|
|
Cytokine storm and translating IL-6 biology into effective treatments for COVID-19 |
Tiantian Li1, Dongsheng Wang2, Haiming Wei3,4, Xiaoling Xu2( ) |
1. Department of Geriatric Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China 2. Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China 3. Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230001, China 4. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China |
|
|
Abstract As of May 3, 2023, the coronavirus disease 2019 (COVID-19) pandemic has resulted in more than 760 million confirmed cases and over 6.9 million deaths. Several patients have developed pneumonia, which can deteriorate into acute respiratory distress syndrome. The primary etiology may be attributed to cytokine storm, which is triggered by the excessive release of proinflammatory cytokines and subsequently leads to immune dysregulation. Considering that high levels of interleukin-6 (IL-6) have been detected in several highly pathogenic coronavirus-infected diseases, such as severe acute respiratory syndrome in 2002, the Middle East respiratory syndrome in 2012, and COVID-19, the IL-6 pathway has emerged as a key in the pathogenesis of this hyperinflammatory state. Thus, we review the history of cytokine storm and the process of targeting IL-6 signaling to elucidate the pivotal role played by tocilizumab in combating COVID-19.
|
Keywords
SARS-CoV-2
COVID-19
cytokine storm
interleukin-6
tocilizumab
|
Corresponding Author(s):
Xiaoling Xu
|
Just Accepted Date: 14 November 2023
Online First Date: 27 December 2023
Issue Date: 06 February 2024
|
|
1 |
S Jiang, Z Shi, Y Shu, J Song, GF Gao, W Tan, D Guo. A distinct name is needed for the new coronavirus. Lancet 2020; 395(10228): 949
https://doi.org/10.1016/S0140-6736(20)30419-0
|
2 |
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2023. Available at the website of WHO
|
3 |
WJ Guan, ZY Ni, Y Hu, WH Liang, CQ Ou, JX He, L Liu, H Shan, CL Lei, DSC Hui, B Du, LJ Li, G Zeng, KY Yuen, RC Chen, CL Tang, T Wang, PY Chen, J Xiang, SY Li, JL Wang, ZJ Liang, YX Peng, L Wei, Y Liu, YH Hu, P Peng, JM Wang, JY Liu, Z Chen, G Li, ZJ Zheng, SQ Qiu, J Luo, CJ Ye, SY Zhu, NS; China Medical Treatment Expert Group for Covid-19 Zhong. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708–1720
https://doi.org/10.1056/NEJMoa2002032
|
4 |
Infectious Diseases Society of America. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. 2023. Available at the website of Infectious Diseases Society of America
|
5 |
Z Wu, JM McGoogan. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239–1242
https://doi.org/10.1001/jama.2020.2648
|
6 |
N Chen, M Zhou, X Dong, J Qu, F Gong, Y Han, Y Qiu, J Wang, Y Liu, Y Wei, J Xia, T Yu, X Zhang, L Zhang. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507–513
https://doi.org/10.1016/S0140-6736(20)30211-7
|
7 |
C Huang, Y Wang, X Li, L Ren, J Zhao, Y Hu, L Zhang, G Fan, J Xu, X Gu, Z Cheng, T Yu, J Xia, Y Wei, W Wu, X Xie, W Yin, H Li, M Liu, Y Xiao, H Gao, L Guo, J Xie, G Wang, R Jiang, Z Gao, Q Jin, J Wang, B Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506
https://doi.org/10.1016/S0140-6736(20)30183-5
|
8 |
D Wang, B Hu, C Hu, F Zhu, X Liu, J Zhang, B Wang, H Xiang, Z Cheng, Y Xiong, Y Zhao, Y Li, X Wang, Z Peng. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061–1069
https://doi.org/10.1001/jama.2020.1585
|
9 |
H Shi, X Han, N Jiang, Y Cao, O Alwalid, J Gu, Y Fan, C Zheng. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020; 20(4): 425–434
https://doi.org/10.1016/S1473-3099(20)30086-4
|
10 |
A Bernheim, X Mei, M Huang, Y Yang, ZA Fayad, N Zhang, K Diao, B Lin, X Zhu, K Li, S Li, H Shan, A Jacobi, M Chung. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 2020; 295(3): 200463
https://doi.org/10.1148/radiol.2020200463
|
11 |
X Xu, C Yu, J Qu, L Zhang, S Jiang, D Huang, B Chen, Z Zhang, W Guan, Z Ling, R Jiang, T Hu, Y Ding, L Lin, Q Gan, L Luo, X Tang, J Liu. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging 2020; 47(5): 1275–1280
https://doi.org/10.1007/s00259-020-04735-9
|
12 |
X Zou, K Chen, J Zou, P Han, J Hao, Z Han. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14(2): 185–192
https://doi.org/10.1007/s11684-020-0754-0
|
13 |
X Yang, Y Yu, J Xu, H Shu, J Xia, H Liu, Y Wu, L Zhang, Z Yu, M Fang, T Yu, Y Wang, S Pan, X Zou, S Yuan, Y Shang. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475–481
https://doi.org/10.1016/S2213-2600(20)30079-5
|
14 |
F Zhou, T Yu, R Du, G Fan, Y Liu, Z Liu, J Xiang, Y Wang, B Song, X Gu, L Guan, Y Wei, H Li, X Wu, J Xu, S Tu, Y Zhang, H Chen, B Cao. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054–1062
https://doi.org/10.1016/S0140-6736(20)30566-3
|
15 |
G Spinato, C Fabbris, J Polesel, D Cazzador, D Borsetto, C Hopkins, P Boscolo-Rizzo. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA 2020; 323(20): 2089–2090
https://doi.org/10.1001/jama.2020.6771
|
16 |
JR Lechien, CM Chiesa-Estomba, DR De Siati, M Horoi, SD Le Bon, A Rodriguez, D Dequanter, S Blecic, F El Afia, L Distinguin, Y Chekkoury-Idrissi, S Hans, IL Delgado, C Calvo-Henriquez, P Lavigne, C Falanga, MR Barillari, G Cammaroto, M Khalife, P Leich, C Souchay, C Rossi, F Journe, J Hsieh, M Edjlali, R Carlier, L Ris, A Lovato, C De Filippis, F Coppee, N Fakhry, T Ayad, S Saussez. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 2020; 277(8): 2251–2261
https://doi.org/10.1007/s00405-020-05965-1
|
17 |
S Shi, M Qin, B Shen, Y Cai, T Liu, F Yang, W Gong, X Liu, J Liang, Q Zhao, H Huang, B Yang, C Huang. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5(7): 802–810
https://doi.org/10.1001/jamacardio.2020.0950
|
18 |
NS Hendren, MH Drazner, B Bozkurt, LT Jr Cooper. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation 2020; 141(23): 1903–1914
https://doi.org/10.1161/CIRCULATIONAHA.120.047349
|
19 |
YY Zheng, YT Ma, JY Zhang, X Xie. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259–260
https://doi.org/10.1038/s41569-020-0360-5
|
20 |
MK Chung, DA Zidar, MR Bristow, SJ Cameron, T Chan, CV 3rd Harding, DH Kwon, T Singh, JC Tilton, EJ Tsai, NR Tucker, J Barnard, J Loscalzo. COVID-19 and cardiovascular disease: from bench to bedside. Circ Res 2021; 128(8): 1214–1236
https://doi.org/10.1161/CIRCRESAHA.121.317997
|
21 |
J Li, JG Fan. Characteristics and mechanism of liver injury in 2019 coronavirus disease. J Clin Transl Hepatol 2020; 8(1): 13–17
https://doi.org/10.14218/JCTH.2020.00019
|
22 |
AV Kulkarni, P Kumar, HV Tevethia, M Premkumar, JP Arab, R Candia, R Talukdar, M Sharma, X Qi, PN Rao, DN Reddy. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther 2020; 52(4): 584–599
https://doi.org/10.1111/apt.15916
|
23 |
Y Cheng, R Luo, K Wang, M Zhang, Z Wang, L Dong, J Li, Y Yao, S Ge, G Xu. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97(5): 829–838
https://doi.org/10.1016/j.kint.2020.03.005
|
24 |
J Jansen, KC Reimer, JS Nagai, FS Varghese, GJ Overheul, Beer M de, R Roverts, D Daviran, LAS Fermin, B Willemsen, M Beukenboom, S Djudjaj, Stillfried S von, Eijk LE van, M Mastik, M Bulthuis, WD Dunnen, Goor H van, JL Hillebrands, SH Triana, T Alexandrov, MC Timm, den Berge BT van, den Broek M van, Q Nlandu, J Heijnert, EMJ Bindels, RM Hoogenboezem, F Mooren, C Kuppe, P Miesen, K Grünberg, T Ijzermans, EJ Steenbergen, J Czogalla, MF Schreuder, N Sommerdijk, A Akiva, P Boor, VG Puelles, J Floege, TB; COVID Moonshot consortium; van Rij RP Huber, IG Costa, RK Schneider, B Smeets, R Kramann. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell 2022; 29(2): 217–231.e8
https://doi.org/10.1016/j.stem.2021.12.010
|
25 |
FA Klok, MJHA Kruip, NJM van der Meer, MS Arbous, D Gommers, KM Kant, FHJ Kaptein, J van Paassen, MAM Stals, MV Huisman, H Endeman. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res 2020; 191: 148–150
https://doi.org/10.1016/j.thromres.2020.04.041
|
26 |
Rosa MA DeD CalisiC CarrariniA MazzatentaMV MattoliG NeriD D’ArdesR GiansanteM OnofrjL StuppiaF CipolloneL Bonanni. Olfactory dysfunction as a predictor of the future development of parkinsonism in COVID-19 patients: a 18F- FDOPA PET study. Eur J Neurodegener Dis 2023; 12(1): January–April: 20–23
|
27 |
E AntoniadesS MelissarisD PanagopoulosE KalloniatiG Sfakianos. Pathophysiology and neuroinflammation in COVID-19. Eur J Neurodegener Dis 2022; 11(1): January-June: 7–9
|
28 |
L Mao, H Jin, M Wang, Y Hu, S Chen, Q He, J Chang, C Hong, Y Zhou, D Wang, X Miao, Y Li, B Hu. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683–690
https://doi.org/10.1001/jamaneurol.2020.1127
|
29 |
J Helms, S Kremer, H Merdji, R Clere-Jehl, M Schenck, C Kummerlen, O Collange, C Boulay, S Fafi-Kremer, M Ohana, M Anheim, F Meziani. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; 382(23): 2268–2270
https://doi.org/10.1056/NEJMc2008597
|
30 |
K Aggarwal, A Agarwal, N Jaiswal, N Dahiya, A Ahuja, S Mahajan, L Tong, M Duggal, M Singh, R Agrawal, V Gupta. Ocular surface manifestations of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. PLoS One 2020; 15(11): e0241661
https://doi.org/10.1371/journal.pone.0241661
|
31 |
National Health Commission of the People’s Republic of China. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia. 10th Interim Edition. 2023. Available at the website of National Health Commission of the People’s Republic of China
|
32 |
Y Yang, C Shen, J Li, J Yuan, J Wei, F Huang, F Wang, G Li, Y Li, L Xing, L Peng, M Yang, M Cao, H Zheng, W Wu, R Zou, D Li, Z Xu, H Wang, M Zhang, Z Zhang, GF Gao, C Jiang, L Liu, Y Liu. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol 2020; 146(1): 119–127.e4
https://doi.org/10.1016/j.jaci.2020.04.027
|
33 |
Y Zhou, B Fu, X Zheng, D Wang, C Zhao, Y Qi, R Sun, Z Tian, X Xu, H Wei. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev 2020; 7(6): 998–1002
https://doi.org/10.1093/nsr/nwaa041
|
34 |
Q Zhao, M Meng, R Kumar, Y Wu, J Huang, Y Deng, Z Weng, L Yang. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a systemic review and meta-analysis. Int J Infect Dis 2020; 96: 131–135
https://doi.org/10.1016/j.ijid.2020.04.086
|
35 |
B Diao, C Wang, Y Tan, X Chen, Y Liu, L Ning, L Chen, M Li, Y Liu, G Wang, Z Yuan, Z Feng, Y Zhang, Y Wu, Y Chen. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020; 11: 827
https://doi.org/10.3389/fimmu.2020.00827
|
36 |
Z Xu, L Shi, Y Wang, J Zhang, L Huang, C Zhang, S Liu, P Zhao, H Liu, L Zhu, Y Tai, C Bai, T Gao, J Song, P Xia, J Dong, J Zhao, FS Wang. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420–422
https://doi.org/10.1016/S2213-2600(20)30076-X
|
37 |
R Davies, E Choy. Clinical experience of IL-6 blockade in rheumatic diseases—implications on IL-6 biology and disease pathogenesis. Semin Immunol 2014; 26(1): 97–104
https://doi.org/10.1016/j.smim.2013.12.002
|
38 |
K Paul-Pletzer. Tocilizumab: blockade of interleukin-6 signaling pathway as a therapeutic strategy for inflammatory disorders. Drugs Today (Barc) 2006; 42(9): 559–576
https://doi.org/10.1358/dot.2006.42.9.1025692
|
39 |
H Nakahara, N Nishimoto. Anti-interleukin-6 receptor antibody therapy in rheumatic diseases. Endocr Metab Immune Disord Drug Targets 2006; 6(4): 373–381
https://doi.org/10.2174/187153006779025694
|
40 |
RQ Le, L Li, W Yuan, SS Shord, L Nie, BA Habtemariam, D Przepiorka, AT Farrell, R Pazdur. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 2018; 23(8): 943–947
https://doi.org/10.1634/theoncologist.2018-0028
|
41 |
F Chen, DT Teachey, E Pequignot, N Frey, D Porter, SL Maude, SA Grupp, CH June, JJ Melenhorst, SF Lacey. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods 2016; 434: 1–8
https://doi.org/10.1016/j.jim.2016.03.005
|
42 |
C Kotch, D Barrett, DT Teachey. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol 2019; 15(8): 813–822
https://doi.org/10.1080/1744666X.2019.1629904
|
43 |
U.S. Food and Drug Administration. Coronavirus (COVID-19) Update: FDA Authorizes Drug for Treatment of COVID-19. 2021. Available at the website of FDA
|
44 |
World Health Organization. Therapeutics and COVID-19: living guideline. 2021. Available at the website of WHO
|
45 |
J Vilček, M Feldmann. Historical review: cytokines as therapeutics and targets of therapeutics. Trends Pharmacol Sci 2004; 25(4): 201–209
https://doi.org/10.1016/j.tips.2004.02.011
|
46 |
JR Tisoncik, MJ Korth, CP Simmons, J Farrar, TR Martin, MG Katze. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012; 76(1): 16–32
https://doi.org/10.1128/MMBR.05015-11
|
47 |
DA Cobb, DW Lee. Cytokine release syndrome biology and management. Cancer J 2021; 27(2): 119–125
https://doi.org/10.1097/PPO.0000000000000515
|
48 |
DC Fajgenbaum, CH June. Cytokine storm. N Engl J Med 2020; 383(23): 2255–2273
https://doi.org/10.1056/NEJMra2026131
|
49 |
JL FerraraS AbhyankarDG Gilliland. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc 1993; 25(1 Pt 2): 1216–1217
pmid: 8442093
|
50 |
