Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    0, Vol. Issue () : 264-269    https://doi.org/10.1007/s12200-011-0218-x
RESEARCH ARTICLE
High-speed, compact silicon and hybrid plasmonic waveguides for signal processing
Yikai SU(), Gan ZHOU, Fei LI, Tao WANG
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(328 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

All-optical circuits for signal processing could be a promising solution to overcome the speed bottleneck of electronics. For the photonics industry, silicon becomes a competitive material of choice in the field of integrated optics for designing and implementing high-speed and compact photonic devices. To further increase the integration density, it is a critical challenge to manipulate light on scales much smaller than the wavelength for the dielectric waveguides due to the diffraction limitation. Surface plasmon-polaritons (SPPs), which break the diffraction limitation, are receiving increasing attentions in recent years. This paper compares the advantages and disadvantages between electronic devices and optical devices taking differentiator as an example, and proposes an optical parametric amplifier (OPA) using silicon-based hybrid plasmonic waveguide.

Keywords silicon based      surface plasmons      microring resonator      differentiator      optical parametric amplifier (OPA)     
Corresponding Author(s): SU Yikai,Email:yikaisu@sjtu.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Yikai SU,Gan ZHOU,Fei LI, et al. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing[J]. Front Optoelec Chin, 0, (): 264-269.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0218-x
https://academic.hep.com.cn/foe/EN/Y0/V/I/264
Fig.1  Two schemes to realize optical and electronic differentiators. (a) Optical differentiator using a single silicon ring resonator; (b) realization of electronic differentiator using digital signal processing
electronic processingoptical processing in silicon photonics
complexity (number of units)highlow
line width10’s nm>100 nm
powermW-WmW-W
speedGb/sGb/s-Tb/s
Tab.1  Comparison of electronic devices and optical devices
Fig.2  80-Gb/s optical differentiator. (a,b) SEM pictures of fabrication silicon microring resonator with radius of 20 μm; (c) measured transmission spectrum of ring resonator; (d) vertical coupling setup for fiber to silicon waveguide light coupling; (e) experimental setup for 80-Gb/s signal differentiator. Inset (i) inputted 10-GHz optical ps-signal; inset (ii) generated 80-GHz OTDM signal before differentiation; inset (iii) red solid curve: the measured differential results of the 80-GHz OTDM signal; blue dotted curve: simulated curve after an ideal differentiator of 80-GHz OTDM signal
Fig.3  Integrated analog all-optical computing scheme for real-time solving of first-order linear ODE using silicon ring resonator based ultra-fast optical differentiator
Fig.4  (a) Schematic of SHP waveguide; (b) || profiles of SHO waveguide in - plane, with = 200 nm, = 300 nm, = 5 nm, = 50 nm, = 100 nm, = 200 nm; (c) calculated GVD denoted by versus wavelength; (d) simulated curves of signal net power gain for SHP waveguide with 1-W peak pump power at 1550 nm and waveguide length of 50 μm; (e) simulated curves of signal net power gain for pump power varying from 0.1 to 1 W, with waveguide width of 200 nm and length of 50 μm; (f) simulated curves of signal net power gain for waveguide length varying from 20 to 300 μm, with pump power of 1 W and waveguide width of 200 nm
1 Koehl S. Silicon photonics could revolutionize future servers and networks. Converge! Network Digest , 2005, http://www.convergedigest.com/blueprints/ttp03/bp1.asp?ID=242&ctgy=Market
2 Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526
3 Reed G T. Device physics: the optical age of silicon. Nature , 2004, 427(6975): 595–596
4 Liu F F, Li Q, Zhang Z Y, Qiu M, Su Y K. Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect. IEEE Journal on Selected Topics in Quantum Electronics , 2008, 14(3): 706–712
doi: 10.1109/JSTQE.2008.916240
5 Liu F F, Li Q, Zhang Z Y, Qiu M, Su Y K. Ultra-compact mode-split silicon microring resonator for format conversion from NRZ to FSK. Proceedings of SPIE, 2008, 7135: 713537
6 Li Q, Ye T, Lu Y Y, Zhang Z Y, Qiu M, Su Y K. All optical NRZ-to-AMI conversion using linear filtering effect of silicon microring resonator. Chinese Optics Letters , 2009, 7(1): 12–14
7 Liu F F, Wang T, Zhang Z Y, Qiu M, Su Y K. On-chip photonic generation of ultra-wideband monocycle pulses. Electronics Letters , 2009, 45(24): 1247–1249
doi: 10.1049/el.2009.1529
8 Liu F F, Wang T, Qiang L, Ye T, Zhang Z Y, Qiu M, Su Y K. Compact optical temporal differentiator based on silicon microring resonator. Optics Express , 2008, 16(20): 15880–15886
doi: 10.1364/OE.16.015880 pmid:18825224
9 Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Aza?a J. On-chip CMOS-compatible all-optical integrator. Nature Communications, 2010, 1(29): 1–5
doi: 10.1038/ncomms1028
10 Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M, Fukui M, Matsuo S. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Applied Physics Letters , 2005, 87(6): 061106
11 Moreno E, VidalF J G, Rodrigo S J, Moreno L M, Bozhevolnyi S I.Channel plasmon-polaritons: modal shape, dispersion, and losses. Optics Letters , 2006, 31(23): 3447–3449
12 Veronis G, Fan S H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Optics Letters , 2005, 30(24): 3359–3361
13 Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structure. Physical Review B: Condensed Matter and Materials Physics , 2001, 63(12): 125417
doi: 10.1103/PhysRevB.63.125417
14 Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic wavguide for subwavelength confinement and long range propagation. Nature Photonics , 2008, 2(8): 496–500
15 Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express , 2009, 17(19): 16646–16653
doi: 10.1364/OE.17.016646 pmid:19770880
16 Zhou G, Wang T, Su Y K. Design of Plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement. Proceedings of SPIE, 2010, 7987: 79870A
17 Zhou G, Wang T, Su Y K. Wide broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference and Exhibition. 2010, SuK4
18 Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83–91
19 Li Z, Zhang S, Vazquez J M, Lou Y, Khoe G D, Dorren H J S, Lenstra D. Ultrafast optical differentiators based on asymmetric Mach-Zehnder interferometer. In: Proceedings of Symposium IEEE/LEOS. Benelux Chapter, 2006, 173–176
20 Slavík R, Park Y W, Kulishov M, Aza?a J. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Optics Letters , 2009, 34(20): 3116–3118
doi: 10.1364/OL.34.003116 pmid:19838244
21 Xu J, Zhang X L, Dong J J, Liu D M, Huang D X. High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter. Optics Letters , 2007, 32(13): 1872–1874
doi: 10.1364/OL.32.001872 pmid:17603598
[1] Lei WAN, Danping PAN, Tianhua FENG, Weiping LIU, Alexander A. POTAPOV. A review of dielectric optical metasurfaces for spatial differentiation and edge detection[J]. Front. Optoelectron., 2021, 14(2): 187-200.
[2] Xin ZHANG, Jiawen JIAN, Han JIN, Peipeng XU. Nested microring resonator with a doubled free spectral range for sensing application[J]. Front. Optoelectron., 2017, 10(2): 144-150.
[3] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[4] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[5] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[6] Cong YIN, Xiaojun ZHOU, Zhiyao ZHANG, Shenghui SHI, Sixian JIANG, Liu LIU, Tingpeng LUO, Yong LIU. Second-order optical differentiator using mechanically-induced LPFG with a single π-shift[J]. Front Optoelec, 2012, 5(3): 261-265.
[7] Liyang LU, Jiayang WU, Tao WANG, Yikai SU. Compact all-optical differential-equation solver based on silicon microring resonator[J]. Front Optoelec, 2012, 5(1): 99-106.
[8] Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement[J]. Front Optoelec Chin, 2011, 4(4): 359-363.
[9] Yingtao HU, Xi XIAO, Zhiyong LI, Yuntao LI, Yude YU, Jinzhong YU. Slow light in silicon microring resonators[J]. Front Optoelec Chin, 2011, 4(3): 282-287.
[10] Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices[J]. Front Optoelec Chin, 2009, 2(3): 308-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed