Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2018, Vol. 13 Issue (1) : 74-84    https://doi.org/10.1007/s11465-018-0490-1
RESEARCH ARTICLE
Three-dimensional numerical simulation for plastic injection-compression molding
Yun ZHANG1(), Wenjie YU1, Junjie LIANG1, Jianlin LANG2, Dequn LI1
1. State Key Laboratory of Material Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. Beijing Institute of Aeronautical Materials, Beijing 100095, China
 Download: PDF(452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian-Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

Keywords injection-compression molding      simulation      injection molding      melt flow      cavity pressure     
Corresponding Author(s): Yun ZHANG   
Just Accepted Date: 15 November 2017   Online First Date: 29 December 2017    Issue Date: 23 January 2018
 Cite this article:   
Yun ZHANG,Wenjie YU,Junjie LIANG, et al. Three-dimensional numerical simulation for plastic injection-compression molding[J]. Front. Mech. Eng., 2018, 13(1): 74-84.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-018-0490-1
https://academic.hep.com.cn/fme/EN/Y2018/V13/I1/74
Fig.1  General description of a mold cavity for injection-compression molding
Fig.2  General polyhedral control volume and the notation used
Fig.3  Molded part. (a) Part dimensions (unit: mm); (b) 3D mesh
Parameter Value Parameter Value
τ/Pa 720887 Cp/(J·kg-1·K-1) 1880
n˜ 0.17 k/(W·m-1·K-1) 0.24
A 1 38.724 b1/(m3·kg–1) 8.65e–4 (melt), 8.61e–4 (solid)
A˜2/K 51.6 b2/(m3·kg–1·K-1) 4.83e–7 (melt), 5.85e–8 (solid)
D1/(Pa·S) 5.95e15 b3/Pa 1.74e+8 (melt), 3.43e+8 (solid)
D2/K 417.15 b4/K-1 4.39e–3 (melt), 2.27e–3 (solid)
D3/(K·Pa-1) 0 b5/K 415.98 (melt, solid)
ρ/(kg·m-3) 1034.7
Tab.1  Material parameters of PC Subic OQ2720
Molding method Screw stroke/mm Process condition
Injection molding 103 Injection with 10 mm/s
95 Injection with 20 mm/s
85 Injection with 30 mm/s
15 Holding for 5 s with 40 MPa
Injection-compression molding 103 Injection with 10 mm/s
95 Injection with 20 mm/s
85 Injection with 30 mm/s
40 Compression 3 mm with 1 mm/s
15 Holding for 5 s with 40 MPa
Tab.2  Process conditions for the injection molding and injection-compression molding
Fig.4  Pressures and temperatures along the flow path. (a) Pressures simulated by the presented method; (b) pressures simulated by the Moldflow; (c) pressures by the experiment; (d) temperatures by the experiment
Fig.5  Flow fronts of injection molding at (a) 1.29 s, (b) 2 s, (c) 3.14 s, and (d) 3.18 s
Fig.6  Flow fronts of injection-compression molding at (a) 1.43 s, (b) 2.8 s, (c) 3.63 s, and (d) 3.67 s
Fig.7  Short shot products of injection-compression molding at (a) 0.55 s, (b) 0.8 s, (c) 1.13 s, (d) 2.65 s, (e) 3.13 s, (f) 3.48 s, and (g) 3.82 s
Fig.8  Melt velocities of injection molding at (a) 1.29 s, (b) 2 s, (c) 3.14 s, (d) 3.18 s, (e) 5.7 s, and (f) 8.14 s
Fig.9  Melt velocities of injection-compression molding at (a) 1.43 s, (b) 2.8 s, (c) 3.63 s, (d) 3.67 s, (e) 5.8 s, and (f) 8.63 s
Fig.10  Pressure distributions of injection molding at (a) 3.14 s, (b) 3.18 s, and (c) 8.14 s
Fig.11  Pressure distributions of injection-compression molding at (a) 2.8 s, (b) 3.67 s, (c) 5.8 s, and (d) 8.63 s
Fig.12  Pressure curves of three points along the flow path in injection-compression molding
1 Kuo H C, Jeng  M C. The influence of injection molding and injection compression molding on ultra-high molecular weight polyethylene polymer microfabrication. International Polymer Processing, 2011, 26(5): 508–516
https://doi.org/10.3139/217.2466
2 Huang M S, Chung  C F. Injection molding and injection compression molding of thin-walled light-guided plates with V-grooved microfeatures. Journal of Applied Polymer Science, 2011, 121(2): 1151–1159
https://doi.org/10.1002/app.33603
3 Guan W S, Huang  H X. Back melt flow in injection-compression molding: Effect on part thickness distribution. International Communications in Heat and Mass Transfer, 2012, 39(6): 792–797
https://doi.org/10.1016/j.icheatmasstransfer.2012.04.012
4 Young W B. On the residual stress and shrinkage in injection compression molding. International Polymer Processing, 2003, 18(3): 313–320
https://doi.org/10.3139/217.1754
5 Huang H, Li  K, Li S. Injection-compression molded part shrinkage uniformity comparison between semicrystalline and amorphous plastics. Polymer-Plastics Technology and Engineering, 2008, 48(1): 64–68 
https://doi.org/10.1080/03602550802539742
6 Lee H S, Yoo  Y G. Effects of processing conditions on cavity pressure during injection-compression molding. International Journal of Precision Engineering and Manufacturing, 2012, 13(12): 2155–2161
https://doi.org/10.1007/s12541-012-0286-x
7 Silva C A, Viana  J C, van Hattum  F W J, et al.Fiber orientation in divergent/convergent flows in expansion and compression injection molding. Polymer Composites, 2006, 27(5): 539–551
https://doi.org/10.1002/pc.20152
8 Kim N H, Isayev  A I. Birefringence in injection-compression molding of amorphous polymers: Simulation and experiment. Polymer Engineering and Science, 2013, 53(8): 1786–1808
https://doi.org/10.1002/pen.23429
9 Wang C, Wang  P. Analysis of optical properties in injection-molded and compression-molded optical lenses. Applied Optics, 2014, 53(11): 2523–2531
https://doi.org/10.1364/AO.53.002523
10 Xie M, Chen  J, Li H. Morphology and mechanical properties of injection-molded ultrahigh molecular weight polyethylene/polypropylene blends and comparison with compression molding. Journal of Applied Polymer Science, 2009, 111(2): 890–898
11 Chen S, Chen  Y, Peng H. Simulation of injection-compression-molding process. II. Influence of process characteristics on part shrinkage. Journal of Applied Polymer Science, 2000, 75(13): 1640–1654
https://doi.org/10.1002/(SICI)1097-4628(20000328)75:13<1640::AID-APP10>3.0.CO;2-L
12 Ho J Y, Park  J M, Kang  T G, et al.Three-dimensional numerical analysis of injection-compression molding process. Polymer Engineering and Science, 2012, 52(4): 901–911
https://doi.org/10.1002/pen.22157
13 Li Y, Zhang  Y, Li D. Shrinkage analysis of injection-compression molding for transparent plastic panel by 3D simulation. Applied Mechanics and Materials, 2011, 44–47: 1029–1033
14 Cao W, Min  Z Y, Zhang  S X, et al.Numerical simulation for flow-induced stress in injection/compression molding. Polymer Engineering and Science, 2016, 56(3): 287–298
https://doi.org/10.1002/pen.24254
15 Cao W, Hua  S Z, Zhang  S X, et al.Three-dimensional viscoelastic simulation for injection/compression molding based on arbitrary Lagrangian Eulerian description. Journal of Computational and Nonlinear Dynamics, 2016, 11(5): 051004
https://doi.org/10.1115/1.4032384
16 Tryggvason G, Bunner  B, Esmaeeli A, et al.A front-tracking method for the computations of multiphase flow. Journal of Computational Physics, 2001, 169(2): 708–759
https://doi.org/10.1006/jcph.2001.6726
17 Gueyffier D, Li  J, Nadim A, et al.Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 1999, 152(2): 423–456
https://doi.org/10.1006/jcph.1998.6168
18 Young W B. Filling and postfilling analysis of injection/compression molding. International Polymer Processing, 2000, 15(4): 416–422
https://doi.org/10.3139/217.1618
19 Araújo B J,  Teixeira J C F,  Cunha A M, et al.Parallel three-dimensional simulation of the injection molding process. International Journal for Numerical Methods in Fluids, 2009, 59(7): 801–815
https://doi.org/10.1002/fld.1852
20 Muzaferija S, Gosman  D. Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology. Journal of Computational Physics, 1997, 138(2): 766–787
https://doi.org/10.1006/jcph.1997.5853
21 Ubbink O, Issa  R. A method for capturing sharp fluid interfaces on arbitrary meshes. Journal of Computational Physics, 1999, 153(1): 26–50
https://doi.org/10.1006/jcph.1999.6276
22 Patankar S. Numerical Heat Transfer and Fluid Flow. Columbus: McGraw Hill, 1980, 126–130
23 Agassant J F, Mackley  M R. A personal perspective on the use of modelling simulation for polymer melt processing. International Polymer Processing, 2015, 30(1): 121–140
https://doi.org/10.3139/217.3020
[1] Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires[J]. Front. Mech. Eng., 2020, 15(4): 547-557.
[2] Sheng WANG, Jun WANG, Yingjie XU, Weihong ZHANG, Jihong ZHU. Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing[J]. Front. Mech. Eng., 2020, 15(2): 319-327.
[3] Wei LIU, Hongzhong QI, Xintian LIU, Yansong WANG. Evaluation of regenerative braking based on single-pedal control for electric vehicles[J]. Front. Mech. Eng., 2020, 15(1): 166-179.
[4] Elijah Kwabena ANTWI, Kui LIU, Hao WANG. A review on ductile mode cutting of brittle materials[J]. Front. Mech. Eng., 2018, 13(2): 251-263.
[5] Thomas ELLINGHAM, Hrishikesh KHARBAS, Mihai MANITIU, Guenter SCHOLZ, Lih-Sheng TURNG. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties[J]. Front. Mech. Eng., 2018, 13(1): 96-106.
[6] Huang GAO, Yun ZHANG, Xundao ZHOU, Dequn LI. Intelligent methods for the process parameter determination of plastic injection molding[J]. Front. Mech. Eng., 2018, 13(1): 85-95.
[7] Hui LI, Likai LI, Neil J. NAPLES, Jeffrey W. ROBLEE, Allen Y. YI. Micro-optical fabrication by ultraprecision diamond machining and precision molding[J]. Front. Mech. Eng., 2017, 12(2): 181-192.
[8] Xiaoguang GUO,Qiang LI,Tao LIU,Renke KANG,Zhuji JIN,Dongming GUO. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials[J]. Front. Mech. Eng., 2017, 12(1): 89-98.
[9] Shaohui YIN,Hongpeng JIA,Guanhua ZHANG,Fengjun CHEN,Kejun ZHU. Review of small aspheric glass lens molding technologies[J]. Front. Mech. Eng., 2017, 12(1): 66-76.
[10] Yang LI,Yunxin WU,Hai GONG,Xiaolei FENG. Air bearing center cross gap of neutron stress spectrometer sample table support system[J]. Front. Mech. Eng., 2016, 11(4): 403-411.
[11] Huaxin LIU,Marco CECCARELLI,Qiang HUANG. Design and simulation of a cable-pulley-based transmission for artificial ankle joints[J]. Front. Mech. Eng., 2016, 11(2): 170-183.
[12] Mingfeng WANG,Marco CECCARELLI,Giuseppe CARBONE. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation[J]. Front. Mech. Eng., 2016, 11(2): 144-158.
[13] Jonnathan D. SANTOS,Jorge I. FAJARDO,Alvaro R. CUJI,Jaime A. GARCÍA,Luis E. GARZÓN,Luis M. LÓPEZ. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite short natural fibers reinforced injection molded[J]. Front. Mech. Eng., 2015, 10(3): 287-293.
[14] Pankaj SHARMA,Ajai JAIN. Analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times[J]. Front. Mech. Eng., 2014, 9(4): 380-389.
[15] Jie OUYANG, Bin LI, Shihua GONG. Dymola-based multi-parameters integrated optimization for high speed transfer system of LED chip sorter[J]. Front Mech Eng, 2013, 8(2): 118-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed