Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (4) : 747-757    https://doi.org/10.1007/s11684-022-0954-x
RESEARCH ARTICLE
Neutralization against SARS-CoV-2 Delta/Omicron variants and B cell response after inactivated vaccination among COVID-19 convalescents
Hao Wang1, Yu Yuan1, Bihao Wu2,3, Mingzhong Xiao4,5, Zhen Wang1, Tingyue Diao1, Rui Zeng1, Li Chen2,3, Yanshou Lei1, Pinpin Long1, Yi Guo1, Xuefeng Lai1, Yuying Wen1, Wenhui Li1, Hao Cai1, Lulu Song1, Wei Ni4,5, Youyun Zhao4,5, Kani Ouyang4,5, Jingzhi Wang4,5, Qi Wang1, Li Liu1, Chaolong Wang1, An Pan1, Xiaodong Li4,5(), Rui Gong2(), Tangchun Wu1()
1. Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China
5. Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
 Download: PDF(3286 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Emerging SARS-CoV-2 variants have made COVID-19 convalescents susceptible to re-infection and have raised concern about the efficacy of inactivated vaccination in neutralization against emerging variants and antigen-specific B cell response. To this end, a study on a long-term cohort of 208 participants who have recovered from COVID-19 was conducted, and the participants were followed up at 3.3 (Visit 1), 9.2 (Visit 2), and 18.5 (Visit 3) months after SARS-CoV-2 infection. They were classified into three groups (no-vaccination (n = 54), one-dose (n = 62), and two-dose (n = 92) groups) on the basis of the administration of inactivated vaccination. The neutralizing antibody (NAb) titers against the wild-type virus continued to decrease in the no-vaccination group, but they rose significantly in the one-dose and two-dose groups, with the highest NAb titers being observed in the two-dose group at Visit 3. The NAb titers against the Delta variant for the no-vaccination, one-dose, and two-dose groups decreased by 3.3, 1.9, and 2.3 folds relative to the wild-type virus, respectively, and those against the Omicron variant decreased by 7.0, 4.0, and 3.8 folds, respectively. Similarly, the responses of SARS-CoV-2 RBD-specific B cells and memory B cells were boosted by the second vaccine dose. Results showed that the convalescents benefited from the administration of the inactivated vaccine (one or two doses), which enhanced neutralization against highly mutated SARS-CoV-2 variants and memory B cell responses. Two doses of inactivated vaccine among COVID-19 convalescents are therefore recommended for the prevention of the COVID-19 pandemic, and vaccination guidelines and policies need to be updated.

Keywords COVID-19 convalescent      SARS-CoV-2      inactivated vaccination      neutralizing antibody      B cell response     
Corresponding Author(s): Xiaodong Li,Rui Gong,Tangchun Wu   
Just Accepted Date: 02 December 2022   Online First Date: 07 February 2023    Issue Date: 12 October 2023
 Cite this article:   
Hao Wang,Yu Yuan,Bihao Wu, et al. Neutralization against SARS-CoV-2 Delta/Omicron variants and B cell response after inactivated vaccination among COVID-19 convalescents[J]. Front. Med., 2023, 17(4): 747-757.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0954-x
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I4/747
Fig.1  Study profile. Abbreviation: NAb, neutralizing antibody; PBMC, peripheral blood mononuclear cell; RBD, receptor-binding domain.