T Nelemans, M Kikkert. Viral innate immune evasion and the pathogenesis of emerging RNA virus infections. Viruses 2019; 11(10): 961
https://doi.org/10.3390/v11100961
|
51 |
R MacCann, AAG Leon, G Gonzalez, MJ Carr, ER Feeney, O Yousif, AG Cotter, E de Barra, C Sadlier, P Doran, PW Mallon. Dysregulated early transcriptional signatures linked to mast cell and interferon responses are implicated in COVID-19 severity. Front Immunol 2023; 14: 1166574
https://doi.org/10.3389/fimmu.2023.1166574
|
52 |
D Primorac, K Vrdoljak, P Brlek, E Pavelić, V Molnar, V Matišić, Ivkošić I Erceg, M Parčina. Adaptive immune responses and immunity to SARS-CoV-2. Front Immunol 2022; 13: 848582
https://doi.org/10.3389/fimmu.2022.848582
|
53 |
SM Toor, R Saleh, V Sasidharan Nair, RZ Taha, E Elkord. T-cell responses and therapies against SARS-CoV-2 infection. Immunology 2021; 162(1): 30–43
https://doi.org/10.1111/imm.13262
|
54 |
L Chan, N Karimi, S Morovati, K Alizadeh, JE Kakish, S Vanderkamp, F Fazel, C Napoleoni, K Alizadeh, Y Mehrani, JA Minott, BW Bridle, K Karimi. The roles of neutrophils in cytokine storms. Viruses 2021; 13(11): 2318
https://doi.org/10.3390/v13112318
|
55 |
A Bonaventura, A Vecchié, L Dagna, K Martinod, DL Dixon, Tassell BW Van, F Dentali, F Montecucco, S Massberg, M Levi, A Abbate. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21(5): 319–329
https://doi.org/10.1038/s41577-021-00536-9
|
56 |
EE Zoller, JE Lykens, CE Terrell, J Aliberti, AH Filipovich, PM Henson, MB Jordan. Hemophagocytosis causes a consumptive anemia of inflammation. J Exp Med 2011; 208(6): 1203–1214
https://doi.org/10.1084/jem.20102538
|
57 |
P Conti, A Caraffa, G Tetè, CE Gallenga, R Ross, SK Kritas, I Frydas, A Younes, Emidio P Di, G Ronconi. Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19. J Biol Regul Homeost Agents 2020; 34(5): 1629–1632
|
58 |
JS Kim, JY Lee, JW Yang, KH Lee, M Effenberger, W Szpirt, A Kronbichler, JI Shin. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics 2021; 11(1): 316–329
https://doi.org/10.7150/thno.49713
|
59 |
AGF Teodoro, WF Rodrigues, TS Farnesi-de-Assunção, AVBE Borges, MMS Obata, JRDC Neto, Silva DAA da, LE Andrade-Silva, CS Desidério, JC Costa-Madeira, RM Barbosa, ACCH Cunha, LQ Pereira, Vito FB de, Tanaka SCS Vaz, FR Helmo, MR Lemes, LM Barbosa, RO Trevisan, FV Mundim, ACM Oliveira-Scussel, PRR Junior, IB Monteiro, YM Ferreira, GH Machado, K Ferreira-Paim, H Moraes-Souza, Oliveira CJF de, Júnior V Rodrigues, MVD Silva. Inflammatory response and activation of coagulation after COVID-19 infection. Viruses 2023; 15(4): 938
https://doi.org/10.3390/v15040938
|
60 |
H Jing, X Wu, M Xiang, L Liu, VA Novakovic, J Shi. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol 2022; 13: 992384
https://doi.org/10.3389/fimmu.2022.992384
|
61 |
D Kempuraj, GP Selvakumar, ME Ahmed, SP Raikwar, R Thangavel, A Khan, SA Zaheer, SS Iyer, C Burton, D James, A Zaheer. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist 2020; 26(5–6): 402–414
https://doi.org/10.1177/1073858420941476
|
62 |
C D’Ovidio. The response of immune sentinels causing inflammation in glioma and glioblastoma. Eur J Neurodegener Dis 2023; 12(2): May–August: 46–50
|
63 |
M Ghasemzadeh, A Ghasemzadeh, E Hosseini. Exhausted NK cells and cytokine storms in COVID-19: whether NK cell therapy could be a therapeutic choice. Hum Immunol 2022; 83(1): 86–98
https://doi.org/10.1016/j.humimm.2021.09.004
|
64 |
L Cifaldi, G Prencipe, I Caiello, C Bracaglia, F Locatelli, F De Benedetti, R Strippoli. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol 2015; 67(11): 3037–3046
https://doi.org/10.1002/art.39295
|
65 |
I Raphael, S Nalawade, TN Eagar, TG Forsthuber. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015; 74(1): 5–17
https://doi.org/10.1016/j.cyto.2014.09.011
|
66 |
F Sallusto. Heterogeneity of human CD4+ T cells against microbes. Annu Rev Immunol 2016; 34(1): 317–334
https://doi.org/10.1146/annurev-immunol-032414-112056
|
67 |
D Weiskopf, KS Schmitz, MP Raadsen, A Grifoni, NMA Okba, H Endeman, JPC van den Akker, R Molenkamp, MPG Koopmans, ECM van Gorp, BL Haagmans, RL de Swart, A Sette, RD de Vries. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol 2020; 5(48): eabd2071
https://doi.org/10.1126/sciimmunol.abd2071
|
68 |
L Antonioli, M Fornai, C Pellegrini, C Blandizzi. NKG2A and COVID-19: another brick in the wall. Cell Mol Immunol 2020; 17(6): 672–674
https://doi.org/10.1038/s41423-020-0450-7
|
69 |
M Zheng, Y Gao, G Wang, G Song, S Liu, D Sun, Y Xu, Z Tian. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020; 17(5): 533–535
https://doi.org/10.1038/s41423-020-0402-2
|
70 |
A Shimabukuro-Vornhagen, P Gödel, M Subklewe, HJ Stemmler, HA Schlößer, M Schlaak, M Kochanek, B Böll, Bergwelt-Baildon MS von. Cytokine release syndrome. J Immunother Cancer 2018; 6(1): 56
https://doi.org/10.1186/s40425-018-0343-9
|
71 |
DW Lee, R Gardner, DL Porter, CU Louis, N Ahmed, M Jensen, SA Grupp, CL Mackall. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188–195
https://doi.org/10.1182/blood-2014-05-552729
|
72 |
Y Jiang, J Xu, C Zhou, Z Wu, S Zhong, J Liu, W Luo, T Chen, Q Qin, P Deng. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 2005; 171(8): 850–857
https://doi.org/10.1164/rccm.200407-857OC
|
73 |
J Zhou, H Chu, C Li, BH Wong, ZS Cheng, VK Poon, T Sun, CC Lau, KK Wong, JY Chan, JF Chan, KK To, KH Chan, BJ Zheng, KY Yuen. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 2014; 209(9): 1331–1342
https://doi.org/10.1093/infdis/jit504
|
74 |
AU Anka, MI Tahir, SD Abubakar, M Alsabbagh, Z Zian, H Hamedifar, A Sabzevari, G Azizi. Coronavirus disease 2019 (COVID-19): an overview of the immunopathology, serological diagnosis and management. Scand J Immunol 2021; 93(4): e12998
https://doi.org/10.1111/sji.12998
|
75 |
G Morris, CC Bortolasci, BK Puri, L Olive, W Marx, A O’Neil, E Athan, AF Carvalho, M Maes, K Walder, M Berk. The pathophysiology of SARS-CoV-2: a suggested model and therapeutic approach. Life Sci 2020; 258: 118166
https://doi.org/10.1016/j.lfs.2020.118166
|
76 |
M Perl, CS Chung, U Perl, J Lomas-Neira, M de Paepe, WG Cioffi, A Ayala. Fas-induced pulmonary apoptosis and inflammation during indirect acute lung injury. Am J Respir Crit Care Med 2007; 176(6): 591–601
https://doi.org/10.1164/rccm.200611-1743OC
|
77 |
Y Kitamura, S Hashimoto, N Mizuta, A Kobayashi, K Kooguchi, I Fujiwara, H Nakajima. Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am J Respir Crit Care Med 2001; 163(3): 762–769
https://doi.org/10.1164/ajrccm.163.3.2003065
|
78 |
S Herold, M Steinmueller, W von Wulffen, L Cakarova, R Pinto, S Pleschka, M Mack, WA Kuziel, N Corazza, T Brunner, W Seeger, J Lohmeyer. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med 2008; 205(13): 3065–3077
https://doi.org/10.1084/jem.20080201
|
79 |
K Högner, T Wolff, S Pleschka, S Plog, AD Gruber, U Kalinke, HD Walmrath, J Bodner, S Gattenlöhner, P Lewe-Schlosser, M Matrosovich, W Seeger, J Lohmeyer, S Herold. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog 2013; 9(2): e1003188
https://doi.org/10.1371/journal.ppat.1003188
|
80 |
E Ishikawa, M Nakazawa, M Yoshinari, M Minami. Role of tumor necrosis factor-related apoptosis-inducing ligand in immune response to influenza virus infection in mice. J Virol 2005; 79(12): 7658–7663
https://doi.org/10.1128/JVI.79.12.7658-7663.2005
|
81 |
M Sauler, IS Bazan, PJ Lee. Cell death in the lung: the apoptosis-necroptosis axis. Annu Rev Physiol 2019; 81(1): 375–402
https://doi.org/10.1146/annurev-physiol-020518-114320
|
82 |
JG Laffey, C Misak, BP Kavanagh. Acute respiratory distress syndrome. BMJ 2017; 359: j5055
https://doi.org/10.1136/bmj.j5055
|
83 |
KY Lee. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. Int J Mol Sci 2017; 18(2): 388
https://doi.org/10.3390/ijms18020388
|
84 |
N Nakajima, Y Sato, H Katano, H Hasegawa, T Kumasaka, S Hata, S Tanaka, T Amano, T Kasai, JM Chong, T Iizuka, I Nakazato, Y Hino, A Hamamatsu, H Horiguchi, T Tanaka, A Hasegawa, Y Kanaya, R Oku, T Oya, T Sata. Histopathological and immunohistochemical findings of 20 autopsy cases with 2009 H1N1 virus infection. Mod Pathol 2012; 25(1): 1–13
https://doi.org/10.1038/modpathol.2011.125
|
85 |
Y Ding, H Wang, H Shen, Z Li, J Geng, H Han, J Cai, X Li, W Kang, D Weng, Y Lu, D Wu, L He, K Yao. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 2003; 200(3): 282–289
https://doi.org/10.1002/path.1440
|
86 |
DL Ng, F Al Hosani, MK Keating, SI Gerber, TL Jones, MG Metcalfe, S Tong, Y Tao, NN Alami, LM Haynes, MA Mutei, L Abdel-Wareth, TM Uyeki, DL Swerdlow, M Barakat, SR Zaki. Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol 2016; 186(3): 652–658
https://doi.org/10.1016/j.ajpath.2015.10.024
|
87 |
R Channappanavar, S Perlman. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529–539
https://doi.org/10.1007/s00281-017-0629-x
|
88 |
A Zumla, JF Chan, EI Azhar, DS Hui, KY Yuen. Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327–347
https://doi.org/10.1038/nrd.2015.37
|
89 |
C Drosten, S Günther, W Preiser, der Werf S van, HR Brodt, S Becker, H Rabenau, M Panning, L Kolesnikova, RA Fouchier, A Berger, AM Burguière, J Cinatl, M Eickmann, N Escriou, K Grywna, S Kramme, JC Manuguerra, S Müller, V Rickerts, M Stürmer, S Vieth, HD Klenk, AD Osterhaus, H Schmitz, HW Doerr. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348(20): 1967–1976
https://doi.org/10.1056/NEJMoa030747
|
90 |
AM Zaki, S van Boheemen, TM Bestebroer, AD Osterhaus, RA Fouchier. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367(19): 1814–1820
https://doi.org/10.1056/NEJMoa1211721
|
91 |
N Kirtipal, S Bharadwaj, SG Kang. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol 2020; 85: 104502
https://doi.org/10.1016/j.meegid.2020.104502
|
92 |
World Health Organization. Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003. 2015. Available at the website of WHO
|
93 |
J Gu, E Gong, B Zhang, J Zheng, Z Gao, Y Zhong, W Zou, J Zhan, S Wang, Z Xie, H Zhuang, B Wu, H Zhong, H Shao, W Fang, D Gao, F Pei, X Li, Z He, D Xu, X Shi, VM Anderson, AS Leong. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202(3): 415–424
https://doi.org/10.1084/jem.20050828
|
94 |
JM Nicholls, LL Poon, KC Lee, WF Ng, ST Lai, CY Leung, CM Chu, PK Hui, KL Mak, W Lim, KW Yan, KH Chan, NC Tsang, Y Guan, KY Yuen, JS Peiris. Lung pathology of fatal severe acute respiratory syndrome. Lancet 2003; 361(9371): 1773–1778
https://doi.org/10.1016/S0140-6736(03)13413-7
|
95 |
WH Sheng, BL Chiang, SC Chang, HN Ho, JT Wang, YC Chen, CH Hsiao, PR Hseuh, WC Chie, PC Yang. Clinical manifestations and inflammatory cytokine responses in patients with severe acute respiratory syndrome. J Formos Med Assoc 2005; 104(10): 715–723
|
96 |
JY Chien, PR Hsueh, WC Cheng, CJ Yu, PC Yang. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology 2006; 11(6): 715–722
https://doi.org/10.1111/j.1440-1843.2006.00942.x
|
97 |
CY Cheung, LL Poon, IH Ng, W Luk, SF Sia, MH Wu, KH Chan, KY Yuen, S Gordon, Y Guan, JS Peiris. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 2005; 79(12): 7819–7826
https://doi.org/10.1128/JVI.79.12.7819-7826.2005
|
98 |
HK Law, CY Cheung, HY Ng, SF Sia, YO Chan, W Luk, JM Nicholls, JS Peiris, YL Lau. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 2005; 106(7): 2366–2374
https://doi.org/10.1182/blood-2004-10-4166
|
99 |
Z Yao, Z Zheng, K Wu, Z Junhua. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2. Aging (Albany NY) 2020; 12(9): 7639–7651
https://doi.org/10.18632/aging.103101
|
100 |
KJ Huang, IJ Su, M Theron, YC Wu, SK Lai, CC Liu, HY Lei. An interferon-γ-related cytokine storm in SARS patients. J Med Virol 2005; 75(2): 185–194
https://doi.org/10.1002/jmv.20255
|
101 |
CK Wong, CW Lam, AK Wu, WK Ip, NL Lee, IH Chan, LC Lit, DS Hui, MH Chan, SS Chung, JJ Sung. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004; 136(1): 95–103
https://doi.org/10.1111/j.1365-2249.2004.02415.x
|
102 |
M Theron, KJ Huang, YW Chen, CC Liu, HY Lei. A probable role for IFN-gamma in the development of a lung immunopathology in SARS. Cytokine 2005; 32(1): 30–38
https://doi.org/10.1016/j.cyto.2005.07.007
|
103 |
MJ Cameron, L Ran, L Xu, A Danesh, JF Bermejo-Martin, CM Cameron, MP Muller, WL Gold, SE Richardson, SM Poutanen, BM Willey, ME DeVries, Y Fang, C Seneviratne, SE Bosinger, D Persad, P Wilkinson, LD Greller, R Somogyi, A Humar, S Keshavjee, M Louie, MB Loeb, J Brunton, AJ; Canadian SARS Research Network; Kelvin DJ McGeer. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 2007; 81(16): 8692–8706
https://doi.org/10.1128/JVI.00527-07
|
104 |
World Health Organization. Middle East Respiratory Syndrome Coronavirus (MERS-CoV). 2023. Available at the website of WHO
|
105 |
WH Mahallawi, OF Khabour, Q Zhang, HM Makhdoum, BA Suliman. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 2018; 104: 8–13
https://doi.org/10.1016/j.cyto.2018.01.025
|
106 |
ES Kim, PG Choe, WB Park, HS Oh, EJ Kim, EY Nam, SH Na, M Kim, KH Song, JH Bang, SW Park, HB Kim, NJ Kim, MD Oh. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J Korean Med Sci 2016; 31(11): 1717–1725
https://doi.org/10.3346/jkms.2016.31.11.1717
|
107 |
SKP Lau, CCY Lau, KH Chan, CPY Li, H Chen, DY Jin, JFW Chan, PCY Woo, KY Yuen. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol 2013; 94(12): 2679–2690
https://doi.org/10.1099/vir.0.055533-0
|
108 |
M Prete, E Favoino, G Catacchio, V Racanelli, F Perosa. SARS-CoV-2 inflammatory syndrome. Int J Mol Sci 2020; 21(9): 3377
https://doi.org/10.3390/ijms21093377
|
109 |
Y Xiong, Y Liu, L Cao, D Wang, M Guo, A Jiang, D Guo, W Hu, J Yang, Z Tang, H Wu, Y Lin, M Zhang, Q Zhang, M Shi, Y Liu, Y Zhou, K Lan, Y Chen. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect 2020; 9(1): 761–770
https://doi.org/10.1080/22221751.2020.1747363
|
110 |
Z Zhou, L Ren, L Zhang, J Zhong, Y Xiao, Z Jia, L Guo, J Yang, C Wang, S Jiang, D Yang, G Zhang, H Li, F Chen, Y Xu, M Chen, Z Gao, J Yang, J Dong, B Liu, X Zhang, W Wang, K He, Q Jin, M Li, J Wang. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 2020; 27(6): 883–890.e2
https://doi.org/10.1016/j.chom.2020.04.017
|
111 |
A Ichikawa, K Kuba, M Morita, S Chida, H Tezuka, H Hara, T Sasaki, T Ohteki, VM Ranieri, CC dos Santos, Y Kawaoka, S Akira, AD Luster, B Lu, JM Penninger, S Uhlig, AS Slutsky, Y Imai. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med 2013; 187(1): 65–77
https://doi.org/10.1164/rccm.201203-0508OC
|
112 |
BA Khalil, SB Shakartalla, S Goel, B Madkhana, R Halwani, AA Maghazachi, H AlSafar, B Al-Omari, MT Al Bataineh. Immune profiling of COVID-19 in correlation with SARS and MERS. Viruses 2022; 14(1): 164
https://doi.org/10.3390/v14010164
|
113 |
M Tan, Y Liu, R Zhou, X Deng, F Li, K Liang, Y Shi. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology 2020; 160(3): 261–268
https://doi.org/10.1111/imm.13223
|
114 |
O García-Nicolás, A Godel, G Zimmer, A Summerfield. Macrophage phagocytosis of SARS-CoV-2-infected cells mediates potent plasmacytoid dendritic cell activation. Cell Mol Immunol 2023; 20(7): 835–849
https://doi.org/10.1038/s41423-023-01039-4
|
115 |
M Liao, Y Liu, J Yuan, Y Wen, G Xu, J Zhao, L Cheng, J Li, X Wang, F Wang, L Liu, I Amit, S Zhang, Z Zhang. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 2020; 26(6): 842–844
https://doi.org/10.1038/s41591-020-0901-9
|
116 |
R Zhou, KK To, YC Wong, L Liu, B Zhou, X Li, H Huang, Y Mo, TY Luk, TT Lau, P Yeung, WM Chan, AK Wu, KC Lung, OT Tsang, WS Leung, IF Hung, KY Yuen, Z Chen. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity 2020; 53(4): 864–877.e5
https://doi.org/10.1016/j.immuni.2020.07.026
|
117 |
der Sluis RM van, LB Cham, A Gris-Oliver, KR Gammelgaard, JG Pedersen, M Idorn, U Ahmadov, SS Hernandez, E Cémalovic, SH Godsk, J Thyrsted, JD Gunst, SD Nielsen, JJ Jørgensen, TW Bjerg, A Laustsen, LS Reinert, D Olagnier, RO Bak, M Kjolby, CK Holm, M Tolstrup, SR Paludan, LS Kristensen, OS Søgaard, MR Jakobsen. TLR2 and TLR7 mediate distinct immunopathological and antiviral plasmacytoid dendritic cell responses to SARS-CoV-2 infection. EMBO J 2022; 41(10): e109622
https://doi.org/10.15252/embj.2021109622
|
118 |
JB Moore, CH June. Cytokine release syndrome in severe COVID-19. Science 2020; 368(6490): 473–474
https://doi.org/10.1126/science.abb8925
|
119 |
A Mansell, BJ Jenkins. Dangerous liaisons between interleukin-6 cytokine and toll-like receptor families: a potent combination in inflammation and cancer. Cytokine Growth Factor Rev 2013; 24(3): 249–256
https://doi.org/10.1016/j.cytogfr.2013.03.007
|
120 |
CA Dinarello. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77(8): 1627–1652
https://doi.org/10.1182/blood.V77.8.1627.1627
|
121 |
MG Netea, BJ Kullberg, I Verschueren, JW Van Der Meer. Interleukin-18 induces production of proinflammatory cytokines in mice: no intermediate role for the cytokines of the tumor necrosis factor family and interleukin-1beta. Eur J Immunol 2000; 30(10): 3057–3060
https://doi.org/10.1002/1521-4141(200010)30:10<3057::AID-IMMU3057>3.0.CO;2-P
|
122 |
MR Shalaby, A Waage, L Aarden, T Espevik. Endotoxin, tumor necrosis factor-alpha and interleukin 1 induce interleukin 6 production in vivo. Clin Immunol Immunopathol 1989; 53(3): 488–498
https://doi.org/10.1016/0090-1229(89)90010-X
|
123 |
R Schindler, J Mancilla, S Endres, R Ghorbani, SC Clark, CA Dinarello. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 1990; 75(1): 40–47
https://doi.org/10.1182/blood.V75.1.40.40
|
124 |
J Scheller, A Chalaris, D Schmidt-Arras, S Rose-John. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011; 1813(5): 878–888
https://doi.org/10.1016/j.bbamcr.2011.01.034
|
125 |
T Kishimoto, S Akira, M Narazaki, T Taga. Interleukin-6 family of cytokines and gp130. Blood 1995; 86(4): 1243–1254
https://doi.org/10.1182/blood.V86.4.1243.bloodjournal8641243
|
126 |
S Kang, T Tanaka, M Narazaki, T Kishimoto. Targeting interleukin-6 signaling in clinic. Immunity 2019; 50(4): 1007–1023
https://doi.org/10.1016/j.immuni.2019.03.026
|
127 |
Y Wang, AH van Boxel-Dezaire, H Cheon, J Yang, GR Stark. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci USA 2013; 110(42): 16975–16980
https://doi.org/10.1073/pnas.1315862110
|
128 |
M Mihara, M Hashizume, H Yoshida, M Suzuki, M Shiina. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 2012; 122(4): 143–159
https://doi.org/10.1042/CS20110340
|
129 |
F Bouezzedine, O Fardel, P Gripon. Interleukin 6 inhibits HBV entry through NTCP down regulation. Virology 2015; 481: 34–42
https://doi.org/10.1016/j.virol.2015.02.026
|
130 |
O Dienz, JG Rud, SM Eaton, PA Lanthier, E Burg, A Drew, J Bunn, BT Suratt, L Haynes, M Rincon. Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol 2012; 5(3): 258–266
https://doi.org/10.1038/mi.2012.2
|
131 |
ML Yang, CT Wang, SJ Yang, CH Leu, SH Chen, CL Wu, AL Shiau. IL-6 ameliorates acute lung injury in influenza virus infection. Sci Rep 2017; 7(1): 43829
https://doi.org/10.1038/srep43829
|
132 |
W Hou, YH Jin, HS Kang, BS Kim. Interleukin-6 (IL-6) and IL-17 synergistically promote viral persistence by inhibiting cellular apoptosis and cytotoxic T cell function. J Virol 2014; 88(15): 8479–8489
https://doi.org/10.1128/JVI.00724-14
|
133 |
DT Teachey, SF Lacey, PA Shaw, JJ Melenhorst, SL Maude, N Frey, E Pequignot, VE Gonzalez, F Chen, J Finklestein, DM Barrett, SL Weiss, JC Fitzgerald, RA Berg, R Aplenc, C Callahan, SR Rheingold, Z Zheng, S Rose-John, JC White, F Nazimuddin, G Wertheim, BL Levine, CH June, DL Porter, SA Grupp. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016; 6(6): 664–679
https://doi.org/10.1158/2159-8290.CD-16-0040
|
134 |
KA Hay, LA Hanafi, D Li, J Gust, WC Liles, MM Wurfel, JA López, J Chen, D Chung, S Harju-Baker, S Cherian, X Chen, SR Riddell, DG Maloney, CJ Turtle. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017; 130(21): 2295–2306
https://doi.org/10.1182/blood-2017-06-793141
|
135 |
M Norelli, B Camisa, G Barbiera, L Falcone, A Purevdorj, M Genua, F Sanvito, M Ponzoni, C Doglioni, P Cristofori, C Traversari, C Bordignon, F Ciceri, R Ostuni, C Bonini, M Casucci, A Bondanza. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018; 24(6): 739–748
https://doi.org/10.1038/s41591-018-0036-4
|
136 |
C Qin, L Zhou, Z Hu, S Zhang, S Yang, Y Tao, C Xie, K Ma, K Shang, W Wang, DS Tian. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020; 71(15): 762–768
https://doi.org/10.1093/cid/ciaa248
|
137 |
T Liu, J Zhang, Y Yang, H Ma, Z Li, J Zhang, J Cheng, X Zhang, Y Zhao, Z Xia, L Zhang, G Wu, J Yi. The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med 2020; 12(7): e12421
https://doi.org/10.15252/emmm.202012421
|
138 |
EA Coomes, H Haghbayan. Interleukin-6 in Covid-19: a systematic review and meta-analysis. Rev Med Virol 2020; 30(6): 1–9
https://doi.org/10.1002/rmv.2141
|
139 |
M Aziz, R Fatima, R Assaly. Elevated interleukin-6 and severe COVID-19: a meta-analysis. J Med Virol 2020; 92(11): 2283–2285
https://doi.org/10.1002/jmv.25948
|
140 |
JX Yin, YL Agbana, ZS Sun, SW Fei, HQ Zhao, XN Zhou, JH Chen, K Kassegne. Increased interleukin-6 is associated with long COVID-19: a systematic review and meta-analysis. Infect Dis Poverty 2023; 12(1): 43
https://doi.org/10.1186/s40249-023-01086-z
|
141 |
LA Henderson, SW Canna, GS Schulert, S Volpi, PY Lee, KF Kernan, R Caricchio, S Mahmud, MM Hazen, O Halyabar, KJ Hoyt, J Han, AA Grom, M Gattorno, A Ravelli, F De Benedetti, EM Behrens, RQ Cron, PA Nigrovic. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol 2020; 72(7): 1059–1063
https://doi.org/10.1002/art.41285
|
142 |
EJ Giamarellos-Bourboulis, MG Netea, N Rovina, K Akinosoglou, A Antoniadou, N Antonakos, G Damoraki, T Gkavogianni, ME Adami, P Katsaounou, M Ntaganou, M Kyriakopoulou, G Dimopoulos, I Koutsodimitropoulos, D Velissaris, P Koufargyris, A Karageorgos, K Katrini, V Lekakis, M Lupse, A Kotsaki, G Renieris, D Theodoulou, V Panou, E Koukaki, N Koulouris, C Gogos, A Koutsoukou. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020; 27(6): 992–1000.e3
https://doi.org/10.1016/j.chom.2020.04.009
|
143 |
N Saki, M Javan, B Moghimian-Boroujeni, RE Kast. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome. Clin Exp Med 2023; 23(7): 2979–2996
https://doi.org/10.1007/s10238-023-01118-w
|
144 |
N Nishimoto, Y Kanakura, K Aozasa, T Johkoh, M Nakamura, S Nakano, N Nakano, Y Ikeda, T Sasaki, K Nishioka, M Hara, H Taguchi, Y Kimura, Y Kato, H Asaoku, S Kumagai, F Kodama, H Nakahara, K Hagihara, K Yoshizaki, T Kishimoto. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 2005; 106(8): 2627–2632
https://doi.org/10.1182/blood-2004-12-4602
|
145 |
P Emery, E Keystone, HP Tony, A Cantagrel, R van Vollenhoven, A Sanchez, E Alecock, J Lee, J Kremer. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis 2008; 67(11): 1516–1523
https://doi.org/10.1136/ard.2008.092932
|
146 |
MC Genovese, JD McKay, EL Nasonov, EF Mysler, NA da Silva, E Alecock, T Woodworth, JJ Gomez-Reino. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum 2008; 58(10): 2968–2980
https://doi.org/10.1002/art.23940
|
147 |
PM Villiger, S Adler, S Kuchen, F Wermelinger, D Dan, V Fiege, L Bütikofer, M Seitz, S Reichenbach. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 2016; 387(10031): 1921–1927
https://doi.org/10.1016/S0140-6736(16)00560-2
|
148 |
JH Stone, M Klearman, N Collinson. Trial of tocilizumab in giant-cell arteritis. N Engl J Med 2017; 377(15): 1494–1495
|
149 |
HI Brunner, N Ruperto, Z Zuber, C Keane, O Harari, A Kenwright, P Lu, R Cuttica, V Keltsev, RM Xavier, I Calvo, I Nikishina, N Rubio-Pérez, E Alexeeva, V Chasnyk, G Horneff, V Opoka-Winiarska, P Quartier, CA Silva, E Silverman, A Spindler, E Baildam, ML Gámir, A Martin, C Rietschel, D Siri, E Smolewska, D Lovell, A Martini, Benedetti F; Paediatric Rheumatology International Trials Organisation PRINTO; Pediatric Rheumatology Collaborative Study Group (PRCSG) De. Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase 3, randomised, double-blind withdrawal trial. Ann Rheum Dis 2015; 74(6): 1110–1117
https://doi.org/10.1136/annrheumdis-2014-205351
|
150 |
S Yokota, T Imagawa, M Mori, T Miyamae, Y Aihara, S Takei, N Iwata, H Umebayashi, T Murata, M Miyoshi, M Tomiita, N Nishimoto, T Kishimoto. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 2008; 371(9617): 998–1006
https://doi.org/10.1016/S0140-6736(08)60454-7
|
151 |
Benedetti F De, HI Brunner, N Ruperto, A Kenwright, S Wright, I Calvo, R Cuttica, A Ravelli, R Schneider, P Woo, C Wouters, R Xavier, L Zemel, E Baildam, R Burgos-Vargas, P Dolezalova, SM Garay, R Merino, R Joos, A Grom, N Wulffraat, Z Zuber, F Zulian, D Lovell, A; PRINTO; PRCSG Martini. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med 2012; 367(25): 2385–2395
https://doi.org/10.1056/NEJMoa1112802
|
152 |
D Khanna, CJF Lin, DE Furst, J Goldin, G Kim, M Kuwana, Y Allanore, M Matucci-Cerinic, O Distler, Y Shima, Laar JM van, H Spotswood, B Wagner, J Siegel, A Jahreis, CP; focuSSced investigators Denton. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med 2020; 8(10): 963–974
https://doi.org/10.1016/S2213-2600(20)30318-0
|
153 |
X Xu, M Han, T Li, W Sun, D Wang, B Fu, Y Zhou, X Zheng, Y Yang, X Li, X Zhang, A Pan, H Wei. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970–10975
https://doi.org/10.1073/pnas.2005615117
|
154 |
D Wang, B Fu, Z Peng, D Yang, M Han, M Li, Y Yang, T Yang, L Sun, W Li, W Shi, X Yao, Y Ma, F Xu, X Wang, J Chen, D Xia, Y Sun, L Dong, J Wang, X Zhu, M Zhang, Y Zhou, A Pan, X Hu, X Mei, H Wei, X Xu. Tocilizumab in patients with moderate or severe COVID-19: a randomized, controlled, open-label, multicenter trial. Front Med 2021; 15(3): 486–494
https://doi.org/10.1007/s11684-020-0824-3
|
155 |
L AnthonyM Komaroff. Tocilizumab Might Attenuate the “Cytokine Storm” in COVID-19 Patients. 2020. Available at the website of NEJM Journal Watch
|
156 |
National Health Commission of the People’s Republic of China. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia in China. 7th Interim Edition. 2020. Available at the website of National Health Commission of the People’s Republic of China
|
157 |
Infectious Diseases Society of America. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. 2020. Available at the website of Infectious Diseases Society of America
|
158 |
National Institutes of Health. COVID-19 Treatment Guidelines. 2020. Available at the website of NIH
|
159 |
C Salama, J Han, L Yau, WG Reiss, B Kramer, JD Neidhart, GJ Criner, E Kaplan-Lewis, R Baden, L Pandit, ML Cameron, J Garcia-Diaz, V Chávez, M Mekebeb-Reuter, de Menezes F Lima, R Shah, MF González-Lara, B Assman, J Freedman, SV Mohan. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med 2021; 384(1): 20–30
https://doi.org/10.1056/NEJMoa2030340
|
160 |
JH Stone, MJ Frigault, NJ Serling-Boyd, AD Fernandes, L Harvey, AS Foulkes, NK Horick, BC Healy, R Shah, AM Bensaci, AE Woolley, S Nikiforow, N Lin, M Sagar, H Schrager, DS Huckins, M Axelrod, MD Pincus, J Fleisher, CA Sacks, M Dougan, CM North, YD Halvorsen, TK Thurber, Z Dagher, A Scherer, RS Wallwork, AY Kim, S Schoenfeld, P Sen, TG Neilan, CA Perugino, SH Unizony, DS Collier, MA Matza, JM Yinh, KA Bowman, E Meyerowitz, A Zafar, ZD Drobni, MB Bolster, M Kohler, KM D’Silva, J Dau, MM Lockwood, C Cubbison, BN Weber, MK; BACC Bay Tocilizumab Trial Investigators Mansour. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med 2020; 383(24): 2333–2344
https://doi.org/10.1056/NEJMoa2028836
|
161 |
O Hermine, X Mariette, PL Tharaux, M Resche-Rigon, R Porcher, P; CORIMUNO-19 Collaborative Group Ravaud. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med 2021; 181(1): 32–40
https://doi.org/10.1001/jamainternmed.2020.6820
|
162 |
IO Rosas, N Bräu, M Waters, RC Go, BD Hunter, S Bhagani, D Skiest, MS Aziz, N Cooper, IS Douglas, S Savic, T Youngstein, Sorbo L Del, Gracian A Cubillo, La Zerda DJ De, A Ustianowski, M Bao, S Dimonaco, E Graham, B Matharu, H Spotswood, L Tsai, A Malhotra. Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. N Engl J Med 2021; 384(16): 1503–1516
https://doi.org/10.1056/NEJMoa2028700
|
163 |
M Colaneri, L Bogliolo, P Valsecchi, P Sacchi, V Zuccaro, F Brandolino, C Montecucco, F Mojoli, EM Giusti, R Bruno, Covid Irccs San Matteo Pavia Task Force The. Tocilizumab for treatment of severe COVID-19 patients: preliminary results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms 2020; 8(5): 695
https://doi.org/10.3390/microorganisms8050695
|
164 |
C Campochiaro, E Della-Torre, G Cavalli, Luca G De, M Ripa, N Boffini, A Tomelleri, E Baldissera, P Rovere-Querini, A Ruggeri, G Monti, Cobelli F De, A Zangrillo, M Tresoldi, A Castagna, L; TOCI-RAF Study Group Dagna. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med 2020; 76: 43–49
https://doi.org/10.1016/j.ejim.2020.05.021
|
165 |
AS Soin, K Kumar, NS Choudhary, P Sharma, Y Mehta, S Kataria, D Govil, V Deswal, D Chaudhry, PK Singh, A Gupta, V Agarwal, S Kumar, SA Sangle, R Chawla, S Narreddy, R Pandit, V Mishra, M Goel, AV Ramanan. Tocilizumab plus standard care versus standard care in patients in India with moderate to severe COVID-19-associated cytokine release syndrome (COVINTOC): an open-label, multicentre, randomised, controlled, phase 3 trial. Lancet Respir Med 2021; 9(5): 511–521
https://doi.org/10.1016/S2213-2600(21)00081-3
|
166 |
C Salvarani, G Dolci, M Massari, DF Merlo, S Cavuto, L Savoldi, P Bruzzi, F Boni, L Braglia, C Turrà, PF Ballerini, R Sciascia, L Zammarchi, O Para, PG Scotton, WO Inojosa, V Ravagnani, ND Salerno, PP Sainaghi, A Brignone, M Codeluppi, E Teopompi, M Milesi, P Bertomoro, N Claudio, M Salio, M Falcone, G Cenderello, L Donghi, Bono V Del, PL Colombelli, A Angheben, A Passaro, G Secondo, R Pascale, I Piazza, N Facciolongo, M; RCT-TCZ-COVID-19 Study Group Costantini. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA Intern Med 2021; 181(1): 24–31
https://doi.org/10.1001/jamainternmed.2020.6615
|
167 |
VC Veiga, J Prats, DLC Farias, RG Rosa, LK Dourado, FG Zampieri, FR Machado, RD Lopes, O Berwanger, LCP Azevedo, A Avezum, TC Lisboa, SSO Rojas, JC Coelho, RT Leite, JC Carvalho, LEC Andrade, AF Sandes, MCT Pintao, CG Castro. , Santos SV, de Almeida TML, Costa AN, Gebara OCE, de Freitas FGR, Pacheco ES, Machado DJB, Martin J, Conceicao FG, Siqueira SRR, Damiani LP, Ishihara LM, Schneider D, de Souza D, Cavalcanti AB, Scheinberg P; Coalition covid-19 Brazil VI Investigators. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ 2021; 372: n84
https://doi.org/10.1136/bmj.n84
|
168 |
P Toniati, S Piva, M Cattalini, E Garrafa, F Regola, F Castelli, F Franceschini, P Airò, C Bazzani, EA Beindorf, M Berlendis, M Bezzi, N Bossini, M Castellano, S Cattaneo, I Cavazzana, GB Contessi, M Crippa, A Delbarba, Peri E De, A Faletti, M Filippini, M Filippini, M Frassi, M Gaggiotti, R Gorla, M Lanspa, S Lorenzotti, R Marino, R Maroldi, M Metra, A Matteelli, D Modina, G Moioli, G Montani, ML Muiesan, S Odolini, E Peli, S Pesenti, MC Pezzoli, I Pirola, A Pozzi, A Proto, FA Rasulo, G Renisi, C Ricci, D Rizzoni, G Romanelli, M Rossi, M Salvetti, F Scolari, L Signorini, M Taglietti, G Tomasoni, LR Tomasoni, F Turla, A Valsecchi, D Zani, F Zuccalà, F Zunica, E Focà, L Andreoli, N Latronico. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, Italy. Autoimmun Rev 2020; 19(7): 102568
https://doi.org/10.1016/j.autrev.2020.102568
|
169 |
TAC Snow, N Saleem, G Ambler, E Nastouli, M Singer, N Arulkumaran. Tocilizumab in COVID-19: a meta-analysis, trial sequential analysis, and meta-regression of randomized-controlled trials. Intensive Care Med 2021; 47(6): 641–652
https://doi.org/10.1007/s00134-021-06416-z
|
170 |
C Kyriakopoulos, G Ntritsos, A Gogali, H Milionis, E Evangelou, K Kostikas. Tocilizumab administration for the treatment of hospitalized patients with COVID-19: a systematic review and meta-analysis. Respirology 2021; 26(11): 1027–1040
https://doi.org/10.1111/resp.14152
|
171 |
Collaborative Group RECOVERY. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2021; 397(10285): 1637–1645
https://doi.org/10.1016/S0140-6736(21)00676-0
|
172 |
N Broman, T Feuth, T Vuorinen, M Valtonen, U Hohenthal, E Löyttyniemi, T Hirvioja, P Jalava-Karvinen, H Marttila, M Nordberg, J Oksi. Early administration of tocilizumab in hospitalized COVID-19 patients with elevated inflammatory markers; COVIDSTORM—a prospective, randomized, single-centre, open-label study. Clin Microbiol Infect 2022; 28(6): 844–851
https://doi.org/10.1016/j.cmi.2022.02.027
|
173 |
S Sciascia, F Aprà, A Baffa, S Baldovino, D Boaro, R Boero, S Bonora, A Calcagno, I Cecchi, G Cinnirella, M Converso, M Cozzi, P Crosasso, Iaco F De, Perri G Di, M Eandi, R Fenoglio, M Giusti, D Imperiale, G Imperiale, S Livigni, E Manno, C Massara, V Milone, G Natale, M Navarra, V Oddone, S Osella, P Piccioni, M Radin, D Roccatello, D Rossi. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol 2020; 38(3): 529–532
|
174 |
JM Galván-Román, SC Rodríguez-García, E Roy-Vallejo, A Marcos-Jiménez, S Sánchez-Alonso, C Fernández-Díaz, A Alcaraz-Serna, T Mateu-Albero, P Rodríguez-Cortes, I Sánchez-Cerrillo, L Esparcia, P Martínez-Fleta, C López-Sanz, L Gabrie, Campo Guerola L Del, C Suárez-Fernández, J Ancochea, A Canabal, P Albert, DA Rodríguez-Serrano, JM Aguilar, Arco C Del, Los Santos I de, L García-Fraile, la Cámara R de, JM Serra, E Ramírez, T Alonso, P Landete, JB Soriano, E Martín-Gayo, Torres A Fraile, Cruz ND Zurita, R García-Vicuña, L Cardeñoso, F Sánchez-Madrid, A Alfranca, C Muñoz-Calleja, I; REINMUN-COVID Group González-Álvaro. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: an observational study. J Allergy Clin Immunol 2021; 147(1): 72–80.e8
https://doi.org/10.1016/j.jaci.2020.09.018
|
175 |
GW Strohbehn, BL Heiss, SJ Rouhani, JA Trujillo, J Yu, AJ Kacew, EF Higgs, JC Bloodworth, A Cabanov, RC Wright, AK Koziol, A Weiss, K Danahey, TG Karrison, CC Edens, I Bauer Ventura, NN Pettit, BK Patel, J Pisano, ME Strek, TF Gajewski, MJ Ratain, PD Reid. COVIDOSE: a phase II clinical trial of low-dose tocilizumab in the treatment of noncritical COVID-19 pneumonia. Clin Pharmacol Ther 2021; 109(3): 688–696
https://doi.org/10.1002/cpt.2117
|
176 |
S Hashimoto, K Yoshizaki, K Uno, H Kitajima, T Arai, Y Tamura, H Morishita, H Matsuoka, Y Han, S Minamoto, T Hirashima, T Yamada, Y Kashiwa, M Kameda, S Yamaguchi, Y Tsuchihashi, M Iwahashi, E Nakayama, T Shioda, T Nagai, T Tanaka. Prompt reduction in CRP, IL-6, IFN-γ, IP-10, and MCP-1 and a relatively low basal ratio of ferritin/CRP is possibly associated with the efficacy of tocilizumab monotherapy in severely to critically ill patients with COVID-19. Front Med (Lausanne) 2021; 8: 734838
https://doi.org/10.3389/fmed.2021.734838
|
177 |
Y Gokhale, R Mehta, U Kulkarni, N Karnik, S Gokhale, U Sundar, S Chavan, A Kor, S Thakur, T Trivedi, N Kumar, S Baveja, A Wadal, S Kolte, A Deolankar, S Pednekar, L Kalekar, R Padiyar, C Londhe, P Darole, S Pol, SB Gokhe, N Padwal, D Pandey, D Yadav, A Joshi, H Badgujar, M Trivedi, P Shah, P Bhavsar. Tocilizumab improves survival in severe COVID-19 pneumonia with persistent hypoxia: a retrospective cohort study with follow-up from Mumbai, India. BMC Infect Dis 2021; 21(1): 241
https://doi.org/10.1186/s12879-021-05912-3
|
178 |
D Zeraatkar, E Cusano, JPD Martínez, A Qasim, S Mangala, E Kum, JJ Bartoszko, T Devji, T Agoritsas, G Guyatt, A Izcovich, AM Khamis, F Lamontagne, B Rochwerg, P Vandvik, R Brignardello-Petersen, RAC Siemieniuk. Use of tocilizumab and sarilumab alone or in combination with corticosteroids for covid-19: systematic review and network meta-analysis. BMJ Med 2022; 1(1): e000036
https://doi.org/10.1136/bmjmed-2021-000036
|
179 |
R Rossotti, G Travi, N Ughi, M Corradin, C Baiguera, R Fumagalli, M Bottiroli, M Mondino, M Merli, A Bellone, A Basile, R Ruggeri, F Colombo, M Moreno, S Pastori, CF Perno, P Tarsia, OM Epis, M; Niguarda COVID-19 Working Group Puoti. Safety and efficacy of anti-il6-receptor tocilizumab use in severe and critical patients affected by coronavirus disease 2019: a comparative analysis. J Infect 2020; 81(4): e11–e17
https://doi.org/10.1016/j.jinf.2020.07.008
|
180 |
C Gabay, P Emery, R van Vollenhoven, A Dikranian, R Alten, K Pavelka, M Klearman, D Musselman, S Agarwal, J Green, A Kavanaugh, AS Investigators. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet 2013; 381(9877): 1541–1550
https://doi.org/10.1016/S0140-6736(13)60250-0
|
181 |
World Health Organization. Therapeutics and COVID-19: living guideline. 2023. Available at the website of WHO
|
182 |
National Health Service. NHS patients to receive life-saving COVID-19 treatments that could cut hospital time by 10 days. 2021. Available at the website of NHS
|
183 |
Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Shankar-Hari M WHO, CL Vale, PJ Godolphin, D Fisher, JPT Higgins, F Spiga, J Savovic, J Tierney, G Baron, JS Benbenishty, LR Berry, N Broman, AB Cavalcanti, R Colman, Buyser SL De, LPG Derde, P Domingo, SF Omar, A Fernandez-Cruz, T Feuth, F Garcia, R Garcia-Vicuna, I Gonzalez-Alvaro, AC Gordon, R Haynes, O Hermine, PW Horby, NK Horick, K Kumar, BN Lambrecht, MJ Landray, L Leal, DJ Lederer, E Lorenzi, X Mariette, N Merchante, NA Misnan, SV Mohan, MC Nivens, J Oksi, JA Perez-Molina, R Pizov, R Porcher, S Postma, R Rajasuriar, AV Ramanan, P Ravaud, PD Reid, A Rutgers, A Sancho-Lopez, TB Seto, S Sivapalasingam, AS Soin, N Staplin, JH Stone, GW Strohbehn, J Sunden-Cullberg, J Torre-Cisneros, LW Tsai, Hoogstraten H van, Meerten T van, VC Veiga, PE Westerweel, S Murthy, JV Diaz, JC Marshall, JAC Sterne. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: a meta-analysis. JAMA 2021; 326(6): 499–518
https://doi.org/10.1001/jama.2021.11330
|
184 |
K Yamakawa, R Yamamoto, T Terayama, H Hashimoto, T Ishihara, G Ishimaru, H Imura, H Okano, C Narita, T Mayumi, H Yasuda, K Yamada, H Yamada, T Kawasaki, N Shime, K Doi, M Egi, H Ogura, M Aihara, S Kushimoto, O; Special Committee of the Japanese Clinical Practice Guidelines for the Management of Sepsis Nishida, Shock 2020 (J-SSCG 2020) Septic, COVID-19 Task Force the. Japanese rapid/living recommendations on drug management for COVID-19: updated guidelines (July 2022). Acute Med Surg 2022; 9(1): e789
https://doi.org/10.1002/ams2.789
|
185 |
M Bartoletti, O Azap, A Barac, L Bussini, O Ergonul, R Krause, JR Paño-Pardo, NR Power, M Sibani, BG Szabo, S Tsiodras, PE Verweij, I Zollner-Schwetz, J Rodríguez-Baño. ESCMID COVID-19 living guidelines: drug treatment and clinical management. Clin Microbiol Infect 2022; 28(2): 222–238
https://doi.org/10.1016/j.cmi.2021.11.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|