|
|
Passive antibody therapy in emerging infectious diseases |
Xiaoming Yang( ) |
National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; China National Biotec Group Company Limited, Beijing 100029, China |
|
|
Abstract The epidemic of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 and its variants of concern (VOCs) has been ongoing for over 3 years. Antibody therapies encompassing convalescent plasma, hyperimmunoglobulin, and neutralizing monoclonal antibodies (mAbs) applied in passive immunotherapy have yielded positive outcomes and played a crucial role in the early COVID-19 treatment. In this review, the development path, action mechanism, clinical research results, challenges, and safety profile associated with the use of COVID-19 convalescent plasma, hyperimmunoglobulin, and mAbs were summarized. In addition, the prospects of applying antibody therapy against VOCs was assessed, offering insights into the coping strategies for facing new infectious disease outbreaks.
|
Keywords
SARS-CoV-2
COVID-19
convalescent plasma
hyperimmunoglobulin
neutralizing monoclonal antibodies
|
Corresponding Author(s):
Xiaoming Yang
|
Just Accepted Date: 13 October 2023
Online First Date: 29 November 2023
Issue Date: 06 February 2024
|
|
1 |
D Singh, SV Yi. On the origin and evolution of SARS-CoV-2. Exp Mol Med 2021; 53(4): 537–547
https://doi.org/10.1038/s12276-021-00604-z
|
2 |
Health Organization World. WHO Coronavirus (COVID-19) Dashboard. 2023. Available at the website of WHO (accessed April 15, 2023)
|
3 |
G Sakoulas, M Geriak, R Kullar, KL Greenwood, M Habib, A Vyas, M Ghafourian, VNK Dintyala, F Haddad. Intravenous immunoglobulin plus methylprednisolone mitigate respiratory morbidity in coronavirus disease 2019. Crit Care Explor 2020; 2(11): e0280
https://doi.org/10.1097/CCE.0000000000000280
|
4 |
M Scialpi, S Scialpi, I Piscioli, G Battista Scalera, F Longo. Pulmonary thromboembolism in critical ill COVID-19 patients. Int J Infect Dis 2020; 95: 361–362
https://doi.org/10.1016/j.ijid.2020.04.056
|
5 |
N Zhu, D Zhang, W Wang, X Li, B Yang, J Song, X Zhao, B Huang, W Shi, R Lu, P Niu, F Zhan, X Ma, D Wang, W Xu, G Wu, GF Gao, W; China Novel Coronavirus Investigating Tan, Team Research. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727–733
https://doi.org/10.1056/NEJMoa2001017
|
6 |
MW Tenforde, SS Kim, CJ Lindsell, Rose E Billig, NI Shapiro, DC Files, KW Gibbs, HL Erickson, JS Steingrub, HA Smithline, MN Gong, MS Aboodi, MC Exline, DJ Henning, JG Wilson, A Khan, N Qadir, SM Brown, ID Peltan, TW Rice, DN Hager, AA Ginde, WB Stubblefield, MM Patel, WH Self, LR; IVY Network Investigators; CDC COVID-19 Response Team; IVY Network Investigators Feldstein. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network—United States, March–June 2020. MMWR Morb Mortal Wkly Rep 2020; 69(30): 993–998
https://doi.org/10.15585/mmwr.mm6930e1
|
7 |
Z Khan, Y Karataş, H Rahman. Anti COVID-19 drugs: need for more clinical evidence and global action. Adv Ther 2020; 37(6): 2575–2579
https://doi.org/10.1007/s12325-020-01351-9
|
8 |
K Duan, B Liu, C Li, H Zhang, T Yu, J Qu, M Zhou, L Chen, S Meng, Y Hu, C Peng, M Yuan, J Huang, Z Wang, J Yu, X Gao, D Wang, X Yu, L Li, J Zhang, X Wu, B Li, Y Xu, W Chen, Y Peng, Y Hu, L Lin, X Liu, S Huang, Z Zhou, L Zhang, Y Wang, Z Zhang, K Deng, Z Xia, Q Gong, W Zhang, X Zheng, Y Liu, H Yang, D Zhou, D Yu, J Hou, Z Shi, S Chen, Z Chen, X Zhang, X Yang. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490–9496
https://doi.org/10.1073/pnas.2004168117
|
9 |
Health Organization World. Guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products. 2004. Available at the website of WHO (accessed April 15, 2023)
|
10 |
D Yu, YF Li, H Liang, JZ Wu, Y Hu, Y Peng, TJ Li, JF Hou, WJ Huang, LD Guan, R Han, YT Xing, Y Zhang, J Liu, L Feng, CY Li, XL Liang, YL Ding, ZJ Zhou, DM Ji, FF Wang, JH Yu, K Deng, DM Xia, DM Dong, HR Hu, YJ Liu, DX Fu, YL He, DB Zhou, HC Yang, R Jia, CW Ke, T Du, Y Xie, R Zhou, CS Li, ML Wang, XM Yang. Potent anti-SARS-CoV-2 efficacy of COVID-19 hyperimmune globulin from vaccine-immunized plasma. Adv Sci (Weinh) 2022; 9(14): e2104333
https://doi.org/10.1002/advs.202104333
|
11 |
S Ali, SM Uddin, A Ali, F Anjum, R Ali, E Shalim, M Khan, I Ahmed, SM Muhaymin, U Bukhari, S Luxmi, AS Khan, S Quraishy. Production of hyperimmune anti-SARS-CoV-2 intravenous immunoglobulin from pooled COVID-19 convalescent plasma. Immunotherapy 2021; 13(5): 397–407
https://doi.org/10.2217/imt-2020-0263
|
12 |
BE Jones, PL Brown-Augsburger, KS Corbett, K Westendorf, J Davies, TP Cujec, CM Wiethoff, JL Blackbourne, BA Heinz, D Foster, RE Higgs, D Balasubramaniam, L Wang, Y Zhang, ES Yang, R Bidshahri, L Kraft, Y Hwang, S Žentelis, KR Jepson, R Goya, MA Smith, DW Collins, SJ Hinshaw, SA Tycho, D Pellacani, P Xiang, K Muthuraman, S Sobhanifar, MH Piper, FJ Triana, J Hendle, A Pustilnik, AC Adams, SJ Berens, RS Baric, DR Martinez, RW Cross, TW Geisbert, V Borisevich, O Abiona, HM Belli, Vries M de, A Mohamed, M Dittmann, MI Samanovic, MJ Mulligan, JA Goldsmith, CL Hsieh, NV Johnson, D Wrapp, JS McLellan, BC Barnhart, BS Graham, JR Mascola, CL Hansen, E Falconer. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci Transl Med 2021; 13(593): eabf1906
https://doi.org/10.1126/scitranslmed.abf1906
|
13 |
R Shi, C Shan, X Duan, Z Chen, P Liu, J Song, T Song, X Bi, C Han, L Wu, G Gao, X Hu, Y Zhang, Z Tong, W Huang, WJ Liu, G Wu, B Zhang, L Wang, J Qi, H Feng, FS Wang, Q Wang, GF Gao, Z Yuan, J Yan. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 2020; 584(7819): 120–124
https://doi.org/10.1038/s41586-020-2381-y
|
14 |
Y Pan, J Du, J Liu, H Wu, F Gui, N Zhang, X Deng, G Song, Y Li, J Lu, X Wu, S Zhan, Z Jing, J Wang, Y Yang, J Liu, Y Chen, Q Chen, H Zhang, H Hu, K Duan, M Wang, Q Wang, X Yang. Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries. Cell Discov 2021; 7(1): 57
https://doi.org/10.1038/s41421-021-00295-w
|
15 |
J Hansen, A Baum, KE Pascal, V Russo, S Giordano, E Wloga, BO Fulton, Y Yan, K Koon, K Patel, KM Chung, A Hermann, E Ullman, J Cruz, A Rafique, T Huang, J Fairhurst, C Libertiny, M Malbec, WY Lee, R Welsh, G Farr, S Pennington, D Deshpande, J Cheng, A Watty, P Bouffard, R Babb, N Levenkova, C Chen, B Zhang, A Romero Hernandez, K Saotome, Y Zhou, M Franklin, S Sivapalasingam, DC Lye, S Weston, J Logue, R Haupt, M Frieman, G Chen, W Olson, AJ Murphy, N Stahl, GD Yancopoulos, CA Kyratsous. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 2020; 369(6506): 1010–1014
https://doi.org/10.1126/science.abd0827
|
16 |
T Noy-Porat, A Mechaly, Y Levy, E Makdasi, R Alcalay, D Gur, M Aftalion, R Falach, S Leviatan Ben-Arye, S Lazar, A Zauberman, E Epstein, T Chitlaru, S Weiss, H Achdout, JD Edgeworth, R Kikkeri, H Yu, X Chen, S Yitzhaki, SC Shapira, V Padler-Karavani, O Mazor, R Rosenfeld. Therapeutic antibodies, targeting the SARS-CoV-2 spike N-terminal domain, protect lethally infected K18-hACE2 mice. iScience 2021; 24(5): 102479
https://doi.org/10.1016/j.isci.2021.102479
|
17 |
N Suryadevara, S Shrihari, P Gilchuk, LA VanBlargan, E Binshtein, SJ Zost, RS Nargi, RE Sutton, ES Winkler, EC Chen, ME Fouch, E Davidson, BJ Doranz, RE Chen, PY Shi, RH Carnahan, LB Thackray, MS Diamond, JE Jr Crowe. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 2021; 184(9): 2316–2331.e15
https://doi.org/10.1016/j.cell.2021.03.029
|
18 |
P Brandtzaeg. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 2007; 25(30): 5467–5484
https://doi.org/10.1016/j.vaccine.2006.12.001
|
19 |
Pelegrin M, Naranjo-Gomez M, Piechaczyk M. Antiviral monoclonal antibodies: can they be more than simple neutralizing agents? Trends Microbiol 2015; 23(10): 653–665 doi:10.1016/j.tim.2015.07.005
pmid: 26433697
|
20 |
AC Cunningham, HP Goh, D Koh. Treatment of COVID-19: old tricks for new challenges. Crit Care 2020; 24(1): 91
https://doi.org/10.1186/s13054-020-2818-6
|
21 |
FY Tso, SJ Lidenge, LK Poppe, PB Peña, SR Privatt, SJ Bennett, JR Ngowi, J Mwaiselage, M Belshan, JA Siedlik, MA Raine, JB Ochoa, J Garcia-Diaz, B Nossaman, L Buckner, WM Roberts, MJ Dean, AC Ochoa, JT West, C Wood. Presence of antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 in COVID-19 plasma. PLoS One 2021; 16(3): e0247640
https://doi.org/10.1371/journal.pone.0247640
|
22 |
R Nasser, M Pelegrin, M Plays, L Gros, M Piechaczyk. Control of regulatory T cells is necessary for vaccine-like effects of antiviral immunotherapy by monoclonal antibodies. Blood 2013; 121(7): 1102–1111
https://doi.org/10.1182/blood-2012-06-432153
|
23 |
Xi Y. Convalescent plasma therapy for COVID-19: a tried-and-true old strategy? Signal Transduct Target Ther 2020; 5(1): 203 doi:10.1038/s41392-020-00310-8
pmid: 32934211
|
24 |
JD Herman, C Wang, JS Burke, Y Zur, H Compere, J Kang, R Macvicar, S Taylor, S Shin, I Frank, D Siegel, P Tebas, GH Choi, PA Shaw, H Yoon, LA Pirofski, BD Julg, KJ Bar, D Lauffenburger, G Alter. Nucleocapsid-specific antibody function is associated with therapeutic benefits from COVID-19 convalescent plasma therapy. Cell Rep Med 2022; 3(11): 100811
https://doi.org/10.1016/j.xcrm.2022.100811
|
25 |
M Rojas, Y Rodríguez, DM Monsalve, Y Acosta-Ampudia, B Camacho, JE Gallo, A Rojas-Villarraga, C Ramírez-Santana, JC Díaz-Coronado, R Manrique, RD Mantilla, Y Shoenfeld, JM Anaya. Convalescent plasma in Covid-19: possible mechanisms of action. Autoimmun Rev 2020; 19(7): 102554
https://doi.org/10.1016/j.autrev.2020.102554
|
26 |
C Shen, Z Wang, F Zhao, Y Yang, J Li, J Yuan, F Wang, D Li, M Yang, L Xing, J Wei, H Xiao, Y Yang, J Qu, L Qing, L Chen, Z Xu, L Peng, Y Li, H Zheng, F Chen, K Huang, Y Jiang, D Liu, Z Zhang, Y Liu, L Liu. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582–1589
https://doi.org/10.1001/jama.2020.4783
|
27 |
AG Shenoy, AZ Hettinger, SJ Fernandez, J Blumenthal, V Baez. Early mortality benefit with COVID-19 convalescent plasma: a matched control study. Br J Haematol 2021; 192(4): 706–713
https://doi.org/10.1111/bjh.17272
|
28 |
H Zeng, D Wang, J Nie, H Liang, J Gu, A Zhao, L Xu, C Lang, X Cui, X Guo, C Zhou, H Li, B Guo, J Zhang, Q Wang, L Fang, W Liu, Y Huang, W Mao, Y Chen, Q Zou. The efficacy assessment of convalescent plasma therapy for COVID-19 patients: a multi-center case series. Signal Transduct Target Ther 2020; 5(1): 219
https://doi.org/10.1038/s41392-020-00329-x
|
29 |
S Sarkar, KD Soni, P Khanna. Convalescent plasma is a clutch at straws in COVID-19 management! A systematic review and meta-analysis. J Med Virol 2021; 93(2): 1111–1118
https://doi.org/10.1002/jmv.26408
|
30 |
VA Simonovich, Pratx LD Burgos, P Scibona, MV Beruto, MG Vallone, C Vázquez, N Savoy, DH Giunta, LG Pérez, MDL Sánchez, AV Gamarnik, DS Ojeda, DM Santoro, PJ Camino, S Antelo, K Rainero, GP Vidiella, EA Miyazaki, W Cornistein, OA Trabadelo, FM Ross, M Spotti, G Funtowicz, WE Scordo, MH Losso, I Ferniot, PE Pardo, E Rodriguez, P Rucci, J Pasquali, NA Fuentes, M Esperatti, GA Speroni, EC Nannini, A Matteaccio, HG Michelangelo, D Follmann, HC Lane, WH; PlasmAr Study Group Belloso. A randomized trial of convalescent plasma in Covid-19 severe pneumonia. N Engl J Med 2021; 384(7): 619–629
https://doi.org/10.1056/NEJMoa2031304
|
31 |
MJ Joyner, RE Carter, JW Senefeld, SA Klassen, JR Mills, PW Johnson, ES Theel, CC Wiggins, KA Bruno, AM Klompas, ER Lesser, KL Kunze, MA Sexton, JC Diaz Soto, SE Baker, JRA Shepherd, N van Helmond, NC Verdun, P Marks, CM van Buskirk, JL Winters, JR Stubbs, RF Rea, DO Hodge, V Herasevich, ER Whelan, AJ Clayburn, KF Larson, JG Ripoll, KJ Andersen, MR Buras, MNP Vogt, JJ Dennis, RJ Regimbal, PR Bauer, JE Blair, NS Paneth, D Fairweather, RS Wright, A Casadevall. Convalescent plasma antibody levels and the risk of death from Covid-19. N Engl J Med 2021; 384(11): 1015–1027
https://doi.org/10.1056/NEJMoa2031893
|
32 |
M Fish, J Rynne, A Jennings, C Lam, AA Lamikanra, J Ratcliff, S Cellone-Trevelin, E Timms, J Jiriha, I Tosi, R Pramanik, P Simmonds, S Seth, J Williams, AC Gordon, J Knight, DJ Smith, J Whalley, D Harrison, K Rowan, H Harvala, P Klenerman, L Estcourt, DK Menon, D Roberts, M; REMAP-CAP Immunoglobulin Domain UK Investigators Shankar-Hari. Coronavirus disease 2019 subphenotypes and differential treatment response to convalescent plasma in critically ill adults: secondary analyses of a randomized clinical trial. Intensive Care Med 2022; 48(11): 1525–1538
https://doi.org/10.1007/s00134-022-06869-w
|
33 |
L LiW ZhangY HuX TongS ZhengJ YangY KongL RenQ WeiH MeiC HuC TaoR YangJ WangY YuY GuoX WuZ XuL ZengN XiongL ChenJ WangN ManY LiuH XuE DengX ZhangC LiC WangS SuL ZhangJ WangY WuZ Liu. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 2020; 324(5): 460–460 Erratum in: JAMA 2020; 4; 324(5): 519 doi:10.1001/jama.2020.10044
pmid: 32492084
|
34 |
Collaborative Group RECOVERY. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial. Lancet 2021; 397(10289): 2049–2059
https://doi.org/10.1016/S0140-6736(21)00897-7
|
35 |
A Agarwal, A Mukherjee, G Kumar, P Chatterjee, T Bhatnagar, P; PLACID Trial Collaborators Malhotra. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020; 371: m3939
https://doi.org/10.1136/bmj.m3939
|
36 |
R Libster, Marc G Pérez, D Wappner, S Coviello, A Bianchi, V Braem, I Esteban, MT Caballero, C Wood, M Berrueta, A Rondan, G Lescano, P Cruz, Y Ritou, Viña V Fernández, Paggi D Álvarez, S Esperante, A Ferreti, G Ofman, Á Ciganda, R Rodriguez, J Lantos, R Valentini, N Itcovici, A Hintze, ML Oyarvide, C Etchegaray, A Neira, I Name, J Alfonso, Castelo R López, G Caruso, S Rapelius, F Alvez, F Etchenique, F Dimase, D Alvarez, SS Aranda, Yanotti C Sánchez, Luca J De, Baglivo S Jares, S Laudanno, F Nowogrodzki, R Larrea, M Silveyra, G Leberzstein, A Debonis, J Molinos, M González, E Perez, N Kreplak, Argüello S Pastor, L Gibbons, F Althabe, E Bergel, FP; Fundación INFANT–COVID-19 Group Polack. Early high-titer plasma therapy to prevent severe Covid-19 in older adults. N Engl J Med 2021; 384(7): 610–618
https://doi.org/10.1056/NEJMoa2033700
|
37 |
MJ JoynerJW SenefeldSA KlassenJR MillsPW JohnsonES TheelCC WigginsKA BrunoAM KlompasER LesserKL KunzeMA SextonJC Diaz SotoSE BakerJRA ShepherdN van HelmondCM van BuskirkJL WintersJR StubbsRF ReaDO HodgeV HerasevichER WhelanAJ ClayburnKF LarsonJG RipollKJ AndersenMR BurasMNP VogtJJ DennisRJ RegimbalPR BauerJE BlairNS PanethD FairweatherRS WrightRE CarterA Casadevall. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: initial three-month experience. medRxiv 2020; doi:10.1101/2020.08.12.20169359
|
38 |
MJ Joyner, KA Bruno, SA Klassen, KL Kunze, PW Johnson, ER Lesser, CC Wiggins, JW Senefeld, AM Klompas, DO Hodge, JRA Shepherd, RF Rea, ER Whelan, AJ Clayburn, MR Spiegel, SE Baker, KF Larson, JG Ripoll, KJ Andersen, MR Buras, MNP Vogt, V Herasevich, JJ Dennis, RJ Regimbal, PR Bauer, JE Blair, CM van Buskirk, JL Winters, JR Stubbs, N van Helmond, BP Butterfield, MA Sexton, JC Diaz Soto, NS Paneth, NC Verdun, P Marks, A Casadevall, D Fairweather, RE Carter, RS Wright. Safety update: COVID-19 convalescent plasma in 20,000 hospitalized patients. Mayo Clin Proc 2020; 95(9): 1888–1897
https://doi.org/10.1016/j.mayocp.2020.06.028
|
39 |
D Focosi, M Franchini. COVID-19 convalescent plasma therapy: hit fast, hit hard!. Vox Sang 2021; 116(9): 935–942
https://doi.org/10.1111/vox.13091
|
40 |
D Focosi, M Franchini, LA Pirofski, T Burnouf, N Paneth, MJ Joyner, A Casadevall. COVID-19 convalescent plasma and clinical trials: understanding conflicting outcomes. Clin Microbiol Rev 2022; 35(3): e0020021
https://doi.org/10.1128/cmr.00200-21
|
41 |
AC LevineY FukutaMA HuamanJ OuBR MeisenbergB PatelJH PaxtonDF HanleyBJ RijndersA GharbharanC RokxJJ ZwagingaA AlemanyO MitjàD OuchiP Millat-MartinezV Durkalski-MauldinFK KorleyLJ DumontCW CallawayR LibsterGP MarcD WappnerI EstebanF PolackDJ Sullivan. COVID-19 convalescent plasma outpatient therapy to prevent outpatient hospitalization: a meta-analysis of individual participant data from five randomized trials. medRxiv 2022; doi:10.1101/2022.12.16.22283585
|
42 |
DJ Sullivan, KA Gebo, S Shoham, EM Bloch, B Lau, AG Shenoy, GS Mosnaim, TJ Gniadek, Y Fukuta, B Patel, SL Heath, AC Levine, BR Meisenberg, ES Spivak, S Anjan, MA Huaman, JE Blair, JS Currier, JH Paxton, JM Gerber, JR Petrini, PB Broderick, W Rausch, ME Cordisco, J Hammel, B Greenblatt, VC Cluzet, D Cruser, K Oei, M Abinante, LL Hammitt, CG Sutcliffe, DN Forthal, MS Zand, ER Cachay, JS Raval, SG Kassaye, EC Foster, M Roth, CE Marshall, A Yarava, K Lane, NA McBee, AL Gawad, N Karlen, A Singh, DE Ford, DA Jabs, LJ Appel, DM Shade, S Ehrhardt, SN Baksh, O Laeyendecker, A Pekosz, SL Klein, A Casadevall, AAR Tobian, DF Hanley. Early outpatient treatment for Covid-19 with convalescent plasma. N Engl J Med 2022; 386(18): 1700–1711
https://doi.org/10.1056/NEJMoa2119657
|
43 |
LA Bartelt, AJ Markmann, B Nelson, J Keys, H Root, HI Henderson, J Kuruc, C Baker, DR Bhowmik, YJ Hou, L Premkumar, C Cornaby, JL Schmitz, S Weiss, Y Park, R Baric, AM de Silva, A Lachiewicz, S Napravnik, D van Duin, DM Margolis. Outcomes of convalescent plasma with defined high versus lower neutralizing antibody titers against SARS-CoV-2 among hospitalized patients: coronavirus inactivating plasma (CoVIP) study. MBio 2022; 13(5): e0175122
https://doi.org/10.1128/mbio.01751-22
|
44 |
CM Denkinger, M Janssen, U Schäkel, J Gall, A Leo, P Stelmach, SF Weber, J Krisam, L Baumann, J Stermann, U Merle, MA Weigand, C Nusshag, L Bullinger, JF Schrezenmeier, M Bornhäuser, N Alakel, O Witzke, T Wolf, MJGT Vehreschild, S Schmiedel, MM Addo, F Herth, M Kreuter, PR Tepasse, B Hertenstein, M Hänel, A Morgner, M Kiehl, O Hopfer, MA Wattad, CC Schimanski, C Celik, T Pohle, M Ruhe, WV Kern, A Schmitt, HM Lorenz, M Souto-Carneiro, M Gaeddert, N Halama, S Meuer, HG Kräusslich, B Müller, P Schnitzler, S Parthé, R Bartenschlager, M Gronkowski, J Klemmer, M Schmitt, P Dreger, K Kriegsmann, RF Schlenk, C Müller-Tidow. Anti-SARS-CoV-2 antibody-containing plasma improves outcome in patients with hematologic or solid cancer and severe COVID-19: a randomized clinical trial. Nat Can 2023; 4(1): 96–107
https://doi.org/10.1038/s43018-022-00503-w
|
45 |
T Hueso, AS Godron, E Lanoy, J Pacanowski, LI Levi, E Gras, L Surgers, A Guemriche, JL Meynard, F Pirenne, S Idri, P Tiberghien, P Morel, C Besson, R Duléry, S Lamure, O Hermine, A Gagneux-Brunon, N Freymond, S Grabar, K Lacombe. Convalescent plasma improves overall survival in patients with B-cell lymphoid malignancy and COVID-19: a longitudinal cohort and propensity score analysis. Leukemia 2022; 36(4): 1025–1034
https://doi.org/10.1038/s41375-022-01511-6
|
46 |
JW Senefeld, M Franchini, C Mengoli, M Cruciani, M Zani, EK Gorman, D Focosi, A Casadevall, MJ Joyner. COVID-19 convalescent plasma for the treatment of immunocompromised patients: a systematic review and meta-analysis. JAMA Netw Open 2023; 6(1): e2250647
https://doi.org/10.1001/jamanetworkopen.2022.50647
|
47 |
P Zhai, Y Ding, X Wu, J Long, Y Zhong, Y Li. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 2020; 55(5): 105955
https://doi.org/10.1016/j.ijantimicag.2020.105955
|
48 |
S Tahmasebi, E Khosh, A Esmaeilzadeh. The outlook for diagnostic purposes of the 2019-novel coronavirus disease. J Cell Physiol 2020; 235(12): 9211–9229
https://doi.org/10.1002/jcp.29804
|
49 |
P Keith, M Day, L Perkins, L Moyer, K Hewitt, A Wells. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care 2020; 24(1): 128
https://doi.org/10.1186/s13054-020-2836-4
|
50 |
J Qin, G Wang, D Han. Benefits of plasma exchange on mortality in patients with COVID-19: a systematic review and meta-analysis. Int J Infect Dis 2022; 122: 332–336
https://doi.org/10.1016/j.ijid.2022.06.014
|
51 |
MJ Joyner, N Paneth, A Casadevall. Use of convalescent plasma in the treatment of COVID-19. Nat Rev Nephrol 2023; 19(4): 271–271
https://doi.org/10.1038/s41581-023-00690-4
|
52 |
Health Commission & National Administration of Traditional Chinese Medicine National. Diagnosis and Treatment Protocol for COVID-9 (Trial Version 9). 2022. Available at the website of National Health Commission (accessed April 15, 2023)
|
53 |
Administration FoodDrug. Clinical memorandum for the emergency use authorization of COVID-19 convalescent plasma. 2020. Available at the website of FDA (accessed April 15, 2023)
|
54 |
Health Organization World. WHO recommends against the use of convalescent plasma to treat COVID-19. 2021. Available at the website of WHO (accessed April 15, 2023)
|
55 |
Administration FoodDrug. Fact sheet for health care providers: Emergency Use Authorization (EUA) of COVID-19 convalescent plasma for treatment of coronavirus disease 2019 (COVID-19). 2021. Available at the website of FDA (accessed April 18, 2023)
|
56 |
LJ Estcourt, CS Cohn, MB Pagano, C Iannizzi, N Kreuzberger, N Skoetz, ES Allen, EM Bloch, G Beaudoin, A Casadevall, DV Devine, F Foroutan, TJ Gniadek, R Goel, J Gorlin, BJ Grossman, MJ Joyner, RA Metcalf, JS Raval, TW Rice, BH Shaz, RR Vassallo, JL Winters, AAR Tobian. Clinical practice guidelines from the Association for the Advancement of Blood and Biotherapies (AABB): COVID-19 convalescent plasma. Ann Intern Med 2022; 175(9): 1310–1321
https://doi.org/10.7326/M22-1079
|
57 |
MJ Levin, JM Duchon, GK Swamy, AA Gershon. Varicella zoster immune globulin (VARIZIG) administration up to 10 days after varicella exposure in pregnant women, immunocompromised participants, and infants: varicella outcomes and safety results from a large, open-label, expanded-access program. PLoS One 2019; 14(7): e0217749
https://doi.org/10.1371/journal.pone.0217749
|
58 |
I Zubkova, Y Zhao, Q Cui, A Kachko, Y Gimie, S Chabot, T Murphy, S Schillie, M Major. Assessing the impact of hepatitis B immune globulin (HBIG) on responses to hepatitis B vaccine during co-administration. Vaccine 2023; 41(4): 955–964
https://doi.org/10.1016/j.vaccine.2022.12.055
|
59 |
Administration FoodDrug. Products approved for anthrax. Available at the website of FDA (accessed April 15, 2023)
|
60 |
C Iannizzi, KL Chai, V Piechotta, SJ Valk, C Kimber, I Monsef, EM Wood, AA Lamikanra, DJ Roberts, Z McQuilten, C So-Osman, A Jindal, N Cryns, LJ Estcourt, N Kreuzberger, N Skoetz. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 5(5): CD013600
https://doi.org/10.1002/14651858.CD013600.pub6
|
61 |
D Focosi, M Tuccori, M Franchini. The road towards polyclonal anti-SARS-CoV-2 immunoglobulins (hyperimmune serum) for passive immunization in COVID-19. Life (Basel) 2021; 11(2): 144
https://doi.org/10.3390/life11020144
|
62 |
C Perotti, F Baldanti, R Bruno, Fante C Del, E Seminari, S Casari, E Percivalle, C Glingani, V Musella, M Belliato, M Garuti, F Meloni, M Frigato, Sabatino A Di, C Klersy, Donno G De, M; Covid-Plasma Task Force Franchini. Mortality reduction in 46 severe Covid-19 patients treated with hyperimmune plasma. A proof of concept single arm multicenter trial. Haematologica 2020; 105(12): 2834–2840
https://doi.org/10.3324/haematol.2020.261784
|
63 |
S Ali, SM Uddin, E Shalim, MA Sayeed, F Anjum, F Saleem, SM Muhaymin, A Ali, MR Ali, I Ahmed, T Mushtaq, S Khan, F Shahab, S Luxmi, S Kumar, H Arain, M Khan, AS Khan, H Mehmood, A Rasheed, A Jahangeer, S Baig, S Quraishy. Hyperimmune anti-COVID-19 IVIG (C-IVIG) treatment in severe and critical COVID-19 patients: a phase I/II randomized control trial. EClinicalMedicine 2021; 36: 100926
https://doi.org/10.1016/j.eclinm.2021.100926
|
64 |
(INSIGHT 013) Study Group ITAC. Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): a double-blind, placebo-controlled, phase 3, randomised trial. Lancet 2022; 399(10324): 530–540
https://doi.org/10.1016/S0140-6736(22)00101-5
|
65 |
Z Shao, Y Feng, L Zhong, Q Xie, M Lei, Z Liu, C Wang, J Ji, H Liu, Z Gu, Z Hu, L Su, M Wu, Z Liu. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunology 2020; 9(10): e1192
https://doi.org/10.1002/cti2.1192
|
66 |
SR Bonam, SV Kaveri, A Sakuntabhai, L Gilardin, J Bayry. Adjunct immunotherapies for the management of severely ill COVID-19 patients. Cell Rep Med 2020; 1(2): 100016
https://doi.org/10.1016/j.xcrm.2020.100016
|
67 |
Y Xie, S Cao, H Dong, Q Li, E Chen, W Zhang, L Yang, S Fu, R Wang. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect 2020; 81(2): 318–356
https://doi.org/10.1016/j.jinf.2020.03.044
|
68 |
R SrivastavaC RamakrishnaE Cantin. Anti-inflammatory activity of intravenous immunoglobulins protects against West Nile virus encephalitis. J Gen Virol 2015; 96(Pt 6): 1347–1357 doi:10.1099/vir.0.000079
pmid: 25667322
|
69 |
KR Chan, SL Zhang, HC Tan, YK Chan, A Chow, AP Lim, SG Vasudevan, BJ Hanson, EE Ooi. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. Proc Natl Acad Sci USA 2011; 108(30): 12479–12484
https://doi.org/10.1073/pnas.1106568108
|
70 |
R Wittenauer, C Pecenka, R Baral. Cost of childhood RSV management and cost-effectiveness of RSV interventions: a systematic review from a low- and middle-income country perspective. BMC Med 2023; 21(1): 121
https://doi.org/10.1186/s12916-023-02792-z
|
71 |
HA Blair. Ibalizumab: a review in multidrug-resistant HIV-1 infection. Drugs 2020; 80(2): 189–196
https://doi.org/10.1007/s40265-020-01258-3
|
72 |
P Chen, A Nirula, B Heller, RL Gottlieb, J Boscia, J Morris, G Huhn, J Cardona, B Mocherla, V Stosor, I Shawa, AC Adams, Naarden J Van, KL Custer, L Shen, M Durante, G Oakley, AE Schade, J Sabo, DR Patel, P Klekotka, DM; BLAZE-1 Investigators Skovronsky. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med 2021; 384(3): 229–237
https://doi.org/10.1056/NEJMoa2029849
|
73 |
DM Weinreich, S Sivapalasingam, T Norton, S Ali, H Gao, R Bhore, BJ Musser, Y Soo, D Rofail, J Im, C Perry, C Pan, R Hosain, A Mahmood, JD Davis, KC Turner, AT Hooper, JD Hamilton, A Baum, CA Kyratsous, Y Kim, A Cook, W Kampman, A Kohli, Y Sachdeva, X Graber, B Kowal, T DiCioccio, N Stahl, L Lipsich, N Braunstein, G Herman, GD; Trial Investigators Yancopoulos. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med 2021; 384(3): 238–251
https://doi.org/10.1056/NEJMoa2035002
|
74 |
RL Gottlieb, A Nirula, P Chen, J Boscia, B Heller, J Morris, G Huhn, J Cardona, B Mocherla, V Stosor, I Shawa, P Kumar, AC Adams, J Van Naarden, KL Custer, M Durante, G Oakley, AE Schade, TR Holzer, PJ Ebert, RE Higgs, NL Kallewaard, J Sabo, DR Patel, P Klekotka, L Shen, DM Skovronsky. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 2021; 325(7): 632–644
https://doi.org/10.1001/jama.2021.0202
|
75 |
A Gupta, Y Gonzalez-Rojas, E Juarez, Casal M Crespo, J Moya, DR Falci, E Sarkis, J Solis, H Zheng, N Scott, AL Cathcart, CM Hebner, J Sager, E Mogalian, C Tipple, A Peppercorn, E Alexander, PS Pang, A Free, C Brinson, M Aldinger, AE; COMET-ICE Investigators Shapiro. Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med 2021; 385(21): 1941–1950
https://doi.org/10.1056/NEJMoa2107934
|
76 |
MJ Levin, A Ustianowski, Wit S De, O Launay, M Avila, A Templeton, Y Yuan, S Seegobin, A Ellery, DJ Levinson, P Ambery, RH Arends, R Beavon, K Dey, P Garbes, EJ Kelly, GCKW Koh, KA Near, KW Padilla, K Psachoulia, A Sharbaugh, K Streicher, MN Pangalos, MT; PROVENT Study Group Esser. Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of Covid-19. N Engl J Med 2022; 386(23): 2188–2200
https://doi.org/10.1056/NEJMoa2116620
|
77 |
SM Hoy. Amubarvimab/romlusevimab: first approval. Drugs 2022; 82(12): 1327–1331
https://doi.org/10.1007/s40265-022-01759-3
|
78 |
C Huang, Y Wang, X Li, L Ren, J Zhao, Y Hu, L Zhang, G Fan, J Xu, X Gu, Z Cheng, T Yu, J Xia, Y Wei, W Wu, X Xie, W Yin, H Li, M Liu, Y Xiao, H Gao, L Guo, J Xie, G Wang, R Jiang, Z Gao, Q Jin, J Wang, B Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506
https://doi.org/10.1016/S0140-6736(20)30183-5
|
79 |
NB Gaylis, A Ritter, SA Kelly, NZ Pourhassan, M Tiwary, JB Sacha, SG Hansen, C Recknor, OO Yang. Reduced cell surface levels of C-C chemokine receptor 5 and immunosuppression in long coronavirus disease 2019 syndrome. Clin Infect Dis 2022; 75(7): 1232–1234
https://doi.org/10.1093/cid/ciac226
|
80 |
LM Canziani, S Trovati, E Brunetta, A Testa, Santis M De, E Bombardieri, G Guidelli, G Albano, M Folci, M Squadroni, GD Beretta, M Ciccarelli, M Castoldi, A Lleo, A Aghemo, L Vernile, A Malesci, P Omodei, C Angelini, S Badalamenti, M Cecconi, A Cremonesi, C; Humanitas Selmi, COVID-19 Task Forces Gavazzeni/Castelli. Interleukin-6 receptor blocking with intravenous tocilizumab in COVID-19 severe acute respiratory distress syndrome: a retrospective case-control survival analysis of 128 patients. J Autoimmun 2020; 114: 102511
https://doi.org/10.1016/j.jaut.2020.102511
|
81 |
Z Temesgen, CF Kelley, F Cerasoli, A Kilcoyne, D Chappell, C Durrant, O Ahmed, G Chappell, V Catterson, C Polk, A Badley, VC Marconi. C reactive protein utilisation, a biomarker for early COVID-19 treatment, improves lenzilumab efficacy: results from the randomised phase 3 ‘LIVE-AIR’ trial. Thorax 2023; 78(6): 606–616
https://doi.org/10.1136/thoraxjnl-2022-218744
|
82 |
Administration FoodDrug. Coronavirus (COVID-19) update: FDA revokes emergency use authorization for monoclonal antibody bamlanivimab. 2020. Available at the website of FDA (accessed April 15, 2023)
|
83 |
ED Deeks. Casirivimab/imdevimab: first approval. Drugs 2021; 81(17): 2047–2055
https://doi.org/10.1007/s40265-021-01620-z
|
84 |
Administration FoodDrug. FDA authorizes bamlanivimab and etesevimab monoclonal antibody therapy for post-exposure prophylaxis (prevention) for COVID-19. 2021. Available at the website of FDA (accessed April 15, 2023)
|
85 |
YA Heo. Sotrovimab: first approval. Drugs 2022; 82(4): 477–484
https://doi.org/10.1007/s40265-022-01690-7
|
86 |
SJ Keam. Tixagevimab + cilgavimab: first approval. Drugs 2022; 82(9): 1001–1010
https://doi.org/10.1007/s40265-022-01731-1
|
87 |
Administration FoodDrug. FDA updates on bebtelovimab. 2023. Available at the website of FDA (accessed April 15, 2023)
|
88 |
YY Syed. Regdanvimab: first approval. Drugs 2021; 81(18): 2133–2137
https://doi.org/10.1007/s40265-021-01626-7
|
89 |
L DeFrancesco. COVID-19 antibodies on trial. Nat Biotechnol 2020; 38(11): 1242–1252
https://doi.org/10.1038/s41587-020-0732-8
|
90 |
J Lu, Q Yin, R Pei, Q Zhang, Y Qu, Y Pan, L Sun, D Gao, C Liang, J Yang, W Wu, J Li, Z Cui, Z Wang, X Li, D Li, S Wang, K Duan, W Guan, M Liang, X Yang. Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants. Virol Sin 2022; 37(2): 238–247
https://doi.org/10.1016/j.virs.2022.02.005
|
91 |
Z Ku, X Xie, PR Hinton, X Liu, X Ye, AE Muruato, DC Ng, S Biswas, J Zou, Y Liu, D Pandya, VD Menachery, S Rahman, YA Cao, H Deng, W Xiong, KB Carlin, J Liu, H Su, EJ Haanes, BA Keyt, N Zhang, SF Carroll, PY Shi, Z An. Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature 2021; 595(7869): 718–723
https://doi.org/10.1038/s41586-021-03673-2
|
92 |
C Li, W Zhan, Z Yang, C Tu, G Hu, X Zhang, W Song, S Du, Y Zhu, K Huang, Y Kong, M Zhang, Q Mao, X Gu, Y Zhang, Y Xie, Q Deng, Y Song, Z Chen, L Lu, S Jiang, Y Wu, L Sun, T Ying. Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell 2022; 185(8): 1389–1401.e18
https://doi.org/10.1016/j.cell.2022.03.009
|
93 |
C Sheridan. Convalescent serum lines up as first-choice treatment for coronavirus. Nat Biotechnol 2020; 38(6): 655–658
https://doi.org/10.1038/d41587-020-00011-1
|
94 |
J Klingler, S Weiss, V Itri, X Liu, KY Oguntuyo, C Stevens, S Ikegame, CT Hung, G Enyindah-Asonye, F Amanat, I Baine, S Arinsburg, JC Bandres, EM Kojic, J Stoever, D Jurczyszak, M Bermudez-Gonzalez, A Nádas, S Liu, B Lee, S Zolla-Pazner, CE Hioe. Role of immunoglobulin M and A antibodies in the neutralization of severe acute respiratory syndrome coronavirus 2. J Infect Dis 2021; 223(6): 957–970
https://doi.org/10.1093/infdis/jiaa784
|
95 |
SA Misbah, HM Chapel. Adverse effects of intravenous immunoglobulin. Drug Saf 1993; 9(4): 254–262
https://doi.org/10.2165/00002018-199309040-00003
|
96 |
D Zhou, HME Duyvesteyn, CP Chen, CG Huang, TH Chen, SR Shih, YC Lin, CY Cheng, SH Cheng, YC Huang, TY Lin, C Ma, J Huo, L Carrique, T Malinauskas, RR Ruza, PNM Shah, TK Tan, P Rijal, RF Donat, K Godwin, KR Buttigieg, JA Tree, J Radecke, NG Paterson, P Supasa, J Mongkolsapaya, GR Screaton, MW Carroll, J Gilbert-Jaramillo, ML Knight, W James, RJ Owens, JH Naismith, AR Townsend, EE Fry, Y Zhao, J Ren, DI Stuart, KA Huang. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat Struct Mol Biol 2020; 27(10): 950–958
https://doi.org/10.1038/s41594-020-0480-y
|
97 |
P Vandeberg, M Cruz, JM Diez, WK Merritt, B Santos, S Trukawinski, A Wellhouse, M Jose, T Willis. Production of anti-SARS-CoV-2 hyperimmune globulin from convalescent plasma. Transfusion 2021; 61(6): 1705–1709
https://doi.org/10.1111/trf.16378
|
98 |
T Burnouf, B Gathof, EM Bloch, R Bazin, Angelis V de, GK Patidar, RMG Rastvorceva, A Oreh, R Goel, N Rahimi-Levene, S Hindawi, AZ Al-Riyami, C; ISBT COVID-19 Convalescent Plasma Working Group So-Osman. Production and quality assurance of human polyclonal hyperimmune immunoglobulins against SARS-CoV-2. Transfus Med Rev 2022; 36(3): 125–132
https://doi.org/10.1016/j.tmrv.2022.06.001
|
99 |
AS Wolberg, MM Aleman, K Leiderman, KR Machlus. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth Analg 2012; 114(2): 275–285
https://doi.org/10.1213/ANE.0b013e31823a088c
|
100 |
IFN Hung, KKW To, CK Lee, KL Lee, WW Yan, K Chan, WM Chan, CW Ngai, KI Law, FL Chow, R Liu, KY Lai, CCY Lau, SH Liu, KH Chan, CK Lin, KY Yuen. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013; 144(2): 464–473
https://doi.org/10.1378/chest.12-2907
|
101 |
R Khamsi. Rogue antibodies could be driving severe COVID-19. Nature 2021; 590(7844): 29–31
https://doi.org/10.1038/d41586-021-00149-1
|
102 |
MR Gaudinski, EE Coates, L Novik, A Widge, KV Houser, E Burch, LA Holman, IJ Gordon, GL Chen, C Carter, M Nason, S Sitar, G Yamshchikov, N Berkowitz, C Andrews, S Vazquez, C Laurencot, J Misasi, F Arnold, K Carlton, H Lawlor, J Gall, RT Bailer, A McDermott, E Capparelli, RA Koup, JR Mascola, BS Graham, NJ Sullivan, JE; VRC 608 Study team Ledgerwood. Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody mAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. Lancet 2019; 393(10174): 889–898
https://doi.org/10.1016/S0140-6736(19)30036-4
|
103 |
JB Domachowske, AA Khan, MT Esser, K Jensen, T Takas, T Villafana, F Dubovsky, MP Griffin. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion f-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr Infect Dis J 2018; 37(9): 886–892
https://doi.org/10.1097/INF.0000000000001916
|
104 |
R Song, G Zeng, J Yu, X Meng, X Chen, J Li, X Xie, X Lian, Z Zhang, Y Cao, W Yin, R Jin. Post-exposure prophylaxis with SA58 (anti-SARS-CoV-2 monoclonal antibody) nasal spray for the prevention of symptomatic COVID-19 in healthy adult workers: a randomized, single-blind, placebo-controlled clinical study. Emerg Microbes Infect 2023; 12(1): 2212806
https://doi.org/10.1080/22221751.2023.2212806
|
105 |
D Focosi, M Franchini. Passive immunotherapies for COVID-19: the subtle line between standard and hyperimmune immunoglobulins is getting invisible. Rev Med Virol 2022; 32(4): e2341
https://doi.org/10.1002/rmv.2341
|
106 |
E Takashita, N Kinoshita, S Yamayoshi, Y Sakai-Tagawa, S Fujisaki, M Ito, K Iwatsuki-Horimoto, S Chiba, P Halfmann, H Nagai, M Saito, E Adachi, D Sullivan, A Pekosz, S Watanabe, K Maeda, M Imai, H Yotsuyanagi, H Mitsuya, N Ohmagari, M Takeda, H Hasegawa, Y Kawaoka. Efficacy of antibodies and antiviral drugs against Covid-19 Omicron variant. N Engl J Med 2022; 386(10): 995–998
https://doi.org/10.1056/NEJMc2119407
|
107 |
M Schubert, F Bertoglio, S Steinke, PA Heine, MA Ynga-Durand, H Maass, JC Sammartino, I Cassaniti, F Zuo, L Du, J Korn, M Milošević, EV Wenzel, F Krstanović, S Polten, M Pribanić-Matešić, I Brizić, F Baldanti, L Hammarström, S Dübel, A Šustić, H Marcotte, M Strengert, A Protić, A Piralla, Q Pan-Hammarström, L Čičin-Šain, M Hust. Human serum from SARS-CoV-2-vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV-2 Omicron variant. BMC Med 2022; 20(1): 102
https://doi.org/10.1186/s12916-022-02312-5
|
108 |
E Andreano, G Piccini, D Licastro, L Casalino, NV Johnson, I Paciello, S Dal Monego, E Pantano, N Manganaro, A Manenti, R Manna, E Casa, I Hyseni, L Benincasa, E Montomoli, RE Amaro, JS McLellan, R Rappuoli. SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proc Natl Acad Sci USA 2021; 118(36): e2103154118
https://doi.org/10.1073/pnas.2103154118
|
109 |
Q Wang, S Iketani, Z Li, L Liu, Y Guo, Y Huang, AD Bowen, M Liu, M Wang, J Yu, R Valdez, AS Lauring, Z Sheng, HH Wang, A Gordon, L Liu, DD Ho. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023; 186(2): 279–286.e8
https://doi.org/10.1016/j.cell.2022.12.018
|
110 |
C Yi, X Sun, Y Lin, C Gu, L Ding, X Lu, Z Yang, Y Zhang, L Ma, W Gu, A Qu, X Zhou, X Li, J Xu, Z Ling, Y Xie, H Lu, B Sun. Comprehensive mapping of binding hot spots of SARS-CoV-2 RBD-specific neutralizing antibodies for tracking immune escape variants. Genome Med 2021; 13(1): 164
https://doi.org/10.1186/s13073-021-00985-w
|
111 |
L Wu, L Zhou, M Mo, T Liu, C Wu, C Gong, K Lu, L Gong, W Zhu, Z Xu. SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. Signal Transduct Target Ther 2022; 7(1): 8
https://doi.org/10.1038/s41392-021-00863-2
|
112 |
H Guo, Y Gao, T Li, T Li, Y Lu, L Zheng, Y Liu, T Yang, F Luo, S Song, W Wang, X Yang, HC Nguyen, H Zhang, A Huang, A Jin, H Yang, Z Rao, X Ji. Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Rep 2022; 39(5): 110770
https://doi.org/10.1016/j.celrep.2022.110770
|
113 |
D Mannar, JW Saville, X Zhu, SS Srivastava, AM Berezuk, KS Tuttle, AC Marquez, I Sekirov, S Subramaniam. SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science 2022; 375(6582): 760–764
https://doi.org/10.1126/science.abn7760
|
114 |
C Yue, W Song, L Wang, F Jian, X Chen, F Gao, Z Shen, Y Wang, X Wang, Y Cao. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect Dis 2023; 23(3): 278–280
https://doi.org/10.1016/S1473-3099(23)00010-5
|
115 |
W QianL ZhitengG YichengAM IanI ShoL MichaelY JianV RiccardoSL AdamS ZizhangG AubreeL LihongDH David. Evolving antibody evasion and receptor affinity of the Omicron BA.2.75 sublineage of SARS-CoV-2. bioRxiv 2023; doi:10.1101/2023.03.22.533805
|
116 |
M Awasthi, H Golding, S Khurana. Severe acute respiratory syndrome coronavirus 2 hyperimmune intravenous human immunoglobulins neutralizes Omicron subvariants BA.1, BA.2, BA.2.12.1, BA.3, and BA.4/BA.5 for treatment of coronavirus disease 2019. Clin Infect Dis 2023; 76(3): e503–e506
https://doi.org/10.1093/cid/ciac642
|
117 |
D Focosi, MJ Joyner, A Casadevall. Recent hybrid plasma better neutralizes Omicron sublineages than old hyperimmune serum. Clin Infect Dis 2023; 76(3): 554
https://doi.org/10.1093/cid/ciac742
|
118 |
Y Cao, F Jian, Z Zhang, A Yisimayi, X Hao, L Bao, F Yuan, Y Yu, S Du, J Wang, T Xiao, W Song, Y Zhang, P Liu, R An, P Wang, Y Wang, S Yang, X Niu, Y Zhang, Q Gu, F Shao, Y Hu, W Yin, A Zheng, Y Wang, C Qin, R Jin, J Xiao, XS Xie. Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Rep 2022; 41(12): 111845
https://doi.org/10.1016/j.celrep.2022.111845
|
119 |
X Sun, C Yi, Y Zhu, L Ding, S Xia, X Chen, M Liu, C Gu, X Lu, Y Fu, S Chen, T Zhang, Y Zhang, Z Yang, L Ma, W Gu, G Hu, S Du, R Yan, W Fu, S Yuan, C Qiu, C Zhao, X Zhang, Y He, A Qu, X Zhou, X Li, G Wong, Q Deng, Q Zhou, H Lu, Z Ling, J Ding, L Lu, J Xu, Y Xie, B Sun. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat Microbiol 2022; 7(7): 1063–1074
https://doi.org/10.1038/s41564-022-01155-3
|
120 |
S Shan, S Luo, Z Yang, J Hong, Y Su, F Ding, L Fu, C Li, P Chen, J Ma, X Shi, Q Zhang, B Berger, L Zhang, J Peng. Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization. Proc Natl Acad Sci USA 2022; 119(11): e2122954119
https://doi.org/10.1073/pnas.2122954119
|
121 |
H Lou, J Zheng, XL Fang, Z Liang, M Zhang, Y Chen, C Wang, X Cao. Deep learning-based rapid generation of broadly reactive antibodies against SARS-CoV-2 and its Omicron variant. Cell Res 2023; 33(1): 80–82
https://doi.org/10.1038/s41422-022-00727-6
|
122 |
HW Kim, JG Canchola, CD Brandt, G Pyles, RM Chanock, K Jensen, RH Parrott. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 1969; 89(4): 422–434
https://doi.org/10.1093/oxfordjournals.aje.a120955
|
123 |
AZ Kapikian, RH Mitchell, RM Chanock, RA Shvedoff, CE Stewart. An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol 1969; 89(4): 405–421
https://doi.org/10.1093/oxfordjournals.aje.a120954
|
124 |
LW Rauh, R Schmidt. Measles immunization with killed virus vaccine. Serum antibody titers and experience with exposure to measles epidemic. 1965. Bull World Health Organ 2000; 78(2): 226–231
|
125 |
ID Iankov, M Pandey, M Harvey, GE Griesmann, MJ Federspiel, SJ Russell. Immunoglobulin antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response. J Virol 2006; 80(17): 8530–8540
https://doi.org/10.1128/JVI.00593-06
|
126 |
Y Wan, J Shang, S Sun, W Tai, J Chen, Q Geng, L He, Y Chen, J Wu, Z Shi, Y Zhou, L Du, F Li. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol 2020; 94(5): e02015–19
https://doi.org/10.1128/JVI.02015-19
|
127 |
SF Wang, SP Tseng, CH Yen, JY Yang, CH Tsao, CW Shen, KH Chen, FT Liu, WT Liu, YM Chen, JC Huang. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 2014; 451(2): 208–214
https://doi.org/10.1016/j.bbrc.2014.07.090
|
128 |
WS Lee, AK Wheatley, SJ Kent, BJ DeKosky. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020; 5(10): 1185–1191
https://doi.org/10.1038/s41564-020-00789-5
|
129 |
AM Arvin, K Fink, MA Schmid, A Cathcart, R Spreafico, C Havenar-Daughton, A Lanzavecchia, D Corti, HW Virgin. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 2020; 584(7821): 353–363
https://doi.org/10.1038/s41586-020-2538-8
|
130 |
S Bournazos, A Gupta, JV Ravetch. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol 2020; 20(10): 633–643
https://doi.org/10.1038/s41577-020-00410-0
|
131 |
R de Alwis, S Chen, ES Gan, EE Ooi. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine 2020; 55: 102768
https://doi.org/10.1016/j.ebiom.2020.102768
|
132 |
K Okuya, T Hattori, T Saito, Y Takadate, M Sasaki, W Furuyama, A Marzi, Y Ohiro, S Konno, T Hattori, A Takada. Multiple routes of antibody-dependent enhancement of SARS-CoV-2 infection. Microbiol Spectr 2022; 10(2): e0155321
https://doi.org/10.1128/spectrum.01553-21
|
133 |
GC Lai, TL Chao, SY Lin, HC Kao, YM Tsai, DC Lu, YW Chiang, SY Chang, SC Chang. Neutralization or enhancement of SARS-CoV-2 infection by a monoclonal antibody targeting a specific epitope in the spike receptor-binding domain. Antiviral Res 2022; 200: 105290
https://doi.org/10.1016/j.antiviral.2022.105290
|
134 |
J Shimizu, T Sasaki, R Koketsu, R Morita, Y Yoshimura, A Murakami, Y Saito, T Kusunoki, Y Samune, EE Nakayama, K Miyazaki, T Shioda. Reevaluation of antibody-dependent enhancement of infection in anti-SARS-CoV-2 therapeutic antibodies and mRNA-vaccine antisera using FcR- and ACE2-positive cells. Sci Rep 2022; 12(1): 15612
https://doi.org/10.1038/s41598-022-19993-w
|
135 |
T Maemura, M Kuroda, T Armbrust, S Yamayoshi, PJ Halfmann, Y Kawaoka. Antibody-dependent enhancement of SARS-CoV-2 infection is mediated by the IgG receptors FcγRIIA and FcγRIIIA but does not contribute to aberrant cytokine production by macrophages. MBio 2021; 12(5): e0198721
https://doi.org/10.1128/mBio.01987-21
|
136 |
YT Wang, RD 3rd Allen, K Kim, N Shafee, AJ Gonzalez, MN Nguyen, KM Valentine, X Cao, L Lu, CI Pai, S Johnson, L Kerwin, H Zhou, Y Zhang, S Shresta. SARS-CoV-2 monoclonal antibodies with therapeutic potential: broad neutralizing activity and no evidence of antibody-dependent enhancement. Antiviral Res 2021; 195: 105185
https://doi.org/10.1016/j.antiviral.2021.105185
|
137 |
Committee for the REMAP-CAP Investigators; Estcourt LJ Writing, AF Turgeon, ZK McQuilten, BJ McVerry, F Al-Beidh, D Annane, YM Arabi, DM Arnold, A Beane, P Bégin, Bentum-Puijk W van, LR Berry, Z Bhimani, JE Birchall, MJM Bonten, CA Bradbury, FM Brunkhorst, M Buxton, JL Callum, M Chassé, AC Cheng, ME Cove, J Daly, L Derde, MA Detry, Jong M De, A Evans, DA Fergusson, M Fish, M Fitzgerald, C Foley, H Goossens, AC Gordon, IB Gosbell, C Green, R Haniffa, H Harvala, AM Higgins, TE Hills, VC Hoad, C Horvat, DT Huang, CL Hudson, N Ichihara, E Laing, AA Lamikanra, F Lamontagne, PR Lawler, K Linstrum, E Litton, E Lorenzi, S MacLennan, J Marshall, DF McAuley, JF McDyer, A McGlothlin, S McGuinness, G Miflin, S Montgomery, PR Mouncey, S Murthy, A Nichol, R Parke, JC Parker, N Priddee, DFJ Purcell, LF Reyes, P Richardson, N Robitaille, KM Rowan, J Rynne, H Saito, M Santos, CT Saunders, Neto A Serpa, CW Seymour, JA Silversides, AA Tinmouth, DJ Triulzi, AM Turner, de Veerdonk F van, TS Walsh, EM Wood, S Berry, RJ Lewis, DK Menon, C McArthur, R Zarychanski, DC Angus, SA Webb, DJ Roberts, M Shankar-Hari. Effect of convalescent plasma on organ support-free days in critically ill patients with COVID-19: a randomized clinical trial. JAMA 2021; 326(17): 1690–1702
https://doi.org/10.1001/jama.2021.18178
|
138 |
P Bégin, J Callum, E Jamula, R Cook, NM Heddle, A Tinmouth, MP Zeller, G Beaudoin-Bussières, L Amorim, R Bazin, KC Loftsgard, R Carl, M Chassé, MM Cushing, N Daneman, DV Devine, J Dumaresq, DA Fergusson, C Gabe, MJ Glesby, N Li, Y Liu, A McGeer, N Robitaille, BS Sachais, DC Scales, L Schwartz, N Shehata, AF Turgeon, H Wood, R Zarychanski, A; CONCOR-1 Study Group; Arnold DM Finzi. Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. Nat Med 2021; 27(11): 2012–2024
https://doi.org/10.1038/s41591-021-01488-2
|
139 |
H Wang, Y Zhang, B Huang, W Deng, Y Quan, W Wang, W Xu, Y Zhao, N Li, J Zhang, H Liang, L Bao, Y Xu, L Ding, W Zhou, H Gao, J Liu, P Niu, L Zhao, W Zhen, H Fu, S Yu, Z Zhang, G Xu, C Li, Z Lou, M Xu, C Qin, G Wu, GF Gao, W Tan, X Yang. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 2020; 182(3): 713–721.e9
https://doi.org/10.1016/j.cell.2020.06.008
|
140 |
Q Gao, L Bao, H Mao, L Wang, K Xu, M Yang, Y Li, L Zhu, N Wang, Z Lv, H Gao, X Ge, B Kan, Y Hu, J Liu, F Cai, D Jiang, Y Yin, C Qin, J Li, X Gong, X Lou, W Shi, D Wu, H Zhang, L Zhu, W Deng, Y Li, J Lu, C Li, X Wang, W Yin, Y Zhang, C Qin. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369(6499): 77–81
https://doi.org/10.1126/science.abc1932
|
141 |
PD Yadav, R Ella, S Kumar, DR Patil, S Mohandas, AM Shete, KM Vadrevu, G Bhati, G Sapkal, H Kaushal, S Patil, R Jain, G Deshpande, N Gupta, K Agarwal, M Gokhale, B Mathapati, S Metkari, C Mote, D Nyayanit, DY Patil, BS Sai Prasad, A Suryawanshi, M Kadam, A Kumar, S Daigude, S Gopale, T Majumdar, D Mali, P Sarkale, S Baradkar, P Gawande, Y Joshi, S Fulari, H Dighe, S Sharma, R Gunjikar, A Kumar, K Kalele, VK Srinivas, RR Gangakhedkar, KM Ella, P Abraham, S Panda, B Bhargava. Immunogenicity and protective efficacy of inactivated SARS-CoV-2 vaccine candidate, BBV152 in rhesus macaques. Nat Commun 2021; 12(1): 1386
https://doi.org/10.1038/s41467-021-21639-w
|
142 |
YMK Farag. Limitations of safety update on convalescent plasma transfusion in COVID-19 patients. Mayo Clin Proc 2020; 95(12): 2801–2802
https://doi.org/10.1016/j.mayocp.2020.09.033
|
143 |
NR Aggarwal, LE Beaty, TD Bennett, NE Carlson, CB Davis, BM Kwan, DA Mayer, TC Ong, S Russell, J Steele, AF Wogu, MK Wynia, RD Zane, AA Ginde. Real-world evidence of the neutralizing monoclonal antibody sotrovimab for preventing hospitalization and mortality in COVID-19 outpatients. J Infect Dis 2022; 226(12): 2129–2136
https://doi.org/10.1093/infdis/jiac206
|
144 |
Di Minno G, Navarro D, Perno CF, Canaro M, Gürtler L, Ironside JW, Eichler H, Tiede A. Pathogen reduction/inactivation of products for the treatment of bleeding disorders: what are the processes and what should we say to patients? Ann Hematol 2017; 96(8): 1253–1270 doi:10.1007/s00277-017-3028-4
pmid: 28624906
|
145 |
F Cognasse, H Hamzeh-Cognasse, M Rosa, D Corseaux, B Bonneaudeau, C Pierre, J Huet, CA Arthaud, MA Eyraud, A Prier, AC Duchez, T Ebermeyer, M Heestermans, E Audoux-Caire, Q Philippot, T Le Voyer, O Hequet, AM Fillet, P Chavarin, D Legrand, P Richard, F Pirenne, P Gallian, JL Casanova, S Susen, P Morel, K Lacombe, P Bastard, P Tiberghien. Inflammatory markers and auto-Abs to type I IFNs in COVID-19 convalescent plasma cohort study. EBioMedicine 2023; 87: 104414
https://doi.org/10.1016/j.ebiom.2022.104414
|
146 |
JW Senefeld, PW Johnson, KL Kunze, EM Bloch, N van Helmond, MA Golafshar, SA Klassen, AM Klompas, MA Sexton, JC Diaz Soto, BJ Grossman, AAR Tobian, R Goel, CC Wiggins, KA Bruno, CM van Buskirk, JR Stubbs, JL Winters, A Casadevall, NS Paneth, BH Shaz, MM Petersen, BS Sachais, MR Buras, MA Wieczorek, B Russoniello, LJ Dumont, SE Baker, RR Vassallo, JRA Shepherd, PP Young, NC Verdun, P Marks, NR Haley, RF Rea, L Katz, V Herasevich, DA Waxman, ER Whelan, A Bergman, AJ Clayburn, MK Grabowski, KF Larson, JG Ripoll, KJ Andersen, MNP Vogt, JJ Dennis, RJ Regimbal, PR Bauer, JE Blair, ZA Buchholtz, MC Pletsch, K Wright, JT Greenshields, MJ Joyner, RS Wright, RE Carter, D Fairweather. Access to and safety of COVID-19 convalescent plasma in the United States Expanded Access Program: a national registry study. PLoS Med 2021; 18(12): e1003872
https://doi.org/10.1371/journal.pmed.1003872
|
147 |
G Mak, AM Dassner, BM Hammer, BR Hanisch. Safety and tolerability of monoclonal antibody therapies for treatment of COVID-19 in pediatric patients. Pediatr Infect Dis J 2021; 40(12): e507–e509
https://doi.org/10.1097/INF.0000000000003263
|
148 |
U Katz, A Achiron, Y Sherer, Y Shoenfeld. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev 2007; 6(4): 257–259
https://doi.org/10.1016/j.autrev.2006.08.011
|
149 |
H Orbach, U Katz, Y Sherer, Y Shoenfeld. Intravenous immunoglobulin: adverse effects and safe administration. Clin Rev Allergy Immunol 2005; 29(3): 173–184
https://doi.org/10.1385/CRIAI:29:3:173
|
150 |
STH Liu, M Mirceta, G Lin, DM Anderson, T Broomes, A Jen, A Abid, D Reich, C Hall, JA Aberg. Safety, tolerability, and pharmacokinetics of anti-SARS-CoV-2 immunoglobulin intravenous (human) investigational product (COVID-HIGIV) in healthy adults: a randomized, controlled, double-blinded, phase 1 study. Antimicrob Agents Chemother 2023; 67(3): e0151422
https://doi.org/10.1128/aac.01514-22
|
151 |
S Ali, E Shalim, F Farhan, F Anjum, A Ali, SM Uddin, F Shahab, M Haider, I Ahmed, MR Ali, S Khan, S Rao, K Guriro, S Elahi, M Ali, T Mushtaq, MA Sayeed, SM Muhaymin, S Luxmi, S Saifullah. Phase II/III trial of hyperimmune anti-COVID-19 intravenous immunoglobulin (C-IVIG) therapy in severe COVID-19 patients: study protocol for a randomized controlled trial. Trials 2022; 23(1): 932
https://doi.org/10.1186/s13063-022-06860-2
|
152 |
PC Taylor, AC Adams, MM Hufford, I de la Torre, K Winthrop, RL Gottlieb. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol 2021; 21(6): 382–393
https://doi.org/10.1038/s41577-021-00542-x
|
153 |
Institutes of Health National. COVID-19 treatment guidelines. 2023. Available at the website of National Institutes of Health (accessed April 15, 2023)
|
154 |
DO Ricke. Two different antibody-dependent enhancement (ADE) risks for SARS-CoV-2 antibodies. Front Immunol 2021; 12: 640093
https://doi.org/10.3389/fimmu.2021.640093
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|