Total(n = 208) No-vaccination group(n = 54) One-dose group(n = 62) Two-dose group(n = 92) P
Age (year) 58 (50–65) 58 (45–66) 57 (49–65) 59 (52–64) 0.705
Sex 0.341
Men 100 (48.1%) 30 (55.6%) 26 (41.9%) 44 (47.8%)
Women 108 (51.9%) 24 (44.4%) 36 (58.1%) 48 (52.2%)
Education 0.296
Middle school or lower 140 (67.3%) 33 (61.1%) 40 (64.5%) 67 (72.8%)
College or higher 68 (22.7%) 21 (38.9%) 22 (35.5%) 25 (27.2%)
Cigarette smoking 0.097
Never smoker 183 (88.0%) 47 (87.0%) 59 (95.2%) 77 (83.7%)
Ever smoker 25 (12.0%) 7 (13.0%) 3 (4.8%) 15 (16.3%)
Alcohol consumption 0.038
Never drinker 183 (88.0%) 45 (83.3%) 60 (96.8%) 78 (84.8%)
Ever drinker 25 (12.0%) 9 (16.7%) 2 (3.2%) 14 (15.2%)
Body mass index 24.3 (22.6– 26.5) 24.1 (22.7–26.0) 24.5 (22.1–26.8) 24.3 (22.8–26.5) 0.793
Waist circumference (cm) 90.0 (83.0–97.0) 92.0 (82.0–96.5) 88.0 (79.3–95.0) 91.0 (85.3–98.0) 0.163
Comorbidity
Hypertension 75 (36.1%) 19 (35.2%) 22 (35.5%) 34 (37.0%) 0.971
Diabetes 23 (11.1%) 5 (9.3%) 9 (14.5%) 9 (9.8%) 0.582
CVD 14 (6.7%) 4 (7.4%) 5 (8.1%) 5 (2.4%) 0.794
Severity 0.724
Mild 146 (70.2%) 36 (66.7%) 43 (69.4%) 67 (72.8%)
Severe 62 (29.8%) 18 (33.3%) 19 (30.6%) 25 (27.2%)
Time from infection to Visit 1 (month) 3.3 (1.3–4.4) 3.0 (1.0–4.0) 3.2 (1.4– 4.2) 3.5 (1.6–4.6) 0.143
Time from infection to Visit 2 (month) 9.2 (9.0–9.6) 9.2 (9.0–9.4) 9.3 (9.0–9.7) 9.2 (8.8–9.9) 0.440
Time from infection to Visit 3 (month) 18.5 (18.2–19.1) 18.4 (18.1–19.0) 18.4 (18.2–18.9) 18.7 (18.2–19.3) 0.148
Time from infection to the first vaccination (month) 16.7 (15.9– 17.3) 15.9 (15.1– 16.6) < 0.001
Time from infection to the second vaccination (month) 17.1 (16.4–17.5)
Time from infection to the last vaccination (month)a 16.7 (15.9–17.3) 17.1 (16.4–17.5) 0.043
Time from the last vaccination to Visit 3 (month) 1.7 (1.1–2.9) 1.6 (1.1–2.3) 0.263
Tab.1  Characteristics of COVID-19 patients by vaccination status
Fig.2  Longitudinal assessment of neutralizing antibody (NAb) against wild-type SARS-CoV-2. (A) Graph manifesting temporal changes in NAb against the wild-type virus in each individual from the no-vaccination, one-dose, and two-dose groups. (B) Boxplots indicating the median values with the 25th and 75th percentiles of NAb against the wild-type virus at Visits 1, 2, and 3. The whiskers show the 1.5 interquartile range. *P≤ 0.05, **P≤ 0.01, ***P≤ 0.001.
Fig.3  Neutralizing antibody (NAb) against wild-type, Delta, and Omicron variants of SARS-CoV-2 at Visit 3. (A) NAb against wild-type, Delta, and Omicron variants at Visit 3 in each individual from the no-vaccination, one-dose, and two-dose groups. (B) Boxplots illustrating NAb against the wild-type, Delta, or Omicron variants in the no-vaccination, one-dose, and two-dose vaccination groups at Visit 3. The fold decrease of median NAb titers for the Delta and Omicron variants relative to wild-type variant was calculated and denoted as a number with the × symbol. (C) Calculated fold decrease of NAb titers against the Delta and Omicron variants relative to the wild-type variant in each individual (Fold decrease =(NAb titers against wild-type / NAb titers against Delta or Omicron variant)). A significant difference in the fold decrease of NAb titers against the Omicron variant was observed between no-vaccination and two-dose vaccination groups at Visit 3 (calculated by the Mann–Whitney U-test). We divided the participants according to the fold decrease of NAb titers against the Delta variant relative to the wild-type virus (D) and the Omicron variant relative to the wild-type virus (E) and categorized the fold decrease into four groups (Delta variant: < 2 folds, 2–4 folds, 4–6 folds, > 6 folds; Omicron variant: < 4 folds, 4–8 folds, 8–12 folds, > 12 folds). The proportion of participants was expressed as the percentage of each group and presented as stacked bar graphs. P > 0.05, not significant (ns); *P≤ 0.05, **P≤ 0.01, ***P≤ 0.001.
