Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (4) : 699-713    https://doi.org/10.1007/s11684-022-0972-8
RESEARCH ARTICLE
Immunosuppressive tumor microenvironment contributes to tumor progression in diffuse large B-cell lymphoma upon anti-CD19 chimeric antigen receptor T therapy
Zixun Yan1, Li Li1,5, Di Fu1, Wen Wu1, Niu Qiao1, Yaohui Huang1, Lu Jiang1, Depei Wu2, Yu Hu3, Huilai Zhang4, Pengpeng Xu1, Shu Cheng1, Li Wang1, Sahin Lacin5, Muharrem Muftuoglu5, Weili Zhao1,6()
1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2. Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
3. Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
4. Tianjin Medical University Cancer Institute & Hospital, Tianjin 300070, China
5. University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
6. Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China
 Download: PDF(7289 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Anti-CD19 chimeric antigen receptor (CAR)-T cell therapy has achieved 40%–50% long-term complete response in relapsed or refractory diffuse large B-cell lymphoma (DLBCL) patients. However, the underlying mechanism of alterations in the tumor microenvironments resulting in CAR-T cell therapy failure needs further investigation. A multi-center phase I/II trial of anti-CD19 CD28z CAR-T (FKC876, ChiCTR1800019661) was conducted. Among 22 evaluable DLBCL patients, seven achieved complete remission, 10 experienced partial remissions, while four had stable disease by day 29. Single-cell RNA sequencing results were obtained from core needle biopsy tumor samples collected from long-term complete remission and early-progressed patients, and compared at different stages of treatment. M2-subtype macrophages were significantly involved in both in vivo and in vitro anti-tumor functions of CAR-T cells, leading to CAR-T cell therapy failure and disease progression in DLBCL. Immunosuppressive tumor microenvironments persisted before CAR-T cell therapy, during both cell expansion and disease progression, which could not be altered by infiltrating CAR-T cells. Aberrant metabolism profile of M2-subtype macrophages and those of dysfunctional T cells also contributed to the immunosuppressive tumor microenvironments. Thus, our findings provided a clinical rationale for targeting tumor microenvironments and reprogramming immune cell metabolism as effective therapeutic strategies to prevent lymphoma relapse in future designs of CAR-T cell therapy.

Keywords anti-CD19 chimeric antigen receptor T      immunotherapy      diffuse large B cell lymphoma      tumor microenvironment      tumor-associated macrophage      metabolism     
Corresponding Author(s): Weili Zhao   
Just Accepted Date: 07 December 2022   Online First Date: 17 April 2023    Issue Date: 12 October 2023
 Cite this article:   
Zixun Yan,Li Li,Di Fu, et al. Immunosuppressive tumor microenvironment contributes to tumor progression in diffuse large B-cell lymphoma upon anti-CD19 chimeric antigen receptor T therapy[J]. Front. Med., 2023, 17(4): 699-713.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0972-8
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I4/699
Fig.1  Clinical enrollment and efficacy of CD28z CAR-T cell therapy. (A) Study participants’ flow chart. (B) Progression-free survival and overall survival of CR and non-CR patients were evaluated at day 90 after CAR-T cell therapy. (C) Overall survival of CR and non-CR patients were evaluated at day 90 after CAR-T cell therapy. The x-axis shows the time since the infusion of CAR-T cells. CR, complete remission. All responses above were evaluated at day 90 after CAR-T cell therapy. NR, not reached; NE, not estimable.
Fig.2  Components of the tumor microenvironment in DLBCL patients treated with CAR-T cell therapy. (A) scRNA-seq analysis of a CR patient and a progressed patient. (B) Distribution of B cells, macrophages, T cells, and fibroblasts before CAR-T cell therapy in both the CR and the progressed patients. (C) Distribution and proportions of B cells, macrophages, T cells, and fibroblasts before CAR-T cell therapy in the CR and the progressed patients. (D) Distribution of macrophages and subclusters before CAR-T cell therapy in the CR and the progressed patients. (E) Proportions of M1- and M2-subtype macrophages before CAR-T cell therapy in the CR and the progressed patients. CR, complete remission. All responses above were evaluated at day 90 after CAR-T cell therapy.
Fig.3  Influence of M2-subtype macrophages on the differentiation and cytotoxic activity of CAR-T cells in vitro. (A) Flow cytometry of representative TNFα and IFNγ production of T cells cocultured with Raji cells and/or M2-subtype macrophages. (B) Statistics calculated for TNFα- and IFNγ-produced T cells in three donors. (C) Killing ability of CAR-T cells with different effector-to-target ratios cocultured with or without M2-subtype macrophages (n = 3). (D) Suppressive ability of M2-subtype macrophages on CAR-T cell proliferation.
Fig.4  Transcriptomic profile of macrophages during CAR-T cell therapy. (A) Trajectory of macrophage subclusters sourced from the CR and the progressed patients. (B) The compartment proportion of macrophage subclusters 0, 2, 4 (M2-subtype) and subclusters 1, 3 (M1-subtype) at three time points (before CAR-T cell therapy, during both CAR-T cell expansion and disease progression). (C) Gene set enrichment analysis for macrophage subclusters 0, 2, 4 (M2-subtype) from the CR and the progressed patients at different time points.
Fig.5  Transcriptomic profile of T cells during CAR-T cell therapy. (A) Trajectory of T cell subclusters sourced from the CR and the progressed patients. (B) The proportion of T cell subclusters 0, 6 (effector T cells) and subcluster 1 (Treg) at three time points (before CAR-T cell therapy, at CAR-T cell expansion, and at disease progression). (C) Gene set enrichment analysis for T cell subclusters 0, 6 (effector T cells), and subcluster 1 (Treg) from the CR and the progressed patients at different time points. (D) Expression levels of LAG3, TIGIT, and PDCD1 on effector T cells of the progressed and the CR patients at different time points.
Fig.6  Transcriptomic profile of B cells during CD19 CAR-T cell therapy. (A) Trajectory of B cell subclusters sourced from the CR and the progressed patients. (B) Compartments of cell cycle phases (G1/G0, S, and G2/M) of B cell subclusters 0, 1 and subclusters 3, 7. (C) The proportion of B cell subclusters 0, 1 and subclusters 3, 7 at three time points (before CAR-T cell therapy, during both CAR-T cell expansion and disease progression). (D) Gene set enrichment analysis for B cell subclusters 0, 1 and subclusters 3, 7 from the CR and the progressed patients at different time points.
Fig.7  Role of macrophages in T cell exhaustion and failure of CAR-T cell therapy. (A) Ligands and receptors identified by scRNA-seq data with expression levels correlated to distinct cell types in the tumor microenvironments of the CR and the progressed patients. (B) Interactions between the ligands and targets expressed on T cells, M2- and M1-subtype macrophages. (C) Expression levels of important ligands and targets on representative cells. (D) Changes in metabolic pathways for B cells, T cells, and macrophages during follow-up.
1 JH Park, I Rivière, M Gonen, X Wang, B Sénéchal, KJ Curran, C Sauter, Y Wang, B Santomasso, E Mead, M Roshal, P Maslak, M Davila, RJ Brentjens, M Sadelain. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018; 378(5): 449–459
https://doi.org/10.1056/NEJMoa1709919 pmid: 29385376
2 SJ Schuster, MR Bishop, CS Tam, EK Waller, P Borchmann, JP McGuirk, U Jäger, S Jaglowski, C Andreadis, JR Westin, I Fleury, V Bachanova, SR Foley, PJ Ho, S Mielke, JM Magenau, H Holte, S Pantano, LB Pacaud, R Awasthi, J Chu, Ö Anak, G Salles, RT; JULIET Investigators Maziarz. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019; 380(1): 45–56
https://doi.org/10.1056/NEJMoa1804980 pmid: 30501490
3 SS Neelapu, FL Locke, NL Bartlett, LJ Lekakis, DB Miklos, CA Jacobson, I Braunschweig, OO Oluwole, T Siddiqi, Y Lin, JM Timmerman, PJ Stiff, JW Friedberg, IW Flinn, A Goy, BT Hill, MR Smith, A Deol, U Farooq, P McSweeney, J Munoz, I Avivi, JE Castro, JR Westin, JC Chavez, A Ghobadi, KV Komanduri, R Levy, ED Jacobsen, TE Witzig, P Reagan, A Bot, J Rossi, L Navale, Y Jiang, J Aycock, M Elias, D Chang, J Wiezorek, WY Go. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-Cell lymphoma. N Engl J Med 2017; 377(26): 2531–2544
https://doi.org/10.1056/NEJMoa1707447 pmid: 29226797
4 N Singh, YG Lee, O Shestova, P Ravikumar, KE Hayer, SJ Hong, XM Lu, R Pajarillo, S Agarwal, S Kuramitsu, EJ Orlando, KT Mueller, CR Good, SL Berger, O Shalem, MD Weitzman, NV Frey, SL Maude, SA Grupp, CH June, S Gill, M Ruella. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. Cancer Discov 2020; 10(4): 552–567
https://doi.org/10.1158/2159-8290.CD-19-0813 pmid: 32001516
5 EJ Orlando, X Han, C Tribouley, PA Wood, RJ Leary, M Riester, JE Levine, M Qayed, SA Grupp, M Boyer, B De Moerloose, ER Nemecek, H Bittencourt, H Hiramatsu, J Buechner, SM Davies, MR Verneris, K Nguyen, JL Brogdon, H Bitter, M Morrissey, P Pierog, S Pantano, JA Engelman, W Winckler. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med 2018; 24(10): 1504–1506
https://doi.org/10.1038/s41591-018-0146-z pmid: 30275569
6 E Sotillo, DM Barrett, KL Black, A Bagashev, D Oldridge, G Wu, R Sussman, C Lanauze, M Ruella, MR Gazzara, NM Martinez, CT Harrington, EY Chung, J Perazzelli, TJ Hofmann, SL Maude, P Raman, A Barrera, S Gill, SF Lacey, JJ Melenhorst, D Allman, E Jacoby, T Fry, C Mackall, Y Barash, KW Lynch, JM Maris, SA Grupp, A Thomas-Tikhonenko. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015; 5(12): 1282–1295
https://doi.org/10.1158/2159-8290.CD-15-1020 pmid: 26516065
7 CJ Turtle, LA Hanafi, C Berger, TA Gooley, S Cherian, M Hudecek, D Sommermeyer, K Melville, B Pender, TM Budiarto, E Robinson, NN Steevens, C Chaney, L Soma, X Chen, C Yeung, B Wood, D Li, J Cao, S Heimfeld, MC Jensen, SR Riddell, DG Maloney. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 2016; 126(6): 2123–2138
https://doi.org/10.1172/JCI85309 pmid: 27111235
8 JA Fraietta, SF Lacey, EJ Orlando, I Pruteanu-Malinici, M Gohil, S Lundh, AC Boesteanu, Y Wang, RS O’Connor, WT Hwang, E Pequignot, DE Ambrose, C Zhang, N Wilcox, F Bedoya, C Dorfmeier, F Chen, L Tian, H Parakandi, M Gupta, RM Young, FB Johnson, I Kulikovskaya, L Liu, J Xu, SH Kassim, MM Davis, BL Levine, NV Frey, DL Siegel, AC Huang, EJ Wherry, H Bitter, JL Brogdon, DL Porter, CH June, JJ Melenhorst. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 2018; 24(5): 563–571
https://doi.org/10.1038/s41591-018-0010-1 pmid: 29713085
9 ZX Yan, L Li, W Wang, BS OuYang, S Cheng, L Wang, W Wu, PP Xu, M Muftuoglu, M Hao, S Yang, MC Zhang, Z Zheng, J Li, WL Zhao. Clinical efficacy and tumor microenvironment influence in a dose-escalation study of anti-CD19 chimeric antigen receptor T cells in refractory B-cell non-Hodgkin’s lymphoma. Clin Cancer Res 2019; 25(23): 6995–7003
https://doi.org/10.1158/1078-0432.CCR-19-0101 pmid: 31444250
10 H Zola, PJ MacArdle, T Bradford, H Weedon, H Yasu, Y Kurosawa. Preparation and characterization of a chimeric CD19 monoclonal antibody. Immunol Cell Biol 1991; 69(6): 411–422
https://doi.org/10.1038/icb.1991.58 pmid: 1725979
11 R Shen, PP Xu, N Wang, HM Yi, L Dong, D Fu, JY Huang, HY Huang, A Janin, S Cheng, L Wang, WL Zhao. Influence of oncogenic mutations and tumor microenvironment alterations on extranodal invasion in diffuse large B-cell lymphoma. Clin Transl Med 2020; 10(7): e221
https://doi.org/10.1002/ctm2.221 pmid: 33252851
12 SL Maude, TW Laetsch, J Buechner, S Rives, M Boyer, H Bittencourt, P Bader, MR Verneris, HE Stefanski, GD Myers, M Qayed, B De Moerloose, H Hiramatsu, K Schlis, KL Davis, PL Martin, ER Nemecek, GA Yanik, C Peters, A Baruchel, N Boissel, F Mechinaud, A Balduzzi, J Krueger, CH June, BL Levine, P Wood, T Taran, M Leung, KT Mueller, Y Zhang, K Sen, D Lebwohl, MA Pulsipher, SA Grupp. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018; 378(5): 439–448
https://doi.org/10.1056/NEJMoa1709866 pmid: 29385370
13 C Feig, JO Jones, M Kraman, RJ Wells, A Deonarine, DS Chan, CM Connell, EW Roberts, Q Zhao, OL Caballero, SA Teichmann, T Janowitz, DI Jodrell, DA Tuveson, DT Fearon. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 2013; 110(50): 20212–20217
https://doi.org/10.1073/pnas.1320318110 pmid: 24277834
14 J Rossi, P Paczkowski, YW Shen, K Morse, B Flynn, A Kaiser, C Ng, K Gallatin, T Cain, R Fan, S Mackay, JR Heath, SA Rosenberg, JN Kochenderfer, J Zhou, A Bot. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 2018; 132(8): 804–814
https://doi.org/10.1182/blood-2018-01-828343 pmid: 29895668
15 D Lee, D Hokinson, S Park, R Elvira, F Kusuma, JM Lee, M Yun, SG Lee, J Han. ER stress induces cell cycle arrest at the G2/M phase through eIF2α phosphorylation and GADD45α. Int J Mol Sci 2019; 20(24): 6309
https://doi.org/10.3390/ijms20246309 pmid: 31847234
16 G Song, S Xu, H Zhang, Y Wang, C Xiao, T Jiang, L Wu, T Zhang, X Sun, L Zhong, C Zhou, Z Wang, Z Peng, J Chen, X Wang. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J Exp Clin Cancer Res 2016; 35(1): 148
https://doi.org/10.1186/s13046-016-0427-7 pmid: 27644693
17 RD Leone, JD Powell. Metabolism of immune cells in cancer. Nat Rev Cancer 2020; 20(9): 516–531
https://doi.org/10.1038/s41568-020-0273-y pmid: 32632251
18 AAJ Hamers, AB Pillai. A sweet alternative: maintaining M2 macrophage polarization. Sci Immunol 2018; 3(29): eaav7759
https://doi.org/10.1126/sciimmunol.aav7759 pmid: 30389801
19 B Faubert, A Solmonson, RJ DeBerardinis. Metabolic reprogramming and cancer progression. Science 2020; 368(6487): eaaw5473
https://doi.org/10.1126/science.aaw5473 pmid: 32273439
20 I Vitale, G Manic, LM Coussens, G Kroemer, L Galluzzi. Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019; 30(1): 36–50
https://doi.org/10.1016/j.cmet.2019.06.001 pmid: 31269428
21 R Eil, SK Vodnala, D Clever, CA Klebanoff, M Sukumar, JH Pan, DC Palmer, A Gros, TN Yamamoto, SJ Patel, GC Guittard, Z Yu, V Carbonaro, K Okkenhaug, DS Schrump, WM Linehan, R Roychoudhuri, NP Restifo. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 2016; 537(7621): 539–543
https://doi.org/10.1038/nature19364 pmid: 27626381
22 Z Xiao, Z Dai, JW Locasale. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun 2019; 10(1): 3763
https://doi.org/10.1038/s41467-019-11738-0 pmid: 31434891
23 MS Nakazawa, B Keith, MC Simon. Oxygen availability and metabolic adaptations. Nat Rev Cancer 2016; 16(10): 663–673
https://doi.org/10.1038/nrc.2016.84 pmid: 27658636
24 CH Chang, JD Curtis, LB Jr Maggi, B Faubert, AV Villarino, D O’Sullivan, SC Huang, der Windt GJ van, J Blagih, J Qiu, JD Weber, EJ Pearce, RG Jones, EL Pearce. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013; 153(6): 1239–1251
https://doi.org/10.1016/j.cell.2013.05.016 pmid: 23746840
25 CM Cham, TF Gajewski. Glucose availability regulates IFN-γ production and p70S6 kinase activation in CD8+ effector T cells. J Immunol 2005; 174(8): 4670–4677
https://doi.org/10.4049/jimmunol.174.8.4670 pmid: 15814691
26 L Berod, C Friedrich, A Nandan, J Freitag, S Hagemann, K Harmrolfs, A Sandouk, C Hesse, CN Castro, H Bähre, SK Tschirner, N Gorinski, M Gohmert, CT Mayer, J Huehn, E Ponimaskin, WR Abraham, R Müller, M Lochner, T Sparwasser. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 2014; 20(11): 1327–1333
https://doi.org/10.1038/nm.3704 pmid: 25282359
27 Q Deng, G Han, N Puebla-Osorio, MCJ Ma, P Strati, B Chasen, E Dai, M Dang, N Jain, H Yang, Y Wang, S Zhang, R Wang, R Chen, J Showell, S Ghosh, S Patchva, Q Zhang, R Sun, F Hagemeister, L Fayad, F Samaniego, HC Lee, LJ Nastoupil, N Fowler, R Eric Davis, J Westin, SS Neelapu, L Wang, MR Green. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med 2020; 26(12): 1878–1887
https://doi.org/10.1038/s41591-020-1061-7 pmid: 33020644
28 CH Chang, J Qiu, D O’Sullivan, MD Buck, T Noguchi, JD Curtis, Q Chen, M Gindin, MM Gubin, der Windt GJ van, E Tonc, RD Schreiber, EJ Pearce, EL Pearce. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015; 162(6): 1229–1241
https://doi.org/10.1016/j.cell.2015.08.016 pmid: 26321679
[1] FMD-22049-OF-ZWL_suppl_1 Download
[1] Zheng Jin, Qin Zhou, Jia-Nan Cheng, Qingzhu Jia, Bo Zhu. Heterogeneity of the tumor immune microenvironment and clinical interventions[J]. Front. Med., 2023, 17(4): 617-648.
[2] Chaoyue Xiao, Wei Xiong, Yiting Xu, Ji’an Zou, Yue Zeng, Junqi Liu, Yurong Peng, Chunhong Hu, Fang Wu. Immunometabolism: a new dimension in immunotherapy resistance[J]. Front. Med., 2023, 17(4): 585-616.
[3] Ying Dong, Yingbei Qi, Haowen Jiang, Tian Mi, Yunkai Zhang, Chang Peng, Wanchen Li, Yongmei Zhang, Yubo Zhou, Yi Zang, Jia Li. The development and benefits of metformin in various diseases[J]. Front. Med., 2023, 17(3): 388-431.
[4] Xue Wang, Ye Zhou, Junxia Min, Fudi Wang. Zooming in and out of ferroptosis in human disease[J]. Front. Med., 2023, 17(2): 173-206.
[5] Yingxi Du, Yarui Ma, Qing Zhu, Yong Fu, Yutong Li, Ying Zhang, Mo Li, Feiyue Feng, Peng Yuan, Xiaobing Wang. GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma[J]. Front. Med., 2023, 17(1): 119-131.
[6] Suning Chen, Weili Zhao, Jianyong Li, Depei Wu, on behalf of Lymphoid Disease Group, Chinese Society of Hematology, Chinese Medical Association. Chinese expert consensus on oral drugs for the treatment of mature B-cell lymphomas (2020 edition)[J]. Front. Med., 2022, 16(5): 815-826.
[7] Pooria Safarzadeh Kozani, Pouya Safarzadeh Kozani, Fatemeh Rahbarizadeh. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?[J]. Front. Med., 2022, 16(3): 322-338.
[8] Yingying Li, Shiyuan Wang, Mengmeng Lin, Chunying Hou, Chunyu Li, Guohui Li. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy[J]. Front. Med., 2022, 16(3): 307-321.
[9] Hongyun Zhao, Fan Luo, Jinhui Xue, Su Li, Rui-Hua Xu. Emerging immunological strategies: recent advances and future directions[J]. Front. Med., 2021, 15(6): 805-828.
[10] Ronghui Yang, Guoguang Ying, Binghui Li. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming[J]. Front. Med., 2021, 15(5): 679-692.
[11] Jingyue Zhang, Yawen Song, Qianqian Shi, Li Fu. Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis[J]. Front. Med., 2021, 15(5): 649-656.
[12] Yao Yao, Rui Zhou, Rui Bai, Jing Wang, Mengjiao Tu, Jingjing Shi, Xiao He, Jinyun Zhou, Liu Feng, Yuanxue Gao, Fahuan Song, Feng Lan, Xingguo Liu, Mei Tian, Hong Zhang. Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia[J]. Front. Med., 2021, 15(3): 472-485.
[13] Lei Lv, Qunying Lei. Proteins moonlighting in tumor metabolism and epigenetics[J]. Front. Med., 2021, 15(3): 383-403.
[14] Deyu Zhang, Xiaojie Xu, Qinong Ye. Metabolism and immunity in breast cancer[J]. Front. Med., 2021, 15(2): 178-207.
[15] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed