Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (3) : 261-265    https://doi.org/10.1007/s12200-012-0272-z
RESEARCH ARTICLE
Second-order optical differentiator using mechanically-induced LPFG with a single π-shift
Cong YIN, Xiaojun ZHOU(), Zhiyao ZHANG, Shenghui SHI, Sixian JIANG, Liu LIU, Tingpeng LUO, Yong LIU
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Opto-electronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
 Download: PDF(312 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An all-optical second-order temporal differentiator using a mechanically-induced long-period fiber grating (MI-LPFG) with a single π-shift was demonstrated. The MI-LPFG was created by pressing a fiber between two periodically grooved plates with a π-shift located at the 3/4 length from the input end of LPFG. The coupling coefficient (κ) can be adjusted by changing the pressure applied on the fiber. The experimental results show that the transfer function of the proposed MI-LPFG can be adjusted to have a transfer function as an ideal second-order differentiator. The differential performance of the designed differentiator to a Gaussian pulse is also analyzed.

Keywords optical differentiator      long-period fiber-grating (LPFG)      optical signal processing     
Corresponding Author(s): ZHOU Xiaojun,Email:xjzhou@uestc.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Shenghui SHI,Sixian JIANG,Cong YIN, et al. Second-order optical differentiator using mechanically-induced LPFG with a single π-shift[J]. Front Optoelec, 2012, 5(3): 261-265.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0272-z
https://academic.hep.com.cn/foe/EN/Y2012/V5/I3/261
Fig.1  Experimental system (P: polarizer; PC: polarization controller; OSA: optical spectrum analyzer)
Fig.2  (a) Transfer functions of a second-order differentiator. Blue-solid line is experimental result. Black-dotted line is a fitting curve of experimental data. Red-dashed line is the transfer function of an ideal second-order differentiator; (b) spectrum of input Gaussian pulse; (c) output pulse spectra; (d) output pulses in time domain
Fig.3  (a) Simulated transfer functions which can be expressed as = 0.2397( -( -Δ)), is the central frequency of input pulse, three curves are corresponding with Δ ( = 1,2,3), which is frequency differences between central frequency of input pulse and resonant frequency of the LPFG; (b) output pulse spectra; (c) output pulses in the time domain.
1 Yao J P. Microwave photonics. Journal of Lightwave Technology , 2009, 27(3): 314-335
doi: 10.1109/JLT.2008.2009551
2 Li Z