C, Bassell G J, Rossoll W (2012). Spinal muscular atrophy: the role of SMN in axonal mRNA regulation. Brain Res, 1462: 81–92
https://doi.org/10.1016/j.brainres.2012.01.044
pmid: 22330725
|
| 21 |
Faustino N A, Cooper T A (2003). Pre-mRNA splicing and human disease. Genes Dev, 17(4): 419–437
https://doi.org/10.1101/gad.1048803
pmid: 12600935
|
| 22 |
Feng D, Xie J (2013). Aberrant splicing in neurological diseases. Wiley Interdiscip Rev RNA, 4(6): 631–649
pmid: 23821330
|
| 23 |
Fischer U, Englbrecht C, Chari A (2011). Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip Rev RNA, 2(5): 718–731
https://doi.org/10.1002/wrna.87
pmid: 21823231
|
| 24 |
Fischer U, Liu Q, Dreyfuss G (1997). The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell, 90(6): 1023–1029
https://doi.org/10.1016/S0092-8674(00)80368-2
pmid: 9323130
|
| 25 |
Forbes D J, Kirschner M W, Caput D, Dahlberg J E, Lund E (1984). Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevis. Cell, 38(3): 681–689
https://doi.org/10.1016/0092-8674(84)90263-0
pmid: 6207932
|
| 26 |
Gabanella F, Butchbach M E, Saieva L, Carissimi C, Burghes A H, Pellizzoni L (2007). Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS ONE, 2(9): e921
https://doi.org/10.1371/journal.pone.0000921
pmid: 17895963
|
| 27 |
Gabanella F, Carissimi C, Usiello A, Pellizzoni L (2005). The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum Mol Genet, 14(23): 3629–3642
https://doi.org/10.1093/hmg/ddi390
pmid: 16236758
|
| 28 |
Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132–146
https://doi.org/10.1016/j.cell.2011.08.023
pmid: 21924763
|
| 29 |
Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X (2010). Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res, 20(7): 763–783
https://doi.org/10.1038/cr.2010.64
pmid: 20440302
|
| 30 |
Ghosh S, Marchand V, Gáspár I, Ephrussi A (2012). Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat Struct Mol Biol, 19(4): 441–449
https://doi.org/10.1038/nsmb.2257
pmid: 22426546
|
| 31 |
Gogliotti R G, Quinlan K A, Barlow C B, Heier C R, Heckman C J, Didonato C J (2012). Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci, 32(11): 3818–3829
https://doi.org/10.1523/JNEUROSCI.5775-11.2012
pmid: 22423102
|
| 32 |
Graubert T A, Shen D, Ding L, Okeyo-Owuor T, Lunn C L, Shao J, Krysiak K, Harris C C, Koboldt D C, Larson D E, McLellan M D, Dooling D J, Abbott R M, Fulton R S, Schmidt H, Kalicki-Veizer J, O’Laughlin M, Grillot M, Baty J, Heath S, Frater J L, Nasim T, Link D C, Tomasson M H, Westervelt P, DiPersio J F, Mardis E R, Ley T J, Wilson R K, Walter M J (2012). Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet, 44(1): 53–57
https://doi.org/10.1038/ng.1031
pmid: 22158538
|
| 33 |
Graveley B R (2011). Splicing up pluripotency. Cell, 147(1): 22–24
https://doi.org/10.1016/j.cell.2011.09.004
pmid: 21962502
|
| 34 |
Graveley B R, Hertel K J, Maniatis T (2001). The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA, 7(6): 806–818
https://doi.org/10.1017/S1355838201010317
pmid: 11421359
|
| 35 |
Grice S J, Liu J L (2011). Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila. PLoS Genet, 7(4): e1002030
https://doi.org/10.1371/journal.pgen.1002030
pmid: 21490958
|
| 36 |
Grice S J, Sleigh J N, Liu J L, Sattelle D B (2011). Invertebrate models of spinal muscular atrophy: insights into mechanisms and potential therapeutics. BioEssays, 33: 956–965
|
| 37 |
Grice S J, Sleigh J N, Motley W W, Liu J L, Burgess R W, Talbot K, Cader M Z (2015). Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet, 24(15): 4397–4406
https://doi.org/10.1093/hmg/ddv176
pmid: 25972375
|
| 38 |
Halfar K, Rommel C, Stocker H, Hafen E (2001). Ras controls growth, survival and differentiation in the Drosophila eye by different thresholds of MAP kinase activity. Development, 128(9): 1687–1696
pmid: 11290305
|
| 39 |
Hamilton G, Gillingwater T H (2013). Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med, 19(1): 40–50
https://doi.org/10.1016/j.molmed.2012.11.002
pmid: 23228902
|
| 40 |
Han H, Irimia M, Ross P J, Sung H K, Alipanahi B, David L, Golipour A, Gabut M, Michael I P, Nachman E N, Wang E, Trcka D, Thompson T, O’Hanlon D, Slobodeniuc V, Barbosa-Morais N L, Burge C B, Moffat J, Frey B J, Nagy A, Ellis J, Wrana J L, Blencowe B J (2013). MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 498(7453): 241–245
https://doi.org/10.1038/nature12270
pmid: 23739326
|
| 41 |
Hayhurst M, Wagner A K, Cerletti M, Wagers A J, Rubin L L (2012). A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. Dev Biol, 368(2): 323–334
https://doi.org/10.1016/j.ydbio.2012.05.037
pmid: 22705478
|
| 42 |
He H, Liyanarachchi S, Akagi K, Nagy R, Li J, Dietrich R C, Li W, Sebastian N, Wen B, Xin B, Singh J, Yan P, Alder H, Haan E, Wieczorek D, Albrecht B, Puffenberger E, Wang H, Westman J A, Padgett R A, Symer D E, de la Chapelle A (2011). Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science, 332(6026): 238–240
https://doi.org/10.1126/science.1200587
pmid: 21474760
|
| 43 |
Hinas A, Larsson P, Avesson L, Kirsebom L A, Virtanen A, S?derbom F (2006). Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs. Eukaryot Cell, 5(6): 924–934
https://doi.org/10.1128/EC.00065-06
pmid: 16757740
|
| 44 |
Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett C F, Krainer A R (2011). Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature, 478(7367): 123–126
https://doi.org/10.1038/nature10485
pmid: 21979052
|
| 45 |
Huen M S, Sy S M, Leung K M, Ching Y P, Tipoe G L, Man C, Dong S, Chen J (2010). SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle, 9(13): 2679–2685
https://doi.org/10.4161/cc.9.13.12151
pmid: 20581448
|
| 46 |
Hunter G, Aghamaleky Sarvestany A, Roche S L, Symes R C, Gillingwater T H (2014). SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Hum Mol Genet, 23(9): 2235–2250
https://doi.org/10.1093/hmg/ddt612
pmid: 24301677
|
| 47 |
Huo Q, Kayikci M, Odermatt P, Meyer K, Michels O, Saxena S, Ule J, Schümperli D (2014). Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: evidence for involvement of splicing regulatory proteins. RNA Biol, 11(11): 1430–1446
pmid: 25692239
|
| 48 |
Jia Y, Mu J C, Ackerman S L (2012). Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell, 148(1–2): 296–308
https://doi.org/10.1016/j.cell.2011.11.057
pmid: 22265417
|
| 49 |
Jodelka F M, Ebert A D, Duelli D M, Hastings M L (2010). A feedback loop regulates splicing of the spinal muscular atrophy-modifying gene, SMN2. Hum Mol Genet, 19(24): 4906–4917
https://doi.org/10.1093/hmg/ddq425
pmid: 20884664
|
| 50 |
Jones K W, Gorzynski K, Hales C M, Fischer U, Badbanchi F, Terns R M, Terns M P (2001). Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J Biol Chem, 276(42): 38645–38651
https://doi.org/10.1074/jbc.M106161200
pmid: 11509571
|
| 51 |
Jurica M S, Moore M J (2003). Pre-mRNA splicing: awash in a sea of proteins. Mol Cell, 12(1): 5–14
https://doi.org/10.1016/S1097-2765(03)00270-3
pmid: 12887888
|
| 52 |
Kerins J A, Hanazawa M, Dorsett M, Schedl T (2010). PRP-17 and the pre-mRNA splicing pathway are preferentially required for the proliferation versus meiotic development decision and germline sex determination in Caenorhabditis elegans. Dev Dyn, 239: 1555–1572
|
| 53 |
Krastev D B, Slabicki M, Paszkowski-Rogacz M, Hubner N C, Junqueira M, Shevchenko A, Mann M, Neugebauer K M, Buchholz F (2011). A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol, 13(7): 809–818
https://doi.org/10.1038/ncb2264
pmid: 21642980
|
| 54 |
Laggerbauer B, Liu S, Makarov E, Vornlocher H P, Makarova O, Ingelfinger D, Achsel T, Lührmann R (2005). The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation. RNA, 11(5): 598–608
https://doi.org/10.1261/rna.2300805
pmid: 15840814
|
| 55 |
Lanner F, Rossant J (2010). The role of FGF/Erk signaling in pluripotent cells. Development, 137(20): 3351–3360
https://doi.org/10.1242/dev.050146
pmid: 20876656
|
| 56 |
Le T T, McGovern V L, Alwine I E, Wang X, Massoni-Laporte A, Rich M M, Burghes A H (2011). Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet, 20(18): 3578–3591
https://doi.org/10.1093/hmg/ddr275
pmid: 21672919
|
| 57 |
Lee L, Davies S E, Liu J L (2009). The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway. Dev Biol, 332(1): 142–155
https://doi.org/10.1016/j.ydbio.2009.05.553
pmid: 19464282
|
| 58 |
Lee S, Sayin A, Cauchi R J, Grice S, Burdett H, Baban D, van den Heuvel M (2008). Genome-wide expression analysis of a spinal muscular atrophy model: towards discovery of new drug targets. PLoS ONE, 3(1): e1404
https://doi.org/10.1371/journal.pone.0001404
pmid: 18167563
|
| 59 |
Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80(1): 155–165
https://doi.org/10.1016/0092-8674(95)90460-3
pmid: 7813012
|
| 60 |
Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997). Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet, 16(3): 265–269
https://doi.org/10.1038/ng0797-265
pmid: 9207792
|
| 61 |
Lefebvre S, Burlet P, Viollet L, Bertrandy S, Huber C, Belser C, Munnich A (2002). A novel association of the SMN protein with two major non-ribosomal nucleolar proteins and its implication in spinal muscular atrophy. Hum Mol Genet, 11(9): 1017–1027
https://doi.org/10.1093/hmg/11.9.1017
pmid: 11978761
|
| 62 |
Liu J L, Gall J G (2007). U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci USA, 104(28): 11655–11659
https://doi.org/10.1073/pnas.0704977104
pmid: 17595295
|
| 63 |
Liu J L, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall J G (2006). The Drosophila melanogaster Cajal body. J Cell Biol, 172(6): 875–884
https://doi.org/10.1083/jcb.200511038
pmid: 16533947
|
| 64 |
Liu J L, Wu Z, Nizami Z, Deryusheva S, Rajendra T K, Beumer K J, Gao H, Matera A G, Carroll D, Gall J G (2009). Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell, 20(6): 1661–1670
https://doi.org/10.1091/mbc.E08-05-0525
pmid: 19158395
|
| 65 |
Liu Q, Dreyfuss G (1996). A novel nuclear structure containing the survival of motor neurons protein. EMBO J, 15(14): 3555–3565
pmid: 8670859
|
| 66 |
Livyatan I, Meshorer E (2013). SON sheds light on RNA splicing and pluripotency. Nat Cell Biol, 15(10): 1139–1140
https://doi.org/10.1038/ncb2851
pmid: 24084863
|
| 67 |
Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 38(4): 431–440
https://doi.org/10.1038/ng1760
pmid: 16518401
|
| 68 |
Lorson C L, Androphy E J (2000). An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet, 9(2): 259–265
https://doi.org/10.1093/hmg/9.2.259
pmid: 10607836
|
| 69 |
Lotti F, Imlach W L, Saieva L, Beck E S, Hao T, Li D K, Jiao W, Mentis G Z, Beattie C E, McCabe B D, Pellizzoni L (2012). An SMN-dependent U12 splicing event essential for motor circuit function. Cell, 151(2): 440–454
https://doi.org/10.1016/j.cell.2012.09.012
pmid: 23063131
|
| 70 |
Lund E, Kahan B, Dahlberg J E (1985). Differential control of U1 small nuclear RNA expression during mouse development. Science, 229(4719): 1271–1274
https://doi.org/10.1126/science.2412294
pmid: 2412294
|
| 71 |
Martínez-Hernández R, Bernal S, Also-Rallo E, Alías L, Barceló M J, Hereu M, Esquerda J E, Tizzano E F (2013). Synaptic defects in type I spinal muscular atrophy in human development. J Pathol, 229(1): 49–61
https://doi.org/10.1002/path.4080
pmid: 22847626
|
| 72 |
Maurer-Stroh S, Dickens N J, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting C P (2003). The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci, 28(2): 69–74
https://doi.org/10.1016/S0968-0004(03)00004-5
pmid: 12575993
|
| 73 |
Mayshar Y, Rom E, Chumakov I, Kronman A, Yayon A, Benvenisty N (2008). Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells, 26(3): 767–774
https://doi.org/10.1634/stemcells.2007-1037
pmid: 18192227
|
| 74 |
McGivern J V, Patitucci T N, Nord J A, Barabas M E, Stucky C L, Ebert A D (2013). Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia, 61(9): 1418–1428
https://doi.org/10.1002/glia.22522
pmid: 23839956
|
| 75 |
Monani U R, Coovert D D, Burghes A H (2000). Animal models of spinal muscular atrophy. Hum Mol Genet, 9(16): 2451–2457
https://doi.org/10.1093/hmg/9.16.2451
pmid: 11005801
|
| 76 |
Morency E, Sabra M, Catez F, Texier P, Lomonte P (2007). A novel cell response triggered by interphase centromere structural instability. J Cell Biol, 177(5): 757–768
https://doi.org/10.1083/jcb.200612107
pmid: 17548509
|
| 77 |
Neumüller R A, Richter C, Fischer A, Novatchkova M, Neumüller K G, Knoblich J A (2011). Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell, 8(5): 580–593
https://doi.org/10.1016/j.stem.2011.02.022
pmid: 21549331
|
| 78 |
Niwa H, Miyazaki J, Smith A G (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372–376
https://doi.org/10.1038/74199
pmid: 10742100
|
| 79 |
O’Reilly D, Dienstbier M, Cowley S A, Vazquez P, Drozdz M, Taylor S, James W S, Murphy S (2013). Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res, 23(2): 281–291
https://doi.org/10.1101/gr.142968.112
pmid: 23070852
|
| 80 |
Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366
https://doi.org/10.1016/j.celrep.2013.09.016
pmid: 24139801
|
| 81 |
Ozsolak F, Milos P M (2011). RNA sequencing: advances, challenges and opportunities. Nat Rev Genet, 12(2): 87–98
https://doi.org/10.1038/nrg2934
pmid: 21191423
|
| 82 |
Patel A A, Steitz J A (2003). Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol, 4(12): 960–970
https://doi.org/10.1038/nrm1259
pmid: 14685174
|
| 83 |
Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998). A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell, 95(5): 615–624
https://doi.org/10.1016/S0092-8674(00)81632-3
pmid: 9845364
|
| 84 |
Praveen K, Wen Y, Matera A G (2012). A Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects. Cell Reports, 1(6): 624–631
https://doi.org/10.1016/j.celrep.2012.05.014
pmid: 22813737
|
| 85 |
Ruggiu M, McGovern V L, Lotti F, Saieva L, Li D K, Kariya S, Monani U R, Burghes A H, Pellizzoni L (2012). A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol, 32(1): 126–138
https://doi.org/10.1128/MCB.06077-11
pmid: 22037760
|
| 86 |
Sabra M, Texier P, El Maalouf J, Lomonte P (2013). The Tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated lysine 79 of histone H3. J Cell Sci, 126(Pt 16): 3664–3677
https://doi.org/10.1242/jcs.126003
pmid: 23750013
|
| 87 |
Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514–10519
https://doi.org/10.1073/pnas.0912260107
pmid: 20498046
|
| 88 |
Salzler H R, Tatomer D C, Malek P Y, McDaniel S L, Orlando A N, Marzluff W F, Duronio R J (2013). A sequence in the Drosophila H3-H4 Promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs. Dev Cell, 24(6): 623–634
https://doi.org/10.1016/j.devcel.2013.02.014
pmid: 23537633
|
| 89 |
Scamborova P, Wong A, Steitz J A (2004). An intronic enhancer regulates splicing of the twintron of Drosophila melanogaster prospero pre-mRNA by two different spliceosomes. Mol Cell Biol, 24(5): 1855–1869
https://doi.org/10.1128/MCB.24.5.1855-1869.2004
pmid: 14966268
|
| 90 |
Shafey D, C?té P D, Kothary R (2005). Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. Exp Cell Res, 311(1): 49–61
https://doi.org/10.1016/j.yexcr.2005.08.019
pmid: 16219305
|
| 91 |
Shirai C L, Ley J N, White B S, Kim S, Tibbitts J, Shao J, Ndonwi M, Wadugu B, Duncavage E J, Okeyo-Owuor T, Liu T, Griffith M, McGrath S, Magrini V, Fulton R S, Fronick C, O’Laughlin M, Graubert T A, Walter M J (2015). Mutant U2AF1 Expression Alters Hematopoiesis and Pre-mRNA Splicing In Vivo. Cancer Cell, 27(5): 631–643
https://doi.org/10.1016/j.ccell.2015.04.008
pmid: 25965570
|
| 92 |
Sierra-Montes J M, Pereira-Simon S, Smail S S, Herrera R J (2005). The silk moth Bombyx mori U1 and U2 snRNA variants are differentially expressed. Gene, 352: 127–136
https://doi.org/10.1016/j.gene.2005.02.013
pmid: 15894437
|
| 93 |
Sleigh J N, Barreiro-Iglesias A, Oliver P L, Biba A, Becker T, Davies K E, Becker C G, Talbot K (2014a). Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet, 23(4): 855–869
https://doi.org/10.1093/hmg/ddt477
pmid: 24067532
|
| 94 |
Sleigh J N, Gillingwater T H, Talbot K (2011). The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech, 4(4): 457–467
https://doi.org/10.1242/dmm.007245
pmid: 21708901
|
| 95 |
Sleigh J N, Grice S J, Burgess R W, Talbot K, Cader M Z (2014b). Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice. Hum Mol Genet, 23(10): 2639–2650
https://doi.org/10.1093/hmg/ddt659
pmid: 24368416
|
| 96 |
Sleigh J N, Grice S J, Davies K E, Talbot K (2013). Spinal muscular atrophy at the crossroads of basic science and therapy. Neuromuscul Disord, 23(1): 96
https://doi.org/10.1016/j.nmd.2012.08.008
pmid: 22981697
|
| 97 |
Sousa-Nunes R, Cheng L Y, Gould A P (2010). Regulating neural proliferation in the Drosophila CNS. Curr Opin Neurobiol, 20(1): 50–57
https://doi.org/10.1016/j.conb.2009.12.005
pmid: 20079625
|
| 98 |
Sterne-Weiler T, Sanford J R (2014). Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol, 15(1): 201
https://doi.org/10.1186/gb4150
pmid: 24456648
|
| 99 |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872
https://doi.org/10.1016/j.cell.2007.11.019
pmid: 18035408
|
| 100 |
Thornton G K, Woods C G (2009). Primary microcephaly: do all roads lead to Rome? Trends Genet, 25(11): 501–510
https://doi.org/10.1016/j.tig.2009.09.011
pmid: 19850369
|
| 101 |
Tisdale S, Lotti F, Saieva L, Van Meerbeke J P, Crawford T O, Sumner C J, Mentis G Z, Pellizzoni L (2013). SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3′-end formation of histone mRNAs. Cell Reports, 5(5): 1187–1195
https://doi.org/10.1016/j.celrep.2013.11.012
pmid: 24332368
|
| 102 |
Turunen J J, Niemel? E H, Verma B, Frilander M J (2013). The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA, 4(1): 61–76
https://doi.org/10.1002/wrna.1141
pmid: 23074130
|
| 103 |
Valadkhan S, Jaladat Y (2010). The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics, 10(22): 4128–4141
https://doi.org/10.1002/pmic.201000354
pmid: 21080498
|
| 104 |
Venables J P, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M, Vignal E, Thibault P, Prinos P, Chabot B, Abou Elela S, Roux P, Lemaitre J M, Tazi J (2013). MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun, 4: 2480
https://doi.org/10.1038/ncomms3480
pmid: 24048253
|
| 105 |
Verheggen C, Mouaikel J, Thiry M, Blanchard J M, Tollervey D, Bordonné R, Lafontaine D L, Bertrand E (2001). Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J, 20(19): 5480–5490
https://doi.org/10.1093/emboj/20.19.5480
pmid: 11574480
|
| 106 |
Wahl M C, Will C L, Lührmann R (2009). The spliceosome: design principles of a dynamic RNP machine. Cell, 136(4): 701–718
https://doi.org/10.1016/j.cell.2009.02.009
pmid: 19239890
|
| 107 |
Wan L, Battle D J, Yong J, Gubitz A K, Kolb S J, Wang J, Dreyfuss G (2005). The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol, 25(13): 5543–5551
https://doi.org/10.1128/MCB.25.13.5543-5551.2005
pmid: 15964810
|
| 108 |
Wang C, Wilson-Berry L, Schedl T, Hansen D(2012). TEG-1 CD2BP2 regulates stem cell proliferation and sex determination in the C. elegans germ line and physically interacts with the UAF-1 U2AF65 splicing factor. Deve Dyn, 241: 505–521
|
| 109 |
Wang E T, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221): 470–476
https://doi.org/10.1038/nature07509
pmid: 18978772
|
| 110 |
Will C L, Schneider C, Reed R, Lührmann R (1999). Identification of both shared and distinct proteins in the major and minor spliceosomes. Science, 284(5422): 2003–2005
https://doi.org/10.1126/science.284.5422.2003
pmid: 10373121
|
| 111 |
Winkler C, Eggert C, Gradl D, Meister G, Giegerich M, Wedlich D, Laggerbauer B, Fischer U (2005). Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev, 19(19): 2320–2330
https://doi.org/10.1101/gad.342005
pmid: 16204184
|
| 112 |
Wishart T M, Huang J P, Murray L M, Lamont D J, Mutsaers C A, Ross J, Geldsetzer P, Ansorge O, Talbot K, Parson S H, Gillingwater T H (2010). SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet, 19(21): 4216–4228
https://doi.org/10.1093/hmg/ddq340
pmid: 20705736
|
| 113 |
Wollnik B (2010). A common mechanism for microcephaly. Nat Genet, 42(11): 923–924
https://doi.org/10.1038/ng1110-923
pmid: 20980985
|
| 114 |
Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254–5259
https://doi.org/10.1073/pnas.0914114107
pmid: 20194744
|
| 115 |
Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951–1967
https://doi.org/10.1371/journal.pcbi.0030196
pmid: 17967047
|
| 116 |
Younis I, Dittmar K, Wang W, Foley S W, Berg M G, Hu K Y, Wei Z, Wan L, Dreyfuss G (2013). Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. eLife, 2: e00780
https://doi.org/10.7554/eLife.00780
pmid: 23908766
|
| 117 |
Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M, Dreyfuss G (2008). SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell, 133(4): 585–600
https://doi.org/10.1016/j.cell.2008.03.031
pmid: 18485868
|
| 118 |
Zhang Z, Pinto A M, Wan L, Wang W, Berg M G, Oliva I, Singh L N, Dengler C, Wei Z, Dreyfuss G (2013). Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci USA, 110(48): 19348–19353
https://doi.org/10.1073/pnas.1319280110
pmid: 24191055
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|