Fig.4  SARS-CoV-2 RBD-specific B cells and memory B cells among the COVID-19 patients at Visit 3 by vaccination status. (A) Graph summarizing the sorting of SARS-CoV-2 RBD-specific B cells and memory B cells. (B) Percentage of SARS-CoV-2 RBD-specific B cells and (C) percentage of SARS-CoV-2 RBD-specific memory B cells. The boxplots indicate the median values with the 25th and 75th percentiles, and the whiskers show the 1.5 interquartile range. Statistical significance was determined using the Mann–Whitney U-test. P > 0.05, not significant (ns); *P≤ 0.05, **P≤ 0.01, ***P≤ 0.001.
1 JI Cohen, PD Burbelo. Reinfection with SARS-CoV-2: implications for vaccines. Clin Infect Dis 2021; 73(11): e4223–e4228
https://doi.org/10.1093/cid/ciaa1866 pmid: 33338197
2 S Mallapaty. China’s COVID vaccines have been crucial—now immunity is waning. Nature 2021; 598(7881): 398–399
https://doi.org/10.1038/d41586-021-02796-w pmid: 34650240
3 JM Carreño, H Alshammary, J Tcheou, G Singh, AJ Raskin, H Kawabata, LA Sominsky, JJ Clark, DC Adelsberg, DA Bielak, AS Gonzalez-Reiche, N Dambrauskas, V; PSP-PARIS Study Group Vigdorovich, K Srivastava, DN Sather, EM Sordillo, G Bajic, Bakel H van, V Simon, F Krammer. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 2022; 602(7898): 682–688
https://doi.org/10.1038/s41586-022-04399-5 pmid: 35016197
4 WF Garcia-Beltran, KJ St Denis, A Hoelzemer, EC Lam, AD Nitido, ML Sheehan, C Berrios, O Ofoman, CC Chang, BM Hauser, J Feldman, AL Roederer, DJ Gregory, MC Poznansky, AG Schmidt, AJ Iafrate, V Naranbhai, AB Balazs. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022; 185(3): 457–466.e4
https://doi.org/10.1016/j.cell.2021.12.033 pmid: 34995482
5 RR Goel, SA Apostolidis, MM Painter, D Mathew, A Pattekar, O Kuthuru, S Gouma, P Hicks, W Meng, AM Rosenfeld, S Dysinger, KA Lundgreen, L Kuri-Cervantes, S Adamski, A Hicks, S Korte, DA Oldridge, AE Baxter, JR Giles, ME Weirick, CM McAllister, J Dougherty, S Long, K D’Andrea, JT Hamilton, MR Betts, Prak ET Luning, P Bates, SE Hensley, AR Greenplate, EJ Wherry. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals after mRNA vaccination. Sci Immunol 2021; 6(58): eabi6950
https://doi.org/10.1126/sciimmunol.abi6950 pmid: 33858945
6 D Planas, N Saunders, P Maes, F Guivel-Benhassine, C Planchais, J Buchrieser, WH Bolland, F Porrot, I Staropoli, F Lemoine, H Péré, D Veyer, J Puech, J Rodary, G Baele, S Dellicour, J Raymenants, S Gorissen, C Geenen, B Vanmechelen, T Wawina-Bokalanga, J Martí-Carreras, L Cuypers, A Sève, L Hocqueloux, T Prazuck, FA Rey, E Simon-Loriere, T Bruel, H Mouquet, E André, O Schwartz. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022; 602(7898): 671–675
https://doi.org/10.1038/s41586-021-04389-z pmid: 35016199
7 A Rössler, L Riepler, D Bante, Laer D von, J Kimpel. SARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent persons. N Engl J Med 2022; 386(7): 698–700
https://doi.org/10.1056/NEJMc2119236 pmid: 35021005
8 A Sokal, G Barba-Spaeth, I Fernández, M Broketa, I Azzaoui, La Selle A de, A Vandenberghe, S Fourati, A Roeser, A Meola, M Bouvier-Alias, E Crickx, L Languille, M Michel, B Godeau, S Gallien, G Melica, Y Nguyen, V Zarrouk, F Canoui-Poitrine, F Pirenne, J Mégret, JM Pawlotsky, S Fillatreau, P Bruhns, FA Rey, JC Weill, CA Reynaud, P Chappert, M Mahévas. mRNA vaccination of naïve and COVID-19-recovered individuals elicits potent memory B cells that recognize SARS-CoV-2 variants. Immunity 2021; 54(12): 2893–2907.e5
https://doi.org/10.1016/j.immuni.2021.09.011 pmid: 34614412
9 SMS Cheng, CKP Mok, YWY Leung, SS Ng, KCK Chan, FW Ko, C Chen, K Yiu, BHS Lam, EHY Lau, KKP Chan, LLH Luk, JKC Li, LCH Tsang, LLM Poon, DSC Hui, M Peiris. Neutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat Med 2022; 28(3): 486–489
https://doi.org/10.1038/s41591-022-01704-7 pmid: 35051989
10 NA Muena, T Garcia-Salum, C Pardo-Roa, EF Serrano, J Levican, MJ Avendano, LI Almonacid, G Valenzuela, E Poblete, S Strohmeier, E Salinas, D Haslwanter, ME Dieterle, RK Jangra, K Chandran, C González, A Riquelme, F Krammer, ND Tischler, RA Medina. Long-lasting neutralizing antibody responses in SARS-CoV-2 seropositive individuals are robustly boosted by immunization with the CoronaVac and BNT162b2 vaccines. eBioMedicine 2022; 78: 103972
https://doi.org/10.1101/2021.05.17.21257197
11 E Pérez-Then, C Lucas, VS Monteiro, M Miric, V Brache, L Cochon, CBF Vogels, AA Malik, la Cruz E De, A Jorge, Los Santos M De, P Leon, MI Breban, K Billig, I Yildirim, C Pearson, R Downing, E Gagnon, A Muyombwe, J Razeq, M Campbell, AI Ko, SB Omer, ND Grubaugh, SH Vermund, A Iwasaki. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat Med 2022; 28(3): 481–485
https://doi.org/10.1038/s41591-022-01705-6 pmid: 35051990
12 RS Heriyanto, A Kurniawan, F Wijovi, DA Halim, C Jodhinata, E Marcella, B Susanto, J Wibowo, M Indrawan, NK Heryadi, M Imanuelly, JJ Anurantha, TI Hariyanto, C Marcellin, TD Sinaga, SA Rizki, N Sieto, JI Siregar, NPH Lugito. The role of COVID-19 survivor status and gender towards neutralizing antibody titers 1, 2, 3 months after Sinovac vaccine administration on clinical-year medical students in Indonesia. Int J Infect Dis 2021; 113: 336–338
https://doi.org/10.1016/j.ijid.2021.10.009 pmid: 34653654
13 C Ma, X Chen, F Mei, Q Xiong, Q Liu, L Dong, C Liu, W Zou, F Zhan, B Hu, Y Liu, F Liu, L Zhou, J Xu, Y Jiang, K Xu, K Cai, Y Chen, H Yan, K Lan. Drastic decline in sera neutralization against SARS-CoV-2 Omicron variant in Wuhan COVID-19 convalescents. Emerg Microbes Infect 2022; 11(1): 567–572
https://doi.org/10.1080/22221751.2022.2031311 pmid: 35060426
14 TY Yalçın, DI Topçu, Ö Doğan, S Aydın, N Sarı, Ç Erol, ZE Kuloğlu, ÖK Azap, F Can, H Arslan. Immunogenicity after two doses of inactivated virus vaccine in healthcare workers with and without previous COVID-19 infection: prospective observational study. J Med Virol 2022; 94(1): 279–286
https://doi.org/10.1002/jmv.27316 pmid: 34468990
15 A Ciabattini, G Pastore, F Fiorino, J Polvere, S Lucchesi, E Pettini, S Auddino, I Rancan, M Durante, M Miscia, B Rossetti, M Fabbiani, F Montagnani, D Medaglini. Evidence of SARS-CoV-2-specific memory B cells six months after vaccination with the BNT162b2 mRNA vaccine. Front Immunol 2021; 12: 740708
https://doi.org/10.3389/fimmu.2021.740708 pmid: 34650563
16 BL Sievers, S Chakraborty, Y Xue, T Gelbart, JC Gonzalez, AG Cassidy, Y Golan, M Prahl, SL Gaw, PS Arunachalam, CA Blish, SD Boyd, MM Davis, P Jagannathan, KC Nadeau, B Pulendran, U Singh, RH Scheuermann, MB Frieman, S Vashee, TT Wang, GS Tan. Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. Sci Transl Med 2022; 14(634): eabn7842
https://doi.org/10.1126/scitranslmed.abn7842 pmid: 35025672
17 S Xia, Y Zhang, Y Wang, H Wang, Y Yang, GF Gao, W Tan, G Wu, M Xu, Z Lou, W Huang, W Xu, B Huang, H Wang, W Wang, W Zhang, N Li, Z Xie, L Ding, W You, Y Zhao, X Yang, Y Liu, Q Wang, L Huang, Y Yang, G Xu, B Luo, W Wang, P Liu, W Guo, X Yang. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 2021; 21(1): 39–51
https://doi.org/10.1016/S1473-3099(20)30831-8 pmid: 33069281
18 S Xia, K Duan, Y Zhang, D Zhao, H Zhang, Z Xie, X Li, C Peng, Y Zhang, W Zhang, Y Yang, W Chen, X Gao, W You, X Wang, Z Wang, Z Shi, Y Wang, X Yang, L Zhang, L Huang, Q Wang, J Lu, Y Yang, J Guo, W Zhou, X Wan, C Wu, W Wang, S Huang, J Du, Z Meng, A Pan, Z Yuan, S Shen, W Guo, X Yang. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA 2020; 324(10): 951–960
https://doi.org/10.1001/jama.2020.15543 pmid: 32789505
19 Y Zhang, G Zeng, H Pan, C Li, Y Hu, K Chu, W Han, Z Chen, R Tang, W Yin, X Chen, Y Hu, X Liu, C Jiang, J Li, M Yang, Y Song, X Wang, Q Gao, F Zhu. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 2021; 21(2): 181–192
https://doi.org/10.1016/S1473-3099(20)30843-4 pmid: 33217362
20 S Sureshchandra, SA Lewis, BM Doratt, A Jankeel, I Coimbra Ibraim, I Messaoudi. Single-cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine. JCI Insight 2021; 6(24): e153201
https://doi.org/10.1172/jci.insight.153201 pmid: 34935643
21 Y Liu, Q Zeng, C Deng, M Li, L Li, D Liu, M Liu, X Ruan, J Mei, R Mo, Q Zhou, M Liu, S Peng, J Wang, H Zhang, H Xiao. Robust induction of B cell and T cell responses by a third dose of inactivated SARS-CoV-2 vaccine. Cell Discov 2022; 8(1): 10
https://doi.org/10.1038/s41421-022-00373-7 pmid: 35102140
22 L Coppeta, C Ferrari, A Mazza, M Trabucco Aurilio, S Rizza. Factors associated with pre-vaccination SARS-CoV-2 infection risk among hospital nurses facing COVID-19 outbreak. Int J Environ Res Public Health 2021; 18(24): 13053
https://doi.org/10.3390/ijerph182413053 pmid: 34948662
23 Y Rozenfeld, J Beam, H Maier, W Haggerson, K Boudreau, J Carlson, R Medows. A model of disparities: risk factors associated with COVID-19 infection. Int J Equity Health 2020; 19(1): 126
https://doi.org/10.1186/s12939-020-01242-z pmid: 32727486
24 M Cevik, SD Baral. Networks of SARS-CoV-2 transmission. Science 2021; 373(6551): 162–163
https://doi.org/10.1126/science.abg0842 pmid: 34244400
25 N Al Kaabi, Y Zhang, S Xia, Y Yang, MM Al Qahtani, N Abdulrazzaq, M Al Nusair, M Hassany, JS Jawad, J Abdalla, SE Hussein, SK Al Mazrouei, M Al Karam, X Li, X Yang, W Wang, B Lai, W Chen, S Huang, Q Wang, T Yang, Y Liu, R Ma, ZM Hussain, T Khan, M Saifuddin Fasihuddin, W You, Z Xie, Y Zhao, Z Jiang, G Zhao, Y Zhang, S Mahmoud, I ElTantawy, P Xiao, A Koshy, WA Zaher, H Wang, K Duan, A Pan, X Yang. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA 2021; 326(1): 35–45
https://doi.org/10.1001/jama.2021.8565 pmid: 34037666
26 SF Lumley, D O’Donnell, NE Stoesser, PC Matthews, A Howarth, SB Hatch, BD Marsden, S Cox, T James, F Warren, LJ Peck, TG Ritter, Toledo Z de, L Warren, D Axten, RJ Cornall, EY Jones, DI Stuart, G Screaton, D Ebner, S Hoosdally, M Chand, DW Crook, AM O’Donnell, CP Conlon, KB Pouwels, AS Walker, TEA Peto, S Hopkins, TM Walker, K Jeffery, DW; Oxford University Hospitals Staff Testing Group Eyre. Antibody status and incidence of SARS-CoV-2 infection in health care workers. N Engl J Med 2021; 384(6): 533–540
https://doi.org/10.1056/NEJMoa2034545 pmid: 33369366
27 L Coppeta, G Somma, C Ferrari, A Mazza, S Rizza, M Trabucco Aurilio, S Perrone, A Magrini, A Pietroiusti. Persistence of anti-S titre among healthcare workers vaccinated with BNT162b2 mRNA COVID-19. Vaccines (Basel) 2021; 9(9): 947
https://doi.org/10.3390/vaccines9090947 pmid: 34579184
28 DS Stephens, MJ McElrath. COVID-19 and the path to immunity. JAMA 2020; 324(13): 1279–1281
https://doi.org/10.1001/jama.2020.16656 pmid: 32915201
29 Shaman J, Galanti M. Will SARS-CoV-2 become endemic? Science 2020; 370(6516): 527–529 doi:10.1126/science.abe5960
pmid: 33055131
30 WN Chia, F Zhu, SWX Ong, BE Young, SW Fong, N Le Bert, CW Tan, C Tiu, J Zhang, SY Tan, S Pada, YH Chan, CYL Tham, K Kunasegaran, MI Chen, JGH Low, YS Leo, L Renia, A Bertoletti, LFP Ng, DC Lye, LF Wang. Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study. Lancet Microbe 2021; 2(6): e240–e249
https://doi.org/10.1016/S2666-5247(21)00025-2 pmid: 33778792
31 H Wang, Y Yuan, M Xiao, L Chen, Y Zhao, Zhang Haiwei, P Long, Y Zhou, X Xu, Y Lei, Wu Bihao, T Diao, H Cai, L Liu, Z Shao, J Wang, Y Bai, K Wang, M Peng, L Liu, S Han, F Mei, K Cai, Y Lei, A Pan, C Wang, R Gong, X Li, T Wu. Dynamics of the SARS-CoV-2 antibody response up to 10 months after infection. Cell Mol Immunol 2021; 18(7): 1832–1834
https://doi.org/10.1038/s41423-021-00708-6 pmid: 34099890
32 L Coppeta, C Ferrari, G Somma, A Mazza, U D’Ancona, F Marcuccilli, S Grelli, MT Aurilio, A Pietroiusti, A Magrini, S Rizza. Reduced titers of circulating anti-SARS-CoV-2 antibodies and risk of COVID-19 infection in healthcare workers during the nine months after immunization with the BNT162b2 mRNA vaccine. Vaccines (Basel) 2022; 10(2): 141
https://doi.org/10.3390/vaccines10020141 pmid: 35214600
33 M Hoffmann, N Krüger, S Schulz, A Cossmann, C Rocha, A Kempf, I Nehlmeier, L Graichen, AS Moldenhauer, MS Winkler, M Lier, A Dopfer-Jablonka, HM Jäck, GMN Behrens, S Pöhlmann. The Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic. Cell 2022; 185(3): 447–456.e11
https://doi.org/10.1016/j.cell.2021.12.032 pmid: 35026151
34 J Zhang, T Xiao, Y Cai, CL Lavine, H Peng, H Zhu, K Anand, P Tong, A Gautam, ML Mayer, RM Jr Walsh, S Rits-Volloch, DR Wesemann, W Yang, MS Seaman, J Lu, B Chen. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science 2021; 374(6573): 1353–1360
https://doi.org/10.1126/science.abl9463 pmid: 34698504
35 World Health Organization. Interim recommendations for use of the inactivated COVID-19 vaccine BIBP developed by China National Biotec Group, Sinopharm, 2021
36 World Health Organization. Interim recommendations for use of the inactivated COVID-19 vaccine, CoronaVac, developed by Sinovac, 2021
37 BJ Laidlaw, AH Ellebedy. The germinal centre B cell response to SARS-CoV-2. Nat Rev Immunol 2022; 22(1): 7–18
https://doi.org/10.1038/s41577-021-00657-1 pmid: 34873279
38 K Wang, Z Jia, L Bao, L Wang, L Cao, H Chi, Y Hu, Q Li, Y Zhou, Y Jiang, Q Zhu, Y Deng, P Liu, N Wang, L Wang, M Liu, Y Li, B Zhu, K Fan, W Fu, P Yang, X Pei, Z Cui, L Qin, P Ge, J Wu, S Liu, Y Chen, W Huang, Q Wang, CF Qin, Y Wang, C Qin, X Wang. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature 2022; 603(7903): 919–925
https://doi.org/10.1038/s41586-022-04466-x pmid: 35090164
[1] FMD-22031-OF-WTC_suppl_1 Download
[1] Ziyu Fu, Dongguo Liang, Wei Zhang, Dongling Shi, Yuhua Ma, Dong Wei, Junxiang Xi, Sizhe Yang, Xiaoguang Xu, Di Tian, Zhaoqing Zhu, Mingquan Guo, Lu Jiang, Shuting Yu, Shuai Wang, Fangyin Jiang, Yun Ling, Shengyue Wang, Saijuan Chen, Feng Liu, Yun Tan, Xiaohong Fan. Host protection against Omicron BA.2.2 sublineages by prior vaccination in spring 2022 COVID-19 outbreak in Shanghai[J]. Front. Med., 2023, 17(3): 562-575.
[2] Xiaoguang Xu, Wei Zhang, Mingquan Guo, Chenlu Xiao, Ziyu Fu, Shuting Yu, Lu Jiang, Shengyue Wang, Yun Ling, Feng Liu, Yun Tan, Saijuan Chen. Integrated analysis of gut microbiome and host immune responses in COVID-19[J]. Front. Med., 2022, 16(2): 263-275.
[3] Yi Zhang, Haocheng Zhang, Wenhong Zhang. SARS-CoV-2 variants, immune escape, and countermeasures[J]. Front. Med., 2022, 16(2): 196-207.
[4] Yiming Shao, Yingqi Wu, Yi Feng, Wenxin Xu, Feng Xiong, Xinxin Zhang. SARS-CoV-2 vaccine research and immunization strategies for improved control of the COVID-19 pandemic[J]. Front. Med., 2022, 16(2): 185-195.
[5] Wei Zhang, Xiaoguang Xu, Ziyu Fu, Jian Chen, Saijuan Chen, Yun Tan. PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19[J]. Front. Med., 2022, 16(2): 251-262.
[6] Zehong Huang, Yingying Su, Tianying Zhang, Ningshao Xia. A review of the safety and efficacy of current COVID-19 vaccines[J]. Front. Med., 2022, 16(1): 39-55.
[7] Yuntao Zhang, Yunkai Yang, Niu Qiao, Xuewei Wang, Ling Ding, Xiujuan Zhu, Yu Liang, Zibo Han, Feng Liu, Xinxin Zhang, Xiaoming Yang. Early assessment of the safety and immunogenicity of a third dose (booster) of COVID-19 immunization in Chinese adults[J]. Front. Med., 2022, 16(1): 93-101.
[8] Li Ni, Zheng Wen, Xiaowen Hu, Wei Tang, Haisheng Wang, Ling Zhou, Lujin Wu, Hong Wang, Chang Xu, Xizhen Xu, Zhichao Xiao, Zongzhe Li, Chene Li, Yujian Liu, Jialin Duan, Chen Chen, Dan Li, Runhua Zhang, Jinliang Li, Yongxiang Yi, Wei Huang, Yanyan Chen, Jianping Zhao, Jianping Zuo, Jianping Weng, Hualiang Jiang, Dao Wen Wang. Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial[J]. Front. Med., 2021, 15(5): 704-717.
[9] Rongtao Lai, Tianhui Zhou, Xiaogang Xiang, Jie Lu, Haiguang Xin, Qing Xie. Neutralizing monoclonal antibodies present new prospects to treat SARS-CoV-2 infections[J]. Front. Med., 2021, 15(4): 644-648.
[10] Junnan Liang, Guannan Jin, Tongtong Liu, Jingyuan Wen, Ganxun Li, Lin Chen, Wei Wang, Yuwei Wang, Wei Liao, Jia Song, Zeyang Ding, Xiao-ping Chen, Bixiang Zhang. Clinical characteristics and risk factors for mortality in cancer patients with COVID-19[J]. Front. Med., 2021, 15(2): 264-274.
[11] Guizhen Wang, Qun Zhao, Hui Zhang, Fan Liang, Chen Zhang, Jun Wang, Zhenyin Chen, Ran Wu, Hong Yu, Beibei Sun, Hua Guo, Ruie Feng, Kaifeng Xu, Guangbiao Zhou. Degradation of SARS-CoV-2 receptor ACE2 by the E3 ubiquitin ligase Skp2 in lung epithelial cells[J]. Front. Med., 2021, 15(2): 252-263.
[12] Yun Tan, Feng Liu, Xiaoguang Xu, Yun Ling, Weijin Huang, Zhaoqin Zhu, Mingquan Guo, Yixiao Lin, Ziyu Fu, Dongguo Liang, Tengfei Zhang, Jian Fan, Miao Xu, Hongzhou Lu, Saijuan Chen. Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection[J]. Front. Med., 2020, 14(6): 746-751.
[13] Zhengqian Li, Taotao Liu, Ning Yang, Dengyang Han, Xinning Mi, Yue Li, Kaixi Liu, Alain Vuylsteke, Hongbing Xiang, Xiangyang Guo. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain[J]. Front. Med., 2020, 14(5): 533-541.
[14] Jiuyang Xu, Chaolin Huang, Guohui Fan, Zhibo Liu, Lianhan Shang, Fei Zhou, Yeming Wang, Jiapei Yu, Luning Yang, Ke Xie, Zhisheng Huang, Lixue Huang, Xiaoying Gu, Hui Li, Yi Zhang, Yimin Wang, Frederick G. Hayden, Peter W. Horby, Bin Cao, Chen Wang. Use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in context of COVID-19 outbreak: a retrospective analysis[J]. Front. Med., 2020, 14(5): 601-612.
[15] Guangbiao Zhou, Saijuan Chen, Zhu Chen. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies[J]. Front. Med., 2020, 14(2): 117-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed