Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (3) : 210-218    https://doi.org/10.1007/s11515-017-1446-2
RESEARCH ARTICLE
Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment
Arooj Arshad, Bisma Ashraf, Iftikhar Ali(), Nazia Jamil
Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
 Download: PDF(2126 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Styrene and its metabolites are known to have serious adverse effects on human health and hence, strategies to prevent its release, eradicate it from the environment, and understand its route of degradation are being considered.

METHODS: A total of 18 strains were isolated from 4 samples of diesel contaminated soils. Among them 5 strains were selected for their ability to degrade styrene and use it as a sole carbon source to produce PHA. These strains were identified as Enterobacter spp. on the basis of 16S rRNA gene sequencing. Bacteria were screened for their ability to produce PHA by utilizing glucose and styrene as a carbon sources. Screening for PHA production was done by Nile blue A, Sudan black B, and phase contrast microscopy and the selected 3 strains showed positive results. Growth kinetics along with time profiling of PHA was performed for glucose and styrene as carbon sources.

RESULTS:PHA extraction was done at equal intervals of 12 h by sodium hypochlorite method which showed that these strains accumulate maximum amount of PHA after 48 h in glucose (30.60%). FTIR analysis of PHA was done which revealed homopolymer PHB and copolymer (PHB-co-PHV) production in strains by utilizing glucose and styrene. Gas chromatography mass spectrometry was carried out to identify the metabolites produced by bacterial strains grown on styrene. Metabolites of styrene degradation included propyne and phenylalanine. Genomic DNA isolation was carried out to amplify phaC gene which encodes PHA synthase enzyme.

CONCLUSIONS: The conversion of styrene to polyhydroxyalkanoates (PHA) provides a new and unique link between an aromatic environmental pollutant and aliphatic PHA accumulation.

Keywords biodegradable polymers      environmental pollutants      PHA      FTIR      recycling      bacteria     
Corresponding Author(s): Iftikhar Ali   
Online First Date: 04 May 2017    Issue Date: 19 June 2017
 Cite this article:   
Arooj Arshad,Bisma Ashraf,Iftikhar Ali, et al. Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment[J]. Front. Biol., 2017, 12(3): 210-218.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-017-1446-2
https://academic.hep.com.cn/fib/EN/Y2017/V12/I3/210
Fig.1  Selection of PHA producers.
Fig.2  Growth curve of PHA producing strains.
Fig.3  (A) FTIR spectra of PHA extracted from Enterobacter strain 3A with glucose as a carbon source. Sharp absorption peaks at 618 cm1, 972 cm1, 1403 cm1, 1658 cm1, and 2899 cm1 corresponds to ketones, esters, aromatics, CH3 and CH2 functional groups respectively. (B) FTIR spectra of PHA extracted from Enterobacter strain 3A with styrene as a carbon source. Sharp absorption peaks at 601 cm1, 1110 cm1, 1411 cm1, 1750 cm1 and 2911 cm1 which corresponds to ketones, esters, aromatics and aliphatic compounds. (C) FTIR spectra of PHA extracted from Enterobacter strain 11 with glucose as a carbon source. Sharp absorption peaks at 624 cm1, 1095 cm1, 1408 cm1, 1630 cm1, 1735 cm1 and 2935 cm1 which corresponds to ketones, esters, aromatics and aliphatic compounds. (D) FTIR spectra of PHA extracted from Enterobacter strain 11 with styrene as a carbon source. Sharp absorption peaks at 615 cm1, 975 cm1, 1399 cm1, 1732 cm1and 2850 cm1 which corresponds to ketones, esters, aromatics, primary and secondary amines and aliphatic compounds.
Fig.4  Gas chromatographs of sample from Enterobacter strain 3A (A) and from Enterobacter strain 11 (B). The control sample reported only styrene peak (C).
Code of strainIdentity in BLAST (%)Name of strain
2A99Enterobacter cloacea strain 2A
3A99Enterobactersp. 3A
399Enterobactersp. strain 3
1195Enterobacter asburiae strain 11
1499Enterobacter cloacea strain 14
Tab.1  Identification of isolated bacteria on the basis of 16S rRNA gene sequencing
1 Ali I, Jamil N (2014). Enhanced biosynthesis of poly(3-hydroxybutyrate) from potato starch by Bacillus cereus strain 64-INS in a laboratory-scale fermenter. Prep Biochem Biotechnol, 44(8): 822–833
https://doi.org/10.1080/10826068.2013.867876 pmid: 24279753
2 Ali I, Jamil N (2016). Polyhydroxyalkanoates: Current applications in the medical field. Front Biol, 11(1): 19–27
https://doi.org/10.1007/s11515-016-1389-z
3 Ali I, Jamil N ( 2016).Biosynthesis and characterization of poly3-hydroxyalkanote (PHA) from newly isolated bacterium Bacillus sp. AZR-1. Iran J Sci Technol Trans Sci, pp. 1–8
4 Beltrametti F, Marconi A M, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E (1997). Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol, 63(6): 2232–2239
pmid: 9172343
5 Chanprateep S (2010). Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng, 110(6): 621–632
https://doi.org/10.1016/j.jbiosc.2010.07.014 pmid: 20719562
6 Chaudhry W N, Jamil N, Ali I, Ayaz M H, Hasnain S (2011). Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann Microbiol, 61(3): 623–629
https://doi.org/10.1007/s13213-010-0181-6
7 Choi J, Lee S Y (1999). Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol, 51(1): 13–21
https://doi.org/10.1007/s002530051357
8 Hartmans S, van der Werf M J, de Bont J A (1990). Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol, 56(5): 1347–1351
pmid: 2339888
9 Hindré T, Brüggemann H, Buchrieser C, Héchard Y (2008). Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology, 154(Pt 1): 30–41
https://doi.org/10.1099/mic.0.2007/008698-0 pmid: 18174123
10 Hollmann F, Lin P C, Witholt B, Schmid A (2003). Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J Am Chem Soc, 125(27): 8209–8217
https://doi.org/10.1021/ja034119u pmid: 12837091
11 Hussain Z, Khan K M, Hussain K (2010). Microwave–metal interaction pyrolysis of polystyrene. J Anal Appl Pyrolysis, 89(1): 39–43
https://doi.org/10.1016/j.jaap.2010.05.003
12 Luhana K, Patel V(2013). Quantitative extraction and analysis of bioplastic (PHA) accumulated in bacterial isolates of paint industry effluent. International Journal of Chemtech Applications (INTJCA), 2(3): 52–62
13 Michael P, Loganayagi R, Nancy D, Ranandkumar S G, Indra  A P(2012). Isolation and characterization of indigenous Ralstonia strain, YRF1 for high Polyhydroxy Alkanoates (PHA) production. Elixir Appl Biol, 48(2012): 9424–9427
14 Miskolczi N, Borsodi N, Buyong F, Angyal A, Williams P T (2011). Production of pyrolytic oils by catalytic pyrolysis of Malaysian refuse-derived fuels in continuously stirred batch reactor. Fuel Process Technol, 92(5): 925–932
https://doi.org/10.1016/j.fuproc.2010.12.012
15 Mohammadi M, Hassan M A, Shirai Y, Man H C, Ariffin H, Yee L N, Mumtaz T, Chong M L, Phang L Y (2012). Separation and purification of polyhydroxyalkanoates from newly isolated Comamonas sp. EB172 by simple digestion with sodium hydroxide. Sep Sci Technol, 47(3): 534–541
https://doi.org/10.1080/01496395.2011.615788
16 Moita R, Lemos P C (2012). Biopolymers production from mixed cultures  and  pyrolysis   by-products.  J  Biotechnol, 157(4): 578–583
https://doi.org/10.1016/j.jbiotec.2011.09.021 pmid: 21983233
17 O’Leary N D, O’Connor K E, Dobson A D (2002). Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol Rev, 26(4): 403–417
https://doi.org/10.1111/j.1574-6976.2002.tb00622.x pmid: 12413667
18 Obruca S, Marova I, Svoboda Z, Mikulikova R (2010). Use of controlled exogenous stress for improvement of poly(3-hydroxybutyrate) production in Cupriavidus necator. Folia Microbiol (Praha), 55(1): 17–22
https://doi.org/10.1007/s12223-010-0003-z pmid: 20336499
19 Otari S, Ghosh J (2009). Production and characterization of the polymer polyhydroxy butyrate-copolyhydroxy valerate by Bacillus megaterium NCIM 2475. Current Research Journal of Biological Sciences, 1(2): 23–26
20 Paladino L P A ( 2009) .Screening, optimization and extraction of polyhydroxyalkanoates and peptidoglycan from Bacillus megaterium
https://doi.org/10.9734/JABB/2014/12286S.
21 Park M S, Han J H, Yoo S S, Lee E Y, Lee S G, Park S (2005). Degradation of styrene by a new isolate Pseudomonas putida SN1. Korean J Chem Eng, 22(3): 418–424
https://doi.org/10.1007/BF02719421
22 Peplinski K, Ehrenreich A, Döring C, Bömeke M, Reinecke F, Hutmacher C, Steinbüchel A (2010). Genome-wide transcriptome analyses of the ‘Knallgas’ bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology, 156(Pt 7): 2136–2152
https://doi.org/10.1099/mic.0.038380-0 pmid: 20395272
23 Pötter M, Steinbüchel A (2005). Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules, 6(2): 552–560
https://doi.org/10.1021/bm049401n pmid: 15762612
24 Rosazza J P, Huang Z, Dostal L, Volm T, Rousseau B (1995). Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol, 15(6): 457–471
https://doi.org/10.1007/BF01570016 pmid: 8821508
25 Rossi G, Monticelli L, Puisto S R, Vattulainen I, Ala-Nissila T (2011). Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter, 7(2): 698–708
https://doi.org/10.1039/C0SM00481B
26 Sambrook J, Russell D W (2001). Molecular cloning: a laboratory manual (3-volume set). Vol. 999. Cold spring harbor laboratory press Cold Spring Harbor, New York
27 Sathesh Prabu C, Murugesan A (2010). Effective utilization and management of coir industrial waste for the production of poly-Î2-hydroxybutyrate (PHB) using the bacterium Azotobacter beijerinickii. Int J Environ Res, 4(3): 519–524
28 Spiekermann P, Rehm B H, Kalscheuer R, Baumeister D, Steinbüchel A (1999). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol, 171(2): 73–80
https://doi.org/10.1007/s002030050681 pmid: 9914303
29 Sudesh K, Abe H, Doi Y (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci, 25(10): 1503–1555
https://doi.org/10.1016/S0079-6700(00)00035-6
30 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 30(12): 2725–2729
https://doi.org/10.1093/molbev/mst197 pmid: 24132122
31 Velasco A, Alonso S, García J L, Perera J, Díaz E (1998). Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol, 180(5): 1063–1071
pmid: 9495743
32 Xiao N, Jiao N (2011). Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability. Appl Environ Microbiol, 77(21): 7445–7450
https://doi.org/10.1128/AEM.05955-11 pmid: 21908634
33 Yang C, Zhang W, Liu R, Zhang C, Gong T, Li Q, Wang S, Song C (2013). Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate. FEMS Microbiol Lett, 346(1): 56–64
https://doi.org/10.1111/1574-6968.12201 pmid: 23800349
34 Younas T, Ali I, Jamil N (2015). Polyhydroxyalkanotes (PHAs) production by using canola oil as carbon source from bacteria isolated near paper pulp industry. Kuwait Journal of Science, 42(2)
35 Zhu C, Nomura C T, Perrotta J A, Stipanovic A J, Nakas J P (2010). Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog, 26(2): 424–430
pmid: 19953601
36 Zinn M, Witholt B, Egli T (2001). Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev, 53(1): 5–21
https://doi.org/10.1016/S0169-409X(01)00218-6 pmid: 11733115
[1] FIB-10446-OF-IA_suppl_1 Download
[1] Bijan Keikhaei, Pejman Salehi-Fard, Mostafa Paridar, Mehraneh Karimzadeh, Razie Dehghani, Asma Zamiri, Vahideh Takhviji. Widely distribution of hematological parameters in thalassemia patients with similar α-globin genotype[J]. Front. Biol., 2018, 13(6): 469-474.
[2] Hoda Sabati, Hossein Motamedi. Investigation of the relationship between cell surface hydrophobicity and demulsifying capability of biodemulsifier-producing bacteria[J]. Front. Biol., 2018, 13(5): 358-365.
[3] Rituparna Das, Nayan Ranjan Saha, Arundhati Pal, Dipankar Chattopadhyay, Amal Kanti Paul. Comparative evaluation of physico-chemical characteristics of biopolyesters P(3HB) and P(3HB-co-3HV) produced by endophytic Bacillus cereus RCL 02[J]. Front. Biol., 2018, 13(4): 297-308.
[4] Reza Talebi, Ahmad Ahmadi, Fazlollah Afraz. Construction of protein–protein interaction network based on transcriptome profiling of ovine granulosa cells during the sheep’s anestrus phase[J]. Front. Biol., 2018, 13(3): 215-225.
[5] Moni Philip Jacob Kizhakedathil, Subathra Devi Chandrasekaran. Media optimization for extracellular amylase production by Pseudomonas balearica vitps19 using response surface methodology[J]. Front. Biol., 2018, 13(2): 123-129.
[6] Anup Kainthola, Ajay Bhatt. Intervention points for community- acquired methicillin– resistant Staphylococcus aureus colonization and load in healthy population of lesser Himalayan Belt, South Asia, India[J]. Front. Biol., 2017, 12(3): 226-234.
[7] Jun Sun. Intestinal organoid as an in vitromodel in studying host-microbial interactions[J]. Front. Biol., 2017, 12(2): 94-102.
[8] Ayesha Siddiqa,Yasir Rehman,Shahida Hasnain. Rhizoplane microbiota of superior wheat varieties possess enhanced plant growth-promoting abilities[J]. Front. Biol., 2016, 11(6): 481-487.
[9] Pathomwat Wongrattanakamon,Vannajan Sanghiran Lee,Piyarat Nimmanpipug,Supat Jiranusornkul. Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions[J]. Front. Biol., 2016, 11(5): 391-395.
[10] Yanan Sun,Jie Yang,Zhenyi Ma. Functions of the adaptor protein p66Shc in solid tumors[J]. Front. Biol., 2015, 10(6): 487-494.
[11] Dong Yang,Ying Kong. The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis[J]. Front. Biol., 2015, 10(3): 252-261.
[12] Massimo Bonora,Paolo Pinton,Keisuke Ito. Mitochondrial control of hematopoietic stem cell balance and hematopoiesis[J]. Front. Biol., 2015, 10(2): 117-124.
[13] Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
[14] Li XU,Yancheng LIU. Protein secretion systems in bacterial pathogens[J]. Front. Biol., 2014, 9(6): 437-447.
[15] Young Bong CHOI,Edward William HARHAJ. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses[J]. Front. Biol., 2014, 9(6): 423-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed