Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (1) : 1-18    https://doi.org/10.1007/s11684-024-1066-6
Emergence of SARS and COVID-19 and preparedness for the next emerging disease X
Ben Hu1, Hua Guo1, Haorui Si1,2, Zhengli Shi1()
1. CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(1417 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19) are two human coronavirus diseases emerging in this century, posing tremendous threats to public health and causing great loss to lives and economy. In this review, we retrospect the studies tracing the molecular evolution of SARS-CoV, and we sort out current research findings about the potential ancestor of SARS-CoV-2. Updated knowledge about SARS-CoV-2-like viruses found in wildlife, the animal susceptibility to SARS-CoV-2, as well as the interspecies transmission risk of SARS-related coronaviruses (SARSr-CoVs) are gathered here. Finally, we discuss the strategies of how to be prepared against future outbreaks of emerging or re-emerging coronaviruses.

Keywords SARS      COVID-19      coronavirus     
Corresponding Author(s): Zhengli Shi   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Just Accepted Date: 26 February 2024   Online First Date: 27 March 2024    Issue Date: 22 April 2024
 Cite this article:   
Ben Hu,Hua Guo,Haorui Si, et al. Emergence of SARS and COVID-19 and preparedness for the next emerging disease X[J]. Front. Med., 2024, 18(1): 1-18.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-024-1066-6
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I1/1
Fig.1  Phylogenetic analysis of the full-length RdRp gene sequences of SARSr-CoVs. The trees were constructed by the Maximum-likelihood method using the Jukes-Cantor model with bootstrap values determined by 1000 replicates. The scale bars represent 0.05 substitutions per nucleotide position. Ra, Rhinolophus affinis; Rs or Rst, Rhinolophus stheno; Rsh, Rhinolophus shameli; Rp, Rhinolophus pusilus; Rac, Rhinolophus acuminatus; Rm, Rhinolophus malayanus; Rc, Rhinolophus cornutus. The percentage numbers in the parentheses refer to the complete genome sequence identity of each SARS-CoV-2-like coronavirus to SARS-CoV-2.
Fig.2  Possible transmission chains of SARS-CoV and SARS-CoV-2. SARS-CoV likely first spilled over from its bat reservoir to palm civet or other game animals, and was then transmitted to humans in the wet markets from this intermediate host. The spillover of the SARS-CoV-2 ancestral virus likely occurred from bats or pangolins, but the direct transmission of SARS-CoV-2 to humans could be from some unidentified intermediate hosts. SARS-CoV-2 may have gone through adaptive evolution in the intermediate hosts and/or in humans for a period prior to the outbreak. It cannot be ruled out that the outbreak was caused by contaminated cold-chain food products and the spreading was facilitated in the market.
PrimatesChiropteraPholidotaRodentiaPerissodactylaLagomorphaCarnivoraArtiodactylaGaliformes
HumanMonkeyBatPangolinHamsterRatMouseHorseRabbitFerretCivetRaccoon dogCatDogFoxMinkBovinePigGoatChick
Clade 1 (without deletion)SARS-CoV-2****************NN**********************N
BANAL-236****
Pangolin-CoV-GD********************N**********Y**N
RaTG13********N*******
Pangolin-CoV-GX*****************N**********Y**N
SARS-CoV*************NN**********************N
WIV1**Y***N*
Clade 1 (one deletion)Rc-o0319N*
BtKY72N*NN
RaTG15N**
RmYN04*
Clade 2 (two deletions)RmYN02NNNN
RacCS203NN
Rp3NNNNN
Tab.1  Susceptibility of different animal species to SARSr-CoVs
Fig.3  Alignment of the receptor binding motif (RBM) in SARSr-CoVs. (A) Schematic diagram of the spike protein of SARS-CoV-2. The residue numbers of each region correspond to their positions in the S protein. (B) Maximum-likelihood phylogeny of sarbecovirus RBDs, constructed from RBD amino acid sequences. The scale bars represent 0.1 substitutions per amino acid position, bootstrap values determined by 1000 replicates. (C) RBM sequences of SARS-CoV, SARS-CoV-2, and representative SARSr-CoVs from different clades were aligned. The clade 1 is in pink and clade 2 is in light blue. The six key residues that contact ACE2 directly are highlighted in green. The red boxes represent deletions in the RBM. CP, cytoplasmic domain; FP, fusion peptide; HR1, heptad repeat 1; HR2, heptad repeat 2; NTD, N-terminal domain; SP, signal peptide; TM, transmembrane domain.
1 KA Murray, N Preston, T Allen, C Zambrana-Torrelio, PR Hosseini, P Daszak. Global biogeography of human infectious diseases. Proc Natl Acad Sci USA 2015; 112(41): 12746–12751
https://doi.org/10.1073/pnas.1507442112
2 EH Loh, C Zambrana-Torrelio, KJ Olival, TL Bogich, CK Johnson, JA Mazet, W Karesh, P Daszak. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector Borne Zoonotic Dis 2015; 15(7): 432–437
https://doi.org/10.1089/vbz.2013.1563
3 C Kreuder Johnson, PL Hitchens, T Smiley Evans, T Goldstein, K Thomas, A Clements, DO Joly, ND Wolfe, P Daszak, WB Karesh, JK Mazet. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci Rep 2015; 5(1): 14830
https://doi.org/10.1038/srep14830
4 ME Woolhouse, L Brierley, C McCaffery, S Lycett. Assessing the epidemic potential of RNA and DNA viruses. Emerg Infect Dis 2016; 22(12): 2037–2044
https://doi.org/10.3201/eid2212.160123
5 J Adjemian, EC Farnon, F Tschioko, JF Wamala, E Byaruhanga, GS Bwire, E Kansiime, A Kagirita, S Ahimbisibwe, F Katunguka, B Jeffs, JJ Lutwama, R Downing, JW Tappero, P Formenty, B Amman, C Manning, J Towner, ST Nichol, PE Rollin. Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007. J Infect Dis 2011; 204(Suppl 3): S796–S799
https://doi.org/10.1093/infdis/jir312
6 IV Kuzmin, M Niezgoda, R Franka, B Agwanda, W Markotter, RF Breiman, WJ Shieh, SR Zaki, CE Rupprecht. Marburg virus in fruit bat, Kenya. Emerg Infect Dis 2010; 16(2): 352–354
https://doi.org/10.3201/eid1602.091269
7 MS Islam, HM Sazzad, SM Satter, S Sultana, MJ Hossain, M Hasan, M Rahman, S Campbell, DL Cannon, U Ströher, P Daszak, SP Luby, ES Gurley. Nipah virus transmission from bats to humans associated with drinking traditional liquor made from Date Palm Sap, Bangladesh, 2011−2014. Emerg Infect Dis 2016; 22(4): 664–670
https://doi.org/10.3201/eid2204.151747
8 NS Zhong, BJ Zheng, YM Li, LLM Poon, ZH Xie, KH Chan, PH Li, SY Tan, Q Chang, JP Xie, XQ Liu, J Xu, DX Li, KY Yuen, JSM Peiris, Y Guan. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 2003; 362(9393): 1353–1358
https://doi.org/10.1016/S0140-6736(03)14630-2
9 AM Zaki, S van Boheemen, TM Bestebroer, AD Osterhaus, RA Fouchier. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367(19): 1814–1820
https://doi.org/10.1056/NEJMoa1211721
10 P Zhou, XL Yang, XG Wang, B Hu, L Zhang, W Zhang, HR Si, Y Zhu, B Li, CL Huang, HD Chen, J Chen, Y Luo, H Guo, RD Jiang, MQ Liu, Y Chen, XR Shen, X Wang, XS Zheng, K Zhao, QJ Chen, F Deng, LL Liu, B Yan, FX Zhan, YY Wang, GF Xiao, ZL Shi. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270–273
https://doi.org/10.1038/s41586-020-2012-7
11 N Zhu, D Zhang, W Wang, X Li, B Yang, J Song, X Zhao, B Huang, W Shi, R Lu, P Niu, F Zhan, X Ma, D Wang, W Xu, G Wu, GF Gao, W; China Novel Coronavirus Investigating Tan, Team Research. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727–733
https://doi.org/10.1056/NEJMoa2001017
12 LL Ren, YM Wang, ZQ Wu, ZC Xiang, L Guo, T Xu, YZ Jiang, Y Xiong, YJ Li, XW Li, H Li, GH Fan, XY Gu, Y Xiao, H Gao, JY Xu, F Yang, XM Wang, C Wu, L Chen, YW Liu, B Liu, J Yang, XR Wang, J Dong, L Li, CL Huang, JP Zhao, Y Hu, ZS Cheng, LL Liu, ZH Qian, C Qin, Q Jin, B Cao, JW Wang. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl) 2020; 133(9): 1015–1024
https://doi.org/10.1097/CM9.0000000000000722
13 JS Peiris, Y Guan, KY Yuen. Severe acute respiratory syndrome. Nat Med 2004; 10(12 Suppl): S88–S97
https://doi.org/10.1038/nm1143
14 J Pike, T Bogich, S Elwood, DC Finnoff, P Daszak. Economic optimization of a global strategy to address the pandemic threat. Proc Natl Acad Sci USA 2014; 111(52): 18519–18523
https://doi.org/10.1073/pnas.1412661112
15 Y Guan, BJ Zheng, YQ He, XL Liu, ZX Zhuang, CL Cheung, SW Luo, PH Li, LJ Zhang, YJ Guan, KM Butt, KL Wong, KW Chan, W Lim, KF Shortridge, KY Yuen, JS Peiris, LL Poon. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003; 302(5643): 276–278
https://doi.org/10.1126/science.1087139
16 HD Song, CC Tu, GW Zhang, SY Wang, K Zheng, LC Lei, QX Chen, YW Gao, HQ Zhou, H Xiang, HJ Zheng, SW Chern, F Cheng, CM Pan, H Xuan, SJ Chen, HM Luo, DH Zhou, YF Liu, JF He, PZ Qin, LH Li, YQ Ren, WJ Liang, YD Yu, L Anderson, M Wang, RH Xu, XW Wu, HY Zheng, JD Chen, G Liang, Y Gao, M Liao, L Fang, LY Jiang, H Li, F Chen, B Di, LJ He, JY Lin, S Tong, X Kong, L Du, P Hao, H Tang, A Bernini, XJ Yu, O Spiga, ZM Guo, HY Pan, WZ He, JC Manuguerra, A Fontanet, A Danchin, N Niccolai, YX Li, CI Wu, GP Zhao. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 2005; 102(7): 2430–2435
https://doi.org/10.1073/pnas.0409608102
17 SARS Molecular Epidemiology Consortium Chinese. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 2004; 303(5664): 1666–1669
https://doi.org/10.1126/science.1092002
18 XY Ge, JL Li, XL Yang, AA Chmura, G Zhu, JH Epstein, JK Mazet, B Hu, W Zhang, C Peng, YJ Zhang, CM Luo, B Tan, N Wang, Y Zhu, G Crameri, SY Zhang, LF Wang, P Daszak, ZL Shi. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503(7477): 535–538
https://doi.org/10.1038/nature12711
19 B Hu, LP Zeng, XL Yang, XY Ge, W Zhang, B Li, JZ Xie, XR Shen, YZ Zhang, N Wang, DS Luo, XS Zheng, MN Wang, P Daszak, LF Wang, J Cui, ZL Shi. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 2017; 13(11): e1006698
https://doi.org/10.1371/journal.ppat.1006698
20 JF Drexler, F Gloza-Rausch, J Glende, VM Corman, D Muth, M Goettsche, A Seebens, M Niedrig, S Pfefferle, S Yordanov, L Zhelyazkov, U Hermanns, P Vallo, A Lukashev, MA Müller, H Deng, G Herrler, C Drosten. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 2010; 84(21): 11336–11349
https://doi.org/10.1128/JVI.00650-10
21 Y Tao, S Tong. Complete genome sequence of a severe acute respiratory syndrome-related coronavirus from Kenyan bats. Microbiol Resour Announc 2019; 8(28): e00548–e19
https://doi.org/10.1128/MRA.00548-19
22 J Cui, F Li, ZL Shi. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181–192
https://doi.org/10.1038/s41579-018-0118-9
23 N Wang, SY Li, XL Yang, HM Huang, YJ Zhang, H Guo, CM Luo, M Miller, G Zhu, AA Chmura, E Hagan, JH Zhou, YZ Zhang, LF Wang, P Daszak, ZL Shi. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol Sin 2018; 33(1): 104–107
https://doi.org/10.1007/s12250-018-0012-7
24 H Guo, BJ Hu, XL Yang, LP Zeng, B Li, S Ouyang, ZL Shi. Evolutionary arms race between virus and host drives genetic diversity in bat severe acute respiratory syndrome-related coronavirus spike genes. J Virol 2020; 94(20): e00902–e00920
https://doi.org/10.1128/JVI.00902-20
25 C Huang, Y Wang, X Li, L Ren, J Zhao, Y Hu, L Zhang, G Fan, J Xu, X Gu, Z Cheng, T Yu, J Xia, Y Wei, W Wu, X Xie, W Yin, H Li, M Liu, Y Xiao, H Gao, L Guo, J Xie, G Wang, R Jiang, Z Gao, Q Jin, J Wang, B Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506
https://doi.org/10.1016/S0140-6736(20)30183-5
26 F Wu, S Zhao, B Yu, YM Chen, W Wang, ZG Song, Y Hu, ZW Tao, JH Tian, YY Pei, ML Yuan, YL Zhang, FH Dai, Y Liu, QM Wang, JJ Zheng, L Xu, EC Holmes, YZ Zhang. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265–269
https://doi.org/10.1038/s41586-020-2008-3
27 Study Group of the International Committee on Taxonomy of Viruses Coronaviridae. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536–544
https://doi.org/10.1038/s41564-020-0695-z
28 EC Holmes, SA Goldstein, AL Rasmussen, DL Robertson, A Crits-Christoph, JO Wertheim, SJ Anthony, WS Barclay, MF Boni, PC Doherty, J Farrar, JL Geoghegan, X Jiang, JL Leibowitz, SJD Neil, T Skern, SR Weiss, M Worobey, KG Andersen, RF Garry, A Rambaut. The origins of SARS-CoV-2: a critical review. Cell 2021; 184(19): 4848–4856
https://doi.org/10.1016/j.cell.2021.08.017
29 Health Organization World. WHO-Convened Global Study of Origins of SARS-CoV-2: China Part, Joint Report. 2021. Available at the website of WHO
30 X Zhang, Y Tan, Y Ling, G Lu, F Liu, Z Yi, X Jia, M Wu, B Shi, S Xu, J Chen, W Wang, B Chen, L Jiang, S Yu, J Lu, J Wang, M Xu, Z Yuan, Q Zhang, X Zhang, G Zhao, S Wang, S Chen, H Lu. Viral and host factors related to the clinical outcome of COVID-19. Nature 2020; 583(7816): 437–440
https://doi.org/10.1038/s41586-020-2355-0
31 S Temmam, K Vongphayloth, E Baquero, S Munier, M Bonomi, B Regnault, B Douangboubpha, Y Karami, D Chrétien, D Sanamxay, V Xayaphet, P Paphaphanh, V Lacoste, S Somlor, K Lakeomany, N Phommavanh, P Pérot, O Dehan, F Amara, F Donati, T Bigot, M Nilges, FA Rey, der Werf S van, PT Brey, M Eloit. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 2022; 604(7905): 330–336
https://doi.org/10.1038/s41586-022-04532-4
32 TT Lam, N Jia, YW Zhang, MH Shum, JF Jiang, HC Zhu, YG Tong, YX Shi, XB Ni, YS Liao, WJ Li, BG Jiang, W Wei, TT Yuan, K Zheng, XM Cui, J Li, GQ Pei, X Qiang, WY Cheung, LF Li, FF Sun, S Qin, JC Huang, GM Leung, EC Holmes, YL Hu, Y Guan, WC Cao. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583(7815): 282–285
https://doi.org/10.1038/s41586-020-2169-0
33 WJ LiuP LiuW LeiZ JiaX HeW ShiY TanS ZouG WongJ WangF WangG WangK QinR GaoJ ZhangM LiW XiaoY GuoZ XuY ZhaoJ SongJ ZhangW ZhenW ZhouB YeJ SongM YangW ZhouY DaiG LuY BiW TanJ HanGF GaoG Wu. Surveillance of SARS-CoV-2 at the Huanan Seafood Market. Nature 2023; [Epub ahead of print] doi:10.1038/s41586-023-06043-2
34 A Rambaut, EC Holmes, Á O’Toole, V Hill, JT McCrone, C Ruis, Plessis L du, OG Pybus. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 2020; 5(11): 1403–1407
https://doi.org/10.1038/s41564-020-0770-5
35 Y Chi, Q Wang, G Chen, S Zheng. The long-term presence of SARS-CoV-2 on cold-chain food packaging surfaces indicates a new COVID-19 winter outbreak: a mini review. Front Public Health 2021; 9: 650493
https://doi.org/10.3389/fpubh.2021.650493
36 XL Feng, B Li, HF Lin, HY Zheng, RR Tian, RH Luo, MQ Liu, RD Jiang, YT Zheng, ZL Shi, YH Bi, XL Yang. Stability of SARS-CoV-2 on the surfaces of three meats in the setting that simulates the cold chain transportation. Virol Sin 2021; 36(5): 1069–1072
https://doi.org/10.1007/s12250-021-00367-x
37 X Pang, L Ren, S Wu, W Ma, J Yang, L Di, J Li, Y Xiao, L Kang, S Du, J Du, J Wang, G Li, S Zhai, L Chen, W Zhou, S Lai, L Gao, Y Pan, Q Wang, M Li, J Wang, Y Huang, J; COVID-19 Field Response Group; COVID-19 Laboratory Testing Group Wang. Cold-chain food contamination as the possible origin of COVID-19 resurgence in Beijing. Natl Sci Rev 2020; 7(12): 1861–1864
https://doi.org/10.1093/nsr/nwaa264
38 X Zhao, L Mao, J Zhang, Y Zhang, Y Song, Z Bo, H Wang, J Wang, C Chen, J Xiao, T Ji, Q Yang, W Xu, D Wang, W Yao. Reemergent cases of COVID-19—Dalian City, Liaoning Province, China, July 22, 2020. China CDC Wkly 2020; 2(34): 658–660
https://doi.org/10.46234/ccdcw2020.182
39 Q Yuan, Z Kou, F Jiang, Z Li, L Zhang, H Liu, X Zhao, D Kang, R Gao, J Lei. A nosocomial COVID-19 outbreak initiated by an infected dockworker at Qingdao City Port—Shandong Province, China, October, 2020. China CDC Wkly 2020; 2(43): 838–840
https://doi.org/10.46234/ccdcw2020.224
40 P Liu, M Yang, X Zhao, Y Guo, L Wang, J Zhang, W Lei, W Han, F Jiang, WJ Liu, GF Gao, G Wu. Cold-chain transportation in the frozen food industry may have caused a recurrence of COVID-19 cases in destination: successful isolation of SARS-CoV-2 virus from the imported frozen cod package surface. Biosafety Health 2020; 2(4): 199–201
https://doi.org/10.1016/j.bsheal.2020.11.003
41 L Bai, Y Wang, Y Wang, Y Wu, N Li, Z Liu. Controlling COVID-19 transmission due to contaminated imported frozen food and food packaging. China CDC Wkly 2021; 3(2): 30–33
https://doi.org/10.46234/ccdcw2021.008
42 G Chavarria-MiróE Anfruns-EstradaS GuixM ParairaB GalofréG SánchezRM PintóA Bosch. Sentinel surveillance of SARS-CoV-2 in wastewater anticipates the occurrence of COVID-19 cases. medRxiv 2020: 2020.06.13.20129627
43 G FongaroStoco P HermesSouza DS MarquesEC GrisardME MagriP RogovskiSchörner M AndréFH BarazzettiAP ChristoffOliveira LFV deML BazzoG WagnerM HernándezD Rodriguez-Lázaro. SARS-CoV-2 in human sewage in Santa Catalina, Brazil, November 2019. medRxiv 2020: 2020.06.26.20140731
44 M Giovanetti, D Benvenuto, S Angeletti, M Ciccozzi. The first two cases of 2019-nCoV in Italy: where they come from?. J Med Virol 2020; 92(5): 518–521
https://doi.org/10.1002/jmv.25699
45 G Apolone, E Montomoli, A Manenti, M Boeri, F Sabia, I Hyseni, L Mazzini, D Martinuzzi, L Cantone, G Milanese, S Sestini, P Suatoni, A Marchianò, V Bollati, G Sozzi, U Pastorino. Unexpected detection of SARS-CoV-2 antibodies in the prepandemic period in Italy. Tumori 2021; 107(5): 446–451
https://doi.org/10.1177/0300891620974755
46 F Carrat, J Figoni, J Henny, JC Desenclos, S Kab, X de Lamballerie, M Zins. Evidence of early circulation of SARS-CoV-2 in France: findings from the population-based “CONSTANCES” cohort. Eur J Epidemiol 2021; 36(2): 219–222
https://doi.org/10.1007/s10654-020-00716-2
47 Y Ruan, H Wen, M Hou, Z He, X Lu, Y Xue, X He, YP Zhang, CI Wu. The twin-beginnings of COVID-19 in Asia and Europe-one prevails quickly. Natl Sci Rev 2022; 9(4): nwab223
https://doi.org/10.1093/nsr/nwab223
48 Y Bai, D Jiang, JR Lon, X Chen, M Hu, S Lin, Z Chen, X Wang, Y Meng, H Du. Comprehensive evolution and molecular characteristics of a large number of SARS-CoV-2 genomes reveal its epidemic trends. Int J Infect Dis 2020; 100: 164–173
https://doi.org/10.1016/j.ijid.2020.08.066
49 J Lu, Plessis L du, Z Liu, V Hill, M Kang, H Lin, J Sun, S François, MUG Kraemer, NR Faria, JT McCrone, J Peng, Q Xiong, R Yuan, L Zeng, P Zhou, C Liang, L Yi, J Liu, J Xiao, J Hu, T Liu, W Ma, W Li, J Su, H Zheng, B Peng, S Fang, W Su, K Li, R Sun, R Bai, X Tang, M Liang, J Quick, T Song, A Rambaut, N Loman, J Raghwani, OG Pybus, C Ke. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell 2020; 181(5): 997–1003.e9
https://doi.org/10.1016/j.cell.2020.04.023
50 S Duchene, L Featherstone, M Haritopoulou-Sinanidou, A Rambaut, P Lemey, G Baele. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol 2020; 6(2): veaa061
https://doi.org/10.1093/ve/veaa061
51 CI Wu, H Wen, J Lu, XD Su, AC Hughes, W Zhai, C Chen, H Chen, M Li, S Song, Z Qian, Q Wang, B Chen, Z Guo, Y Ruan, X Lu, F Wei, L Jin, L Kang, Y Xue, G Zhao, YP Zhang. On the origin of SARS-CoV-2—the blind watchmaker argument. Sci China Life Sci 2021; 64(9): 1560–1563
https://doi.org/10.1007/s11427-021-1972-1
52 Y Ruan, H Wen, X He, CI Wu. A theoretical exploration of the origin and early evolution of a pandemic. Sci Bull (Beijing) 2021; 66(10): 1022–1029
https://doi.org/10.1016/j.scib.2020.12.020
53 THC Sit, CJ Brackman, SM Ip, KWS Tam, PYT Law, EMW To, VYT Yu, LD Sims, DNC Tsang, DKW Chu, RAPM Perera, LLM Poon, M Peiris. Infection of dogs with SARS-CoV-2. Nature 2020; 586(7831): 776–778
https://doi.org/10.1038/s41586-020-2334-5
54 M Goumenou, DA Spandidos, A Tsatsakis. Possibility of transmission through dogs being a contributing factor to the extreme COVID-19 outbreak in North Italy. Mol Med Rep 2020; 21(6): 2293–2295
https://doi.org/10.3892/mmr.2020.11037
55 EI Patterson, G Elia, A Grassi, A Giordano, C Desario, M Medardo, SL Smith, ER Anderson, T Prince, GT Patterson, E Lorusso, MS Lucente, G Lanave, S Lauzi, U Bonfanti, A Stranieri, V Martella, F Solari Basano, VR Barrs, AD Radford, U Agrimi, GL Hughes, S Paltrinieri, N Decaro. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat Commun 2020; 11(1): 6231
https://doi.org/10.1038/s41467-020-20097-0
56 SA Hamer, A Pauvolid-Corrêa, IB Zecca, E Davila, LD Auckland, CM Roundy, W Tang, MK Torchetti, ML Killian, M Jenkins-Moore, K Mozingo, Y Akpalu, RR Ghai, JR Spengler, Behravesh C Barton, RSB Fischer, GL Hamer. SARS-CoV-2 infections and viral isolations among serially tested cats and dogs in households with infected owners in Texas, USA. Viruses 2021; 13(5): 938
https://doi.org/10.3390/v13050938
57 C Sailleau, M Dumarest, J Vanhomwegen, M Delaplace, V Caro, A Kwasiborski, V Hourdel, P Chevaillier, A Barbarino, L Comtet, P Pourquier, B Klonjkowski, JC Manuguerra, S Zientara, S Le Poder. First detection and genome sequencing of SARS-CoV-2 in an infected cat in France. Transbound Emerg Dis 2020; 67(6): 2324–2328
https://doi.org/10.1111/tbed.13659
58 M Garigliany, AS Van Laere, C Clercx, D Giet, N Escriou, C Huon, S van der Werf, M Eloit, D Desmecht. SARS-CoV-2 natural transmission from human to cat, Belgium, March 2020. Emerg Infect Dis 2020; 26(12): 3069–3071
https://doi.org/10.3201/eid2612.202223
59 VR Barrs, M Peiris, KWS Tam, PYT Law, CJ Brackman, EMW To, VYT Yu, DKW Chu, RAPM Perera, THC Sit. SARS-CoV-2 in quarantined domestic cats from COVID-19 households or close contacts, Hong Kong, China. Emerg Infect Dis 2020; 26(12): 3071–3074
https://doi.org/10.3201/eid2612.202786
60 A Newman, D Smith, RR Ghai, RM Wallace, MK Torchetti, C Loiacono, LS Murrell, A Carpenter, S Moroff, JA Rooney, C Barton Behravesh. First reported cases of SARS-CoV-2 infection in companion animals—New York, March−April 2020. MMWR Morb Mortal Wkly Rep 2020; 69(23): 710–713
https://doi.org/10.15585/mmwr.mm6923e3
61 I Ruiz-Arrondo, A Portillo, AM Palomar, S Santibáñez, P Santibáñez, C Cervera, JA Oteo. Detection of SARS-CoV-2 in pets living with COVID-19 owners diagnosed during the COVID-19 lockdown in Spain: a case of an asymptomatic cat with SARS-CoV-2 in Europe. Transbound Emerg Dis 2021; 68(2): 973–976
https://doi.org/10.1111/tbed.13803
62 J Segalés, M Puig, J Rodon, C Avila-Nieto, J Carrillo, G Cantero, MT Terrón, S Cruz, M Parera, M Noguera-Julián, N Izquierdo-Useros, V Guallar, E Vidal, A Valencia, I Blanco, J Blanco, B Clotet, J Vergara-Alert. Detection of SARS-CoV-2 in a cat owned by a COVID-19-affected patient in Spain. Proc Natl Acad Sci USA 2020; 117(40): 24790–24793
https://doi.org/10.1073/pnas.2010817117
63 MJ Hosie, I Epifano, V Herder, RJ Orton, A Stevenson, N Johnson, E MacDonald, D Dunbar, M McDonald, F Howie, B Tennant, D Herrity, Silva Filipe A Da, DG; COVID-19 Genomics UK (COG-UK) consortium; Willett BJ Streicker, PR Murcia, RF Jarrett, DL Robertson, W Weir. Detection of SARS-CoV-2 in respiratory samples from cats in the UK associated with human-to-cat transmission. Vet Rec 2021; 188(8): e247
https://doi.org/10.1002/vetr.247
64 Q Zhang, H Zhang, J Gao, K Huang, Y Yang, X Hui, X He, C Li, W Gong, Y Zhang, Y Zhao, C Peng, X Gao, H Chen, Z Zou, ZL Shi, M Jin. A serological survey of SARS-CoV-2 in cat in Wuhan. Emerg Microbes Infect 2020; 9(1): 2013–2019
https://doi.org/10.1080/22221751.2020.1817796
65 SL Bartlett, DG Diel, L Wang, S Zec, M Laverack, M Martins, LC Caserta, ML Killian, K Terio, C Olmstead, MA Delaney, T Stokol, M Ivančić, M Jenkins-Moore, K Ingerman, T Teegan, C McCann, P Thomas, D McAloose, JM Sykes, PP Calle. SARS-CoV-2 infection and longitudinal fecal screening in Malayan tigers (Panthera tigris jacksoni), Amur tigers (Panthera tigris altaica), and African lions (Panthera leo krugeri) at the Bronx Zoo, New York, USA. J Zoo Wildl Med 2021; 51(4): 733–744
https://doi.org/10.1638/2020-0171
66 D McAloose, M Laverack, L Wang, ML Killian, LC Caserta, F Yuan, PK Mitchell, K Queen, MR Mauldin, BD Cronk, SL Bartlett, JM Sykes, S Zec, T Stokol, K Ingerman, MA Delaney, R Fredrickson, M Ivančić, M Jenkins-Moore, K Mozingo, K Franzen, NH Bergeson, L Goodman, H Wang, Y Fang, C Olmstead, C McCann, P Thomas, E Goodrich, F Elvinger, DC Smith, S Tong, S Slavinski, PP Calle, K Terio, MK Torchetti, DG Diel. From people to Panthera: natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo. MBio 2020; 11(5): e02220–20
https://doi.org/10.1128/mBio.02220-20
67 A Gibbons. Captive gorillas test positive for coronavirus. 2021. Available at the website of Science
68 Morais HA de, Santos AP Dos, Nascimento NC do, LB Kmetiuk, DS Barbosa, PE Brandão, AMS Guimarães, C Pettan-Brewer, AW Biondo. Natural infection by SARS-CoV-2 in companion animals: a review of case reports and current evidence of their role in the epidemiology of COVID-19. Front Vet Sci 2020; 7(823): 591216
https://doi.org/10.3389/fvets.2020.591216
69 Food Safety Authority European, Centre for Disease Prevention European, Boklund A Control;, C Gortázar, P Pasquali, H Roberts, SS Nielsen, K Stahl, A Stegeman, F Baldinelli, A Broglia, Der Stede Y Van, C Adlhoch, E Alm, A Melidou, G Mirinaviciute. Monitoring of SARS-CoV-2 infection in mustelids. EFSA J 2021; 19(3): e06459
70 BB Oude Munnink, RS Sikkema, DF Nieuwenhuijse, RJ Molenaar, E Munger, R Molenkamp, A van der Spek, P Tolsma, A Rietveld, M Brouwer, N Bouwmeester-Vincken, F Harders, R Hakze-van der Honing, MCA Wegdam-Blans, RJ Bouwstra, C GeurtsvanKessel, AA van der Eijk, FC Velkers, LAM Smit, A Stegeman, WHM van der Poel, MPG Koopmans. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021; 371(6525): 172–177
https://doi.org/10.1126/science.abe5901
71 N Oreshkova, RJ Molenaar, S Vreman, F Harders, BB Oude Munnink, RW Hakze-van der Honing, N Gerhards, P Tolsma, R Bouwstra, RS Sikkema, MG Tacken, MM de Rooij, E Weesendorp, MY Engelsma, CJ Bruschke, LA Smit, M Koopmans, WH van der Poel, A Stegeman. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill 2020; 25(23): 2001005
https://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005
72 SA Shriner, JW Ellis, JJ Root, A Roug, SR Stopak, GW Wiscomb, JR Zierenberg, HS Ip, MK Torchetti, TJ DeLiberto. SARS-CoV-2 exposure in escaped mink, Utah, USA. Emerg Infect Dis 2021; 27(3): 988–990
https://doi.org/10.3201/eid2703.204444
73 J Aguiló-Gisbert, M Padilla-Blanco, V Lizana, E Maiques, M Muñoz-Baquero, E Chillida-Martínez, J Cardells, C Rubio-Guerri. First description of SARS-CoV-2 infection in two feral American mink (Neovison vison) caught in the wild. Animals (Basel) 2021; 11(5): 1422
https://doi.org/10.3390/ani11051422
74 J Shi, Z Wen, G Zhong, H Yang, C Wang, B Huang, R Liu, X He, L Shuai, Z Sun, Y Zhao, P Liu, L Liang, P Cui, J Wang, X Zhang, Y Guan, W Tan, G Wu, H Chen, Z Bu. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 2020; 368(6494): 1016–1020
https://doi.org/10.1126/science.abb7015
75 B Rockx, T Kuiken, S Herfst, T Bestebroer, MM Lamers, BB Oude Munnink, D de Meulder, G van Amerongen, J van den Brand, NMA Okba, D Schipper, P van Run, L Leijten, R Sikkema, E Verschoor, B Verstrepen, W Bogers, J Langermans, C Drosten, M Fentener van Vlissingen, R Fouchier, R de Swart, M Koopmans, BL Haagmans. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 2020; 368(6494): 1012–1015
https://doi.org/10.1126/science.abb7314
76 S Lu, Y Zhao, W Yu, Y Yang, J Gao, J Wang, D Kuang, M Yang, J Yang, C Ma, J Xu, X Qian, H Li, S Zhao, J Li, H Wang, H Long, J Zhou, F Luo, K Ding, D Wu, Y Zhang, Y Dong, Y Liu, Y Zheng, X Lin, L Jiao, H Zheng, Q Dai, Q Sun, Y Hu, C Ke, H Liu, X Peng. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduct Target Ther 2020; 5(1): 157
https://doi.org/10.1038/s41392-020-00269-6
77 YI Kim, SG Kim, SM Kim, EH Kim, SJ Park, KM Yu, JH Chang, EJ Kim, S Lee, MAB Casel, J Um, MS Song, HW Jeong, VD Lai, Y Kim, BS Chin, JS Park, KH Chung, SS Foo, H Poo, IP Mo, OJ Lee, RJ Webby, JU Jung, YK Choi. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 2020; 27(5): 704–709.e2
https://doi.org/10.1016/j.chom.2020.03.023
78 SH Sun, Q Chen, HJ Gu, G Yang, YX Wang, XY Huang, SS Liu, NN Zhang, XF Li, R Xiong, Y Guo, YQ Deng, WJ Huang, Q Liu, QM Liu, YL Shen, Y Zhou, X Yang, TY Zhao, CF Fan, YS Zhou, CF Qin, YC Wang. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 2020; 28(1): 124–133.e4
https://doi.org/10.1016/j.chom.2020.05.020
79 RD Jiang, MQ Liu, Y Chen, C Shan, YW Zhou, XR Shen, Q Li, L Zhang, Y Zhu, HR Si, Q Wang, J Min, X Wang, W Zhang, B Li, HJ Zhang, RS Baric, P Zhou, XL Yang, ZL Shi. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 2020; 182(1): 50–58.e8
https://doi.org/10.1016/j.cell.2020.05.027
80 L Bao, W Deng, B Huang, H Gao, J Liu, L Ren, Q Wei, P Yu, Y Xu, F Qi, Y Qu, F Li, Q Lv, W Wang, J Xue, S Gong, M Liu, G Wang, S Wang, Z Song, L Zhao, P Liu, L Zhao, F Ye, H Wang, W Zhou, N Zhu, W Zhen, H Yu, X Zhang, L Guo, L Chen, C Wang, Y Wang, X Wang, Y Xiao, Q Sun, H Liu, F Zhu, C Ma, L Yan, M Yang, J Han, W Xu, W Tan, X Peng, Q Jin, G Wu, C Qin. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020; 583(7818): 830–833
https://doi.org/10.1038/s41586-020-2312-y
81 E Speranza, BN Williamson, F Feldmann, GL Sturdevant, L Pérez-Pérez, K Meade-White, BJ Smith, J Lovaglio, C Martens, VJ Munster, A Okumura, C Shaia, H Feldmann, SM Best, Wit E de. Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in lungs of African green monkeys. Sci Transl Med 2021; 13(578): eabe8146
https://doi.org/10.1126/scitranslmed.abe8146
82 A Chandrashekar, J Liu, AJ Martinot, K McMahan, NB Mercado, L Peter, LH Tostanoski, J Yu, Z Maliga, M Nekorchuk, K Busman-Sahay, M Terry, LM Wrijil, S Ducat, DR Martinez, C Atyeo, S Fischinger, JS Burke, MD Slein, L Pessaint, A Van Ry, J Greenhouse, T Taylor, K Blade, A Cook, B Finneyfrock, R Brown, E Teow, J Velasco, R Zahn, F Wegmann, P Abbink, EA Bondzie, G Dagotto, MS Gebre, X He, C Jacob-Dolan, N Kordana, Z Li, MA Lifton, SH Mahrokhian, LF Maxfield, R Nityanandam, JP Nkolola, AG Schmidt, AD Miller, RS Baric, G Alter, PK Sorger, JD Estes, H Andersen, MG Lewis, DH Barouch. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 2020; 369(6505): 812–817
https://doi.org/10.1126/science.abc4776
83 M Richard, A Kok, D de Meulder, TM Bestebroer, MM Lamers, NMA Okba, M Fentener van Vlissingen, B Rockx, BL Haagmans, MPG Koopmans, RAM Fouchier, S Herfst. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun 2020; 11(1): 3496
https://doi.org/10.1038/s41467-020-17367-2
84 VJ Munster, F Feldmann, BN Williamson, Doremalen N van, L Pérez-Pérez, J Schulz, K Meade-White, A Okumura, J Callison, B Brumbaugh, VA Avanzato, R Rosenke, PW Hanley, G Saturday, D Scott, ER Fischer, Wit E de. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 2020; 585(7824): 268–272
https://doi.org/10.1038/s41586-020-2324-7
85 H Gu, Q Chen, G Yang, L He, H Fan, YQ Deng, Y Wang, Y Teng, Z Zhao, Y Cui, Y Li, XF Li, J Li, NN Zhang, X Yang, S Chen, Y Guo, G Zhao, X Wang, DY Luo, H Wang, X Yang, Y Li, G Han, Y He, X Zhou, S Geng, X Sheng, S Jiang, S Sun, CF Qin, Y Zhou. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 2020; 369(6511): 1603–1607
https://doi.org/10.1126/science.abc4730
86 X MontagutelliM ProtL LevillayerEB SalazarG JouvionL ConquetM BerettaF DonatiM AlbertF GambaroS BehillilV EnoufD RoussetH MouquetJ JaubertF ReyS van der WerfE Simon-Loriere. Variants with the N501Y mutation extend SARS-CoV-2 host range to mice, with contact transmission. BioRxiv 2021; 2021.03.18.436013
87 H Shuai, JF Chan, TT Yuen, C Yoon, JC Hu, L Wen, B Hu, D Yang, Y Wang, Y Hou, X Huang, Y Chai, CC Chan, VK Poon, L Lu, RQ Zhang, WM Chan, JD Ip, AW Chu, YF Hu, JP Cai, KH Chan, J Zhou, S Sridhar, BZ Zhang, S Yuan, AJ Zhang, JD Huang, KK To, KY Yuen, H Chu. Emerging SARS-CoV-2 variants expand species tropism to murines. EBioMedicine 2021; 73: 103643
https://doi.org/10.1016/j.ebiom.2021.103643
88 SF Sia, LM Yan, AWH Chin, K Fung, KT Choy, AYL Wong, P Kaewpreedee, RAPM Perera, LLM Poon, JM Nicholls, M Peiris, HL Yen. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020; 583(7818): 834–838
https://doi.org/10.1038/s41586-020-2342-5
89 YJ Hou, S Chiba, P Halfmann, C Ehre, M Kuroda, KH 3rd Dinnon, SR Leist, A Schäfer, N Nakajima, K Takahashi, RE Lee, TM Mascenik, R Graham, CE Edwards, LV Tse, K Okuda, AJ Markmann, L Bartelt, Silva A de, DM Margolis, RC Boucher, SH Randell, T Suzuki, LE Gralinski, Y Kawaoka, RS Baric. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 2020; 370(6523): 1464–1468
https://doi.org/10.1126/science.abe8499
90 LH Tostanoski, F Wegmann, AJ Martinot, C Loos, K McMahan, NB Mercado, J Yu, CN Chan, S Bondoc, CE Starke, M Nekorchuk, K Busman-Sahay, C Piedra-Mora, LM Wrijil, S Ducat, J Custers, C Atyeo, S Fischinger, JS Burke, J Feldman, BM Hauser, TM Caradonna, EA Bondzie, G Dagotto, MS Gebre, C Jacob-Dolan, Z Lin, SH Mahrokhian, F Nampanya, R Nityanandam, L Pessaint, M Porto, V Ali, D Benetiene, K Tevi, H Andersen, MG Lewis, AG Schmidt, DA Lauffenburger, G Alter, JD Estes, H Schuitemaker, R Zahn, DH Barouch. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat Med 2020; 26(11): 1694–1700
https://doi.org/10.1038/s41591-020-1070-6
91 A Baum, D Ajithdoss, R Copin, A Zhou, K Lanza, N Negron, M Ni, Y Wei, K Mohammadi, B Musser, GS Atwal, A Oyejide, Y Goez-Gazi, J Dutton, E Clemmons, HM Staples, C Bartley, B Klaffke, K Alfson, M Gazi, O Gonzalez, E Jr Dick, R Jr Carrion, L Pessaint, M Porto, A Cook, R Brown, V Ali, J Greenhouse, T Taylor, H Andersen, MG Lewis, N Stahl, AJ Murphy, GD Yancopoulos, CA Kyratsous. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 2020; 370(6520): 1110–1115
https://doi.org/10.1126/science.abe2402
92 PJ Halfmann, M Hatta, S Chiba, T Maemura, S Fan, M Takeda, N Kinoshita, SI Hattori, Y Sakai-Tagawa, K Iwatsuki-Horimoto, M Imai, Y Kawaoka. Transmission of SARS-CoV-2 in domestic cats. N Engl J Med 2020; 383(6): 592–594
https://doi.org/10.1056/NEJMc2013400
93 L Wu, Q Chen, K Liu, J Wang, P Han, Y Zhang, Y Hu, Y Meng, X Pan, C Qiao, S Tian, P Du, H Song, W Shi, J Qi, HW Wang, J Yan, GF Gao, Q Wang. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discov 2020; 6(1): 68
https://doi.org/10.1038/s41421-020-00210-9
94 C Conceicao, N Thakur, S Human, JT Kelly, L Logan, D Bialy, S Bhat, P Stevenson-Leggett, AK Zagrajek, P Hollinghurst, M Varga, C Tsirigoti, M Tully, C Chiu, K Moffat, AP Silesian, JA Hammond, HJ Maier, E Bickerton, H Shelton, I Dietrich, SC Graham, D Bailey. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol 2020; 18(12): e3001016
https://doi.org/10.1371/journal.pbio.3001016
95 DL Suarez, MJ Pantin-Jackwood, DE Swayne, SA Lee, SM DeBlois, E Spackman. Lack of susceptibility to SARS-CoV-2 and MERS-CoV in poultry. Emerg Infect Dis 2020; 26(12): 3074–3076
https://doi.org/10.3201/eid2612.202989
96 X Zhao, D Chen, R Szabla, M Zheng, G Li, P Du, S Zheng, X Li, C Song, R Li, JT Guo, M Junop, H Zeng, H Lin. Broad and differential animal angiotensin-converting enzyme 2 receptor usage by SARS-CoV-2. J Virol 2020; 94(18): e00940–20
https://doi.org/10.1128/JVI.00940-20
97 L Xu, DD Yu, YH Ma, YL Yao, RH Luo, XL Feng, HR Cai, JB Han, XH Wang, MH Li, CW Ke, YT Zheng, YG Yao. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zool Res 2020; 41(5): 517–526
https://doi.org/10.24272/j.issn.2095-8137.2020.053
98 Y Zhao, J Wang, D Kuang, J Xu, M Yang, C Ma, S Zhao, J Li, H Long, K Ding, J Gao, J Liu, H Wang, H Li, Y Yang, W Yu, J Yang, Y Zheng, D Wu, S Lu, H Liu, X Peng. Susceptibility of tree shrew to SARS-CoV-2 infection. Sci Rep 2020; 10(1): 16007
https://doi.org/10.1038/s41598-020-72563-w
99 TN Starr, SK Zepeda, AC Walls, AJ Greaney, S Alkhovsky, D Veesler, JD Bloom. ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. Nature 2022; 603(7903): 913–918
https://doi.org/10.1038/s41586-022-04464-z
100 H Zhou, X Chen, T Hu, J Li, H Song, Y Liu, P Wang, D Liu, J Yang, EC Holmes, AC Hughes, Y Bi, W Shi. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol 2020; 30(11): 2196–2203
https://doi.org/10.1016/j.cub.2020.05.023
101 H Zhou, J Ji, X Chen, Y Bi, J Li, Q Wang, T Hu, H Song, R Zhao, Y Chen, M Cui, Y Zhang, AC Hughes, EC Holmes, W Shi. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 2021; 184(17): 4380–4391.e14
https://doi.org/10.1016/j.cell.2021.06.008
102 S Wacharapluesadee, CW Tan, P Maneeorn, P Duengkae, F Zhu, Y Joyjinda, T Kaewpom, WN Chia, W Ampoot, BL Lim, K Worachotsueptrakun, VC Chen, N Sirichan, C Ruchisrisarod, A Rodpan, K Noradechanon, T Phaichana, N Jantarat, B Thongnumchaima, C Tu, G Crameri, MM Stokes, T Hemachudha, LF Wang. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat Commun 2021; 12(1): 972
https://doi.org/10.1038/s41467-021-21240-1
103 H Guo, B Hu, HR Si, Y Zhu, W Zhang, B Li, A Li, R Geng, HF Lin, XL Yang, P Zhou, ZL Shi. Identification of a novel lineage bat SARS-related coronaviruses that use bat ACE2 receptor. Emerg Microbes Infect 2021; 10(1): 1507–1514
https://doi.org/10.1080/22221751.2021.1956373
104 D Delaune, V Hul, EA Karlsson, A Hassanin, TP Ou, A Baidaliuk, F Gámbaro, M Prot, VT Tu, S Chea, L Keatts, J Mazet, CK Johnson, P Buchy, P Dussart, T Goldstein, E Simon-Lorière, V Duong. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat Commun 2021; 12(1): 6563
https://doi.org/10.1038/s41467-021-26809-4
105 X Ou, G Xu, P Li, Y Liu, F Zan, P Liu, J Hu, X Lu, S Dong, Y Zhou, Z Mu, Z Wu, J Wang, Q Jin, P Liu, J Lu, X Wang, Z Qian. Host susceptibility and structural and immunological insight of S proteins of two SARS-CoV-2 closely related bat coronaviruses. Cell Discov 2023; 9(1): 78
https://doi.org/10.1038/s41421-023-00581-9
106 S Deng, K Xing, X He. Mutation signatures inform the natural host of SARS-CoV-2. Natl Sci Rev 2022; 9(2): nwab220
https://doi.org/10.1093/nsr/nwab220
107 K Xiao, J Zhai, Y Feng, N Zhou, X Zhang, JJ Zou, N Li, Y Guo, X Li, X Shen, Z Zhang, F Shu, W Huang, Y Li, Z Zhang, RA Chen, YJ Wu, SM Peng, M Huang, WJ Xie, QH Cai, FH Hou, W Chen, L Xiao, Y Shen. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 2020; 583(7815): 286–289
https://doi.org/10.1038/s41586-020-2313-x
108 P Liu, JZ Jiang, XF Wan, Y Hua, L Li, J Zhou, X Wang, F Hou, J Chen, J Zou, J Chen. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?. PLoS Pathog 2020; 16(5): e1008421
https://doi.org/10.1371/journal.ppat.1008421
109 WT He, X Hou, J Zhao, J Sun, H He, W Si, J Wang, Z Jiang, Z Yan, G Xing, M Lu, MA Suchard, X Ji, W Gong, B He, J Li, P Lemey, D Guo, C Tu, EC Holmes, M Shi, S Su. Total virome characterizations of game animals in China reveals a spectrum of emerging viral pathogens. Cell 2022; 185(7): 1117–1129.e8
https://doi.org/10.1016/j.cell.2022.02.014
110 M Letko, A Marzi, V Munster. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562–569
https://doi.org/10.1038/s41564-020-0688-y
111 TN Starr, AJ Greaney, SK Hilton, D Ellis, KHD Crawford, AS Dingens, MJ Navarro, JE Bowen, MA Tortorici, AC Walls, NP King, D Veesler, JD Bloom. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 2020; 182(5): 1295–1310.e20
https://doi.org/10.1016/j.cell.2020.08.012
112 S Niu, J Wang, B Bai, L Wu, A Zheng, Q Chen, P Du, P Han, Y Zhang, Y Jia, C Qiao, J Qi, WX Tian, HW Wang, Q Wang, GF Gao. Molecular basis of cross-species ACE2 interactions with SARS-CoV-2-like viruses of pangolin origin. EMBO J 2021; 40(16): e107786
https://doi.org/10.15252/embj.2021107786
113 K Liu, X Pan, L Li, F Yu, A Zheng, P Du, P Han, Y Meng, Y Zhang, L Wu, Q Chen, C Song, Y Jia, S Niu, D Lu, C Qiao, Z Chen, D Ma, X Ma, S Tan, X Zhao, J Qi, GF Gao, Q Wang. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 2021; 184(13): 3438–3451.e10
https://doi.org/10.1016/j.cell.2021.05.031
114 H Mou, BD Quinlan, H Peng, G Liu, Y Guo, S Peng, L Zhang, ME Davis-Gardner, MR Gardner, G Crynen, LB DeVaux, ZX Voo, CC Bailey, MD Alpert, C Rader, MU Gack, H Choe, M Farzan. Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathog 2021; 17(4): e1009501
https://doi.org/10.1371/journal.ppat.1009501
115 MQ Liu, HF Lin, J Li, Y Chen, Y Luo, W Zhang, B Hu, FJ Tian, YJ Hu, YJ Liu, RD Jiang, QC Gong, A Li, ZS Guo, B Li, XL Yang, YG Tong, ZLA Shi. A SARS-CoV-2-related virus from Malayan pangolin causes lung infection without severe disease in human ACE2-transgenic mice. J Virol 2023; 97(2): e0171922
https://doi.org/10.1128/jvi.01719-22
116 CM Luo, N Wang, XL Yang, HZ Liu, W Zhang, B Li, B Hu, C Peng, QB Geng, GJ Zhu, F Li, ZL Shi. Discovery of novel bat coronaviruses in South China that use the same receptor as middle east respiratory syndrome coronavirus. J Virol 2018; 92(13): e00116–18
https://doi.org/10.1128/JVI.00116-18
117 J Chen, X Yang, H Si, Q Gong, T Que, J Li, Y Li, C Wu, W Zhang, Y Chen, Y Luo, Y Zhu, B Li, D Luo, B Hu, H Lin, R Jiang, T Jiang, Q Li, M Liu, S Xie, J Su, X Zheng, A Li, Y Yao, Y Yang, P Chen, A Wu, M He, X Lin, Y Tong, Y Hu, ZL Shi, P Zhou. A bat MERS-like coronavirus circulates in pangolins and utilizes human DPP4 and host proteases for cell entry. Cell 2023; 186(4): 850–863.e16
https://doi.org/10.1016/j.cell.2023.01.019
118 LM Jeworowski, B Mühlemann, F Walper, ML Schmidt, J Jansen, A Krumbholz, E Simon-Lorière, TC Jones, VM Corman, C Drosten. Humoral immune escape by current SARS-CoV-2 variants BA.2.86 and JN.1, December 2023. Euro Surveill 2024; 29(2): 2300740
https://doi.org/10.2807/1560-7917.ES.2024.29.2.2300740
119 R Rubin. As COVID-19 cases surge, here’s what to know about JN.1, the latest SARS-CoV-2 “Variant of Interest”. JAMA 2024; 331(5): 382–383
https://doi.org/10.1001/jama.2023.27841
120 PV Markov, M Ghafari, M Beer, K Lythgoe, P Simmonds, NI Stilianakis, A Katzourakis. The evolution of SARS-CoV-2. Nat Rev Microbiol 2023; 21(6): 361–379
https://doi.org/10.1038/s41579-023-00878-2
121 AM Carabelli, TP Peacock, LG Thorne, WT Harvey, J; COVID-19 Genomics UK Consortium; Peacock SJ Hughes, WS Barclay, Silva TI de, GJ Towers, DL Robertson. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 2023; 21(3): 162–177
https://doi.org/10.1038/s41579-022-00841-7
122 MN Wang, W Zhang, YT Gao, B Hu, XY Ge, XL Yang, YZ Zhang, ZL Shi. Longitudinal surveillance of SARS-like coronaviruses in bats by quantitative real-time PCR. Virol Sin 2016; 31(1): 78–80
https://doi.org/10.1007/s12250-015-3703-3
123 W Zhang, RH Du, B Li, XS Zheng, XL Yang, B Hu, YY Wang, GF Xiao, B Yan, ZL Shi, P Zhou. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 2020; 9(1): 386–389
https://doi.org/10.1080/22221751.2020.1729071
124 A Nathan, EJ Rossin, C Kaseke, RJ Park, A Khatri, D Koundakjian, JM Urbach, NK Singh, A Bashirova, R Tano-Menka, F Senjobe, MT Waring, A Piechocka-Trocha, WF Garcia-Beltran, AJ Iafrate, V Naranbhai, M Carrington, BD Walker, GD Gaiha. Structure-guided T cell vaccine design for SARS-CoV-2 variants and sarbecoviruses. Cell 2021; 184(17): 4401–4413.e10
https://doi.org/10.1016/j.cell.2021.06.029
125 DR Martinez, A Schäfer, SR Leist, la Cruz G De, A West, EN Atochina-Vasserman, LC Lindesmith, N Pardi, R Parks, M Barr, D Li, B Yount, KO Saunders, D Weissman, BF Haynes, SA Montgomery, RS Baric. Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science 2021; 373(6558): 991–998
https://doi.org/10.1126/science.abi4506
126 C Ma, S Su, J Wang, L Wei, L Du, S Jiang. From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development. Microbes Infect 2020; 22(6–7): 245–253
https://doi.org/10.1016/j.micinf.2020.05.004
127 Z Liu, W Xu, Z Chen, W Fu, W Zhan, Y Gao, J Zhou, Y Zhou, J Wu, Q Wang, X Zhang, A Hao, W Wu, Q Zhang, Y Li, K Fan, R Chen, Q Jiang, CT Mayer, T Schoofs, Y Xie, S Jiang, Y Wen, Z Yuan, K Wang, L Lu, L Sun, Q Wang. An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein Cell 2022; 13(9): 655–675
https://doi.org/10.1007/s13238-021-00871-6
128 AZ Wec, D Wrapp, AS Herbert, DP Maurer, D Haslwanter, M Sakharkar, RK Jangra, ME Dieterle, A Lilov, D Huang, LV Tse, NV Johnson, CL Hsieh, N Wang, JH Nett, E Champney, I Burnina, M Brown, S Lin, M Sinclair, C Johnson, S Pudi, R 3rd Bortz, AS Wirchnianski, E Laudermilch, C Florez, JM Fels, CM O’Brien, BS Graham, D Nemazee, DR Burton, RS Baric, JE Voss, K Chandran, JM Dye, JS McLellan, LM Walker. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science 2020; 369(6504): 731–736
https://doi.org/10.1126/science.abc7424
129 CG Rappazzo, LV Tse, CI Kaku, D Wrapp, M Sakharkar, D Huang, LM Deveau, TJ Yockachonis, AS Herbert, MB Battles, CM O’Brien, ME Brown, JC Geoghegan, J Belk, L Peng, L Yang, Y Hou, TD Scobey, DR Burton, D Nemazee, JM Dye, JE Voss, BM Gunn, JS McLellan, RS Baric, LE Gralinski, LM Walker. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 2021; 371(6531): 823–829
https://doi.org/10.1126/science.abf4830
130 MA Tortorici, N Czudnochowski, TN Starr, R Marzi, AC Walls, F Zatta, JE Bowen, S Jaconi, Iulio J Di, Z Wang, Marco A De, SK Zepeda, D Pinto, Z Liu, M Beltramello, I Bartha, MP Housley, FA Lempp, LE Rosen, E Jr Dellota, H Kaiser, M Montiel-Ruiz, J Zhou, A Addetia, B Guarino, K Culap, N Sprugasci, C Saliba, E Vetti, I Giacchetto-Sasselli, CS Fregni, R Abdelnabi, SC Foo, C Havenar-Daughton, MA Schmid, F Benigni, E Cameroni, J Neyts, A Telenti, HW Virgin, SPJ Whelan, G Snell, JD Bloom, D Corti, D Veesler, MS Pizzuto. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 2021; 597(7874): 103–108
https://doi.org/10.1038/s41586-021-03817-4
131 AC Walls, MC Miranda, A Schäfer, MN Pham, A Greaney, PS Arunachalam, MJ Navarro, MA Tortorici, K Rogers, MA O’Connor, L Shirreff, DE Ferrell, J Bowen, N Brunette, E Kepl, SK Zepeda, T Starr, CL Hsieh, B Fiala, S Wrenn, D Pettie, C Sydeman, KR Sprouse, M Johnson, A Blackstone, R Ravichandran, C Ogohara, L Carter, SW Tilles, R Rappuoli, SR Leist, DR Martinez, M Clark, R Tisch, DT O’Hagan, Der Most R Van, Voorhis WC Van, D Corti, JS McLellan, H Kleanthous, TP Sheahan, KD Smith, DH Fuller, F Villinger, J Bloom, B Pulendran, RS Baric, NP King, D Veesler. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell 2021; 184(21): 5432–5447.e16
https://doi.org/10.1016/j.cell.2021.09.015
132 CW Tan, WN Chia, BE Young, F Zhu, BL Lim, WR Sia, TL Thein, MI Chen, YS Leo, DC Lye, LF Wang. Pan-sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors. N Engl J Med 2021; 385(15): 1401–1406
https://doi.org/10.1056/NEJMoa2108453
133 L Lu, S Su, H Yang, S Jiang. Antivirals with common targets against highly pathogenic viruses. Cell 2021; 184(6): 1604–1620
https://doi.org/10.1016/j.cell.2021.02.013
134 X Li, L Zhang, S Chen, H Ouyang, L Ren. Possible targets of pan-coronavirus antiviral strategies for emerging or re-emerging coronaviruses. Microorganisms 2021; 9(7): 1479
https://doi.org/10.3390/microorganisms9071479
135 J Couzin-Frankel. Antiviral pills could change pandemic’s course. Science 2021; 374(6569): 799–800
https://doi.org/10.1126/science.acx9605
136 B Malone, EA Campbell. Molnupiravir: coding for catastrophe. Nat Struct Mol Biol 2021; 28(9): 706–708
https://doi.org/10.1038/s41594-021-00657-8
137 E Mahase. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ 2021; 375(2713): n2713
https://doi.org/10.1136/bmj.n2713
138 B Cao, Y Wang, H Lu, C Huang, Y Yang, L Shang, Z Chen, R Jiang, Y Liu, L Lin, P Peng, F Wang, F Gong, H Hu, C Cheng, X Yao, X Ye, H Zhou, Y Shen, C Liu, C Wang, Z Yi, B Hu, J Xu, X Gu, J Shen, Y Xu, L Zhang, J Fan, R Tang, C Wang. Oral simnotrelvir for adult patients with mild-to-moderate Covid-19. N Engl J Med 2024; 390(3): 230–241
https://doi.org/10.1056/NEJMoa2301425
139 X Wang, S Xia, Y Zhu, L Lu, S Jiang. Pan-coronavirus fusion inhibitors as the hope for today and tomorrow. Protein Cell 2021; 12(2): 84–88
https://doi.org/10.1007/s13238-020-00806-7
140 S Xia, M Liu, C Wang, W Xu, Q Lan, S Feng, F Qi, L Bao, L Du, S Liu, C Qin, F Sun, Z Shi, Y Zhu, S Jiang, L Lu. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30(4): 343–355
https://doi.org/10.1038/s41422-020-0305-x
141 J Lu. One Health: an effective strategy to tackle new challenges in human health. One Health Bull 2021; 1(1): 2
https://doi.org/10.4103/2773-0344.329023
[1] Xiaoming Yang. Passive antibody therapy in emerging infectious diseases[J]. Front. Med., 2023, 17(6): 1117-1134.
[2] Yuntao Zhang, Yuxiu Zhao, Hongyang Liang, Ying Xu, Chuge Zhou, Yuzhu Yao, Hui Wang, Xiaoming Yang. Innovation-driven trend shaping COVID-19 vaccine development in China[J]. Front. Med., 2023, 17(6): 1096-1116.
[3] Tiantian Li, Dongsheng Wang, Haiming Wei, Xiaoling Xu. Cytokine storm and translating IL-6 biology into effective treatments for COVID-19[J]. Front. Med., 2023, 17(6): 1080-1095.
[4] Qiuyu Cao, Yi Ding, Yu Xu, Mian Li, Ruizhi Zheng, Zhujun Cao, Weiqing Wang, Yufang Bi, Guang Ning, Yiping Xu, Ren Zhao. Small-molecule anti-COVID-19 drugs and a focus on China’s homegrown mindeudesivir (VV116)[J]. Front. Med., 2023, 17(6): 1068-1079.
[5] Lu Liu, Chenxia Zhou, Huimin Jiang, Huimin Wei, Yifan Zhou, Chen Zhou, Xunming Ji. Epidemiology, pathogenesis, and management of coronavirus disease 2019-associated stroke[J]. Front. Med., 2023, 17(6): 1047-1067.
[6] Dong Wei, Yusang Xie, Xuefei Liu, Rong Chen, Min Zhou, Xinxin Zhang, Jieming Qu. Pathogen evolution, prevention/control strategy and clinical features of COVID-19: experiences from China[J]. Front. Med., 2023, 17(6): 1030-1046.
[7] Linhua Zhao, Chuanxi Tian, Yingying Yang, Huifang Guan, Yu Wei, Yuxin Zhang, Xiaomin Kang, Ling Zhou, Qingwei Li, Jing Ma, Li Wan, Yujiao Zheng, Xiaolin Tong. Practice and principle of traditional Chinese medicine for the prevention and treatment of COVID-19[J]. Front. Med., 2023, 17(6): 1014-1029.
[8] Kanchana Ngaosuwan, Kamonwan Soonklang, Chawin Warakul, Chirayu Auewarakul, Nithi Mahanonda. Protection of inactivated vaccine against SARS-CoV-2 infections in patients with comorbidities: a prospective cohort study[J]. Front. Med., 2023, 17(5): 867-877.
[9] Gang Lu, Yun Ling, Minghao Jiang, Yun Tan, Dong Wei, Lu Jiang, Shuting Yu, Fangying Jiang, Shuai Wang, Yao Dai, Jinzeng Wang, Geng Wu, Xinxin Zhang, Guoyu Meng, Shengyue Wang, Feng Liu, Xiaohong Fan, Saijuan Chen. Primary assessment of the diversity of Omicron sublineages and the epidemiologic features of autumn/winter 2022 COVID-19 wave in Chinese mainland[J]. Front. Med., 2023, 17(4): 758-767.
[10] Hao Wang, Yu Yuan, Bihao Wu, Mingzhong Xiao, Zhen Wang, Tingyue Diao, Rui Zeng, Li Chen, Yanshou Lei, Pinpin Long, Yi Guo, Xuefeng Lai, Yuying Wen, Wenhui Li, Hao Cai, Lulu Song, Wei Ni, Youyun Zhao, Kani Ouyang, Jingzhi Wang, Qi Wang, Li Liu, Chaolong Wang, An Pan, Xiaodong Li, Rui Gong, Tangchun Wu. Neutralization against SARS-CoV-2 Delta/Omicron variants and B cell response after inactivated vaccination among COVID-19 convalescents[J]. Front. Med., 2023, 17(4): 747-757.
[11] Ziyu Fu, Dongguo Liang, Wei Zhang, Dongling Shi, Yuhua Ma, Dong Wei, Junxiang Xi, Sizhe Yang, Xiaoguang Xu, Di Tian, Zhaoqing Zhu, Mingquan Guo, Lu Jiang, Shuting Yu, Shuai Wang, Fangyin Jiang, Yun Ling, Shengyue Wang, Saijuan Chen, Feng Liu, Yun Tan, Xiaohong Fan. Host protection against Omicron BA.2.2 sublineages by prior vaccination in spring 2022 COVID-19 outbreak in Shanghai[J]. Front. Med., 2023, 17(3): 562-575.
[12] Chuansong Quan, Zhenjie Zhang, Guoyong Ding, Fengwei Sun, Hengxia Zhao, Qinghua Liu, Chuanmin Ma, Jing Wang, Liang Wang, Wenbo Zhao, Jinjie He, Yu Wang, Qian He, Michael J. Carr, Dayan Wang, Qiang Xiao, Weifeng Shi. Seroprevalence of influenza viruses in Shandong, Northern China during the COVID-19 pandemic[J]. Front. Med., 2022, 16(6): 984-990.
[13] Suning Chen, Weili Zhao, Jianyong Li, Depei Wu, on behalf of Lymphoid Disease Group, Chinese Society of Hematology, Chinese Medical Association. Chinese expert consensus on oral drugs for the treatment of mature B-cell lymphomas (2020 edition)[J]. Front. Med., 2022, 16(5): 815-826.
[14] Xiaoguang Xu, Wei Zhang, Mingquan Guo, Chenlu Xiao, Ziyu Fu, Shuting Yu, Lu Jiang, Shengyue Wang, Yun Ling, Feng Liu, Yun Tan, Saijuan Chen. Integrated analysis of gut microbiome and host immune responses in COVID-19[J]. Front. Med., 2022, 16(2): 263-275.
[15] Yi Zhang, Haocheng Zhang, Wenhong Zhang. SARS-CoV-2 variants, immune escape, and countermeasures[J]. Front. Med., 2022, 16(2): 196-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed