Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ Power Eng Chin    2010, Vol. 4 Issue (4) : 560-565    https://doi.org/10.1007/s11708-010-0018-9
RESEARCH ARTICLE
Optimization of power and efficiency for an irreversible Diesel heat engine
Shiyan ZHENG1,2, Guoxing LIN3()
1. College of Physics and Information Engineering, Institute of Functional; 2. Material, Quanzhou Normal University, Quanzhou 362000, China; 3. Department of Physics, Xiamen University, Xiamen 361005, China
 Download: PDF(243 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A cyclic model of an irreversible Diesel heat engine is presented, in which the heat loss between the working fluid and the ambient during combustion, the irreversibility inside the cyclic working fluid resulting from friction, eddies flow, and other irreversible effects are taken into account. By using the thermodynamic analysis and optimal control theory methods, the analytical expressions of power output and efficiency of the Diesel heat engine are derived. Variations of the main performance parameters with the pressure ratio of the cycle are analyzed and calculated. The optimum operating region of the heat engine is determined. Moreover, the optimum criterion of some important parameters, such as the power output, efficiency, pressure ratio, and temperatures of the working fluid at the related state points are illustrated and discussed. The conclusions obtained in the present paper may provide some theoretical guidance for the optimal parameter design of a class of internal-combustion engines.

Keywords Diesel heat engine      irreversibility      power output      efficiency      parameter optimization     
Corresponding Author(s): LIN Guoxing,Email:gxlin@xmu.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Shiyan ZHENG,Guoxing LIN. Optimization of power and efficiency for an irreversible Diesel heat engine[J]. Front Energ Power Eng Chin, 2010, 4(4): 560-565.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0018-9
https://academic.hep.com.cn/fie/EN/Y2010/V4/I4/560
Fig.1  The - diagram of an irreversible Diesel heat engine cycle
Fig.2  The dimensionless power output versus the pressure ratio curves. Plots are presented for , , , , and . Curves I, II, III and IV correspond to the cases of , 0.99, 0.98 and 0.97, respectively
Fig.3  The dimensionless power output versus the temperature of the working fluid curves. The related parameter values are the same as those used in Fig. 2
Fig.4  The dimensionless power output versus the temperature of the working fluid curves. The related parameter values are the same as those used in Fig. 2
Fig.5  The efficiency versus the pressure ratio curves. The related parameter values are the same as those used in Fig. 2
Fig.6  The efficiency versus the temperature of the working fluid curves. The related parameter values are the same as those used in Fig. 2
Fig.7  The efficiency versus the temperature of the working fluid curves. The related parameter values are the same as those used in Fig. 2
Fig.8  The dimensionless power output * versus the efficiency curves. The related parameter values are the same as those used in Fig. 2
1 Rubin M H. Optimal configuration of a class of irreversible heat engines. I. Physical Review A , 1979, 19(3): 1272–1276
doi: 10.1103/PhysRevA.19.1272
2 Salamon P, Nitzan A, Andresen B, Berry R. Minimum entropy production and the optimization of heat engines. Physical Review A , 1980, 21(6): 2115–2129
doi: 10.1103/PhysRevA.21.2115
3 Angulo-Brown F, Rocha-Martinez J, Navarrete-Gonzalez I. A non-endoreversible Otto cycle model: improving power output and efficiency. Journal of Physics. D, Applied Physics , 1996; 29(1): 80–83
doi: 10.1088/0022-3727/29/1/014
4 Chen Lingen, Wu Chih, Sun Fengrui, Cao Shui. Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle. Energy Conversion and Management , 1998, 39(7): 643–648
doi: 10.1016/S0196-8904(97)10003-6
5 Chen Lingen, Wu Chih, Chen Jincan. Recent Advances in Finite-Time Thermodynamics. New York: Nova Sci Publishers, Inc., 1999
6 Mozurkewich M, Berry R. Finite-time thermodynamics: Engine performance improved by optimized piston motion. Proc. Natl. Acad. Sci USA, 1981, 78(4): 1986–1988
doi: 10.1073/pnas.78.4.1986
7 Mozurkewich M, Berry R. Optimal paths for thermodynamic systems: The ideal Otto cycle. Journal of Applied Physics , 1982, 53(1): 34–42
doi: 10.1063/1.329894
8 Hoffman K, Watowich S, Berry R. Optimal paths for thermodynamic systems: The ideal diesel cycle. Journal of Applied Physics , 1985, 58(6): 2125–2134
doi: 10.1063/1.335977
9 Akash B. Effect of heat transfer on the performance of an air-standard diesel cycle. International Communications in Heat and Mass Transfer , 2001, 28(1): 87–95
doi: 10.1016/S0735-1933(01)00216-0
10 Calvo A, Medina A, Roco J, Velasco S. On an irreversible air standard Otto-cycle model. European Journal of Physics , 1995, 16(1): 73–75
11 Bhattacharyya S. Optimizing an irreversible diesel cycle—Fine tuning of compression ratio and cut-off ratio. Energy Convers Mgmt 2000, 41(8): 847–854
doi: 10.1016/S0196-8904(99)00153-3
12 Chen Lingen, Lin Junxing, Luo Jun, Sun Fengrui, Wu Chih. Friction effect on the characteristic performance of diesel engines. International Journal of Energy Research , 2002, 26(11): 965–971
doi: 10.1002/er.820
13 Chen L, Zheng T, Sun F, Wu C. The power and efficiency characteristics for an irreversible Otto cycle. International Journal of Ambient Energy , 2003, 24(4): 195–200
14 Angulo-Brown F. An ecological optimization criterion for finite-time heat engines. Journal of Applied Physics , 1991; 69(11): 7465–7469
doi: 10.1063/1.347562
15 Yan Zijun. Comment on “An ecological optimization criterion for finite-time heat engines” [J. Appl. Phys. 69, 7465(1991)]. Journal of Applied Physics , 1993, 73(7): 3583
doi: 10.1063/1.354041
16 Cheng Ching-Yang, Chen Cha’o-Kung, The ecological optimization of an irreversible Carnot heat engine. J. Phys. D: Appl Phys , 1997, 30(1): 1602–1609
doi: 10.1088/0022-3727/30/11/009
17 Yan Zijun, Lin Guoxing. Ecological optimization criterion for an irreversible three-heat source refrigerator. Applied Energy , 2000, 66(3): 213–224
doi: 10.1016/S0306-2619(99)00134-8
18 Cheng Ching-Yang. The optimum allocation of heat transfer equipment for an irreversible combined heat engine with ecological criteria. Int. Comm. Heat Mass Transfer , 2004, 31(4): 573–584
doi: 10.1016/S0735-1933(04)00037-5
[1] Philip Kofi ADOM, Michael Owusu APPIAH, Mawunyo Prosper AGRADI. Does financial development lower energy intensity?[J]. Front. Energy, 2020, 14(3): 620-634.
[2] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[3] Pei LI, Guotian CAI, Yuntao ZHANG, Shangjun KE, Peng WANG, Liping GAO. Multi-objective optimal allocation strategy for the energy internet in Huangpu District, Guangzhou, China[J]. Front. Energy, 2020, 14(2): 241-253.
[4] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[5] Zhixiang WU, Lingen CHEN, Yanlin GE, Fengrui SUN. Optimization of the power, efficiency and ecological function for an air-standard irreversible Dual-Miller cycle[J]. Front. Energy, 2019, 13(3): 579-589.
[6] Dianbo XIN, Shuliang HUANG, Song YIN, Yuping DENG, Wenqiang ZHANG. Experimental investigation on oil-gas separator of air-conditioning systems[J]. Front. Energy, 2019, 13(2): 411-416.
[7] Mohammad H. AHMADI, Mohammad-Ali AHMADI, Esmaeil ABOUKAZEMPOUR, Lavinia GROSU, Fathollah POURFAYAZ, Mokhtar BIDI. Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance[J]. Front. Energy, 2019, 13(2): 399-410.
[8] Zhiwei MA, Huashan BAO, Anthony Paul ROSKILLY. Numerical study of a hybrid absorption-compression high temperature heat pump for industrial waste heat recovery[J]. Front. Energy, 2017, 11(4): 503-509.
[9] Peng GAO, Liwei WANG, Ruzhu WANG, Yang YU. Simulation and experiments on a solid sorption combined cooling and power system driven by the exhaust waste heat[J]. Front. Energy, 2017, 11(4): 516-526.
[10] Haibin HUANG,Gangyu TIAN,Tao WANG,Chao GAO,Jiren YUAN,Zhihao YUE,Lang ZHOU. Analysis of the double-layer α-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction solar cells[J]. Front. Energy, 2017, 11(1): 92-95.
[11] Fanying MENG,Jinning LIU,Leilei SHEN,Jianhua SHI,Anjun HAN,Liping ZHANG,Yucheng LIU,Jian YU,Junkai ZHANG,Rui ZHOU,Zhengxin LIU. High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells[J]. Front. Energy, 2017, 11(1): 78-84.
[12] S. Hari Charan CHERUKURI,Balasubramaniyan SARAVANAN. An overview of selected topics in smart grids[J]. Front. Energy, 2016, 10(4): 441-458.
[13] R. Senthil KUMAR,M. LOGANATHAN,E. James GUNASEKARAN. Performance, emission and combustion characteristics of CI engine fuelled with diesel and hydrogen[J]. Front. Energy, 2015, 9(4): 486-494.
[14] S. NIKBAKHT NASERABAD,K. MOBINI,A. MEHRPANAHI,M. R. ALIGOODARZ. Exergy-energy analysis of full repowering of a steam power plant[J]. Front. Energy, 2015, 9(1): 54-67.
[15] Jincheng XING,Youli LI,Jihong LING,Huiyang YU,Liwen WANG. Method for rating energy performance of public buildings[J]. Front. Energy, 2014, 8(3): 379-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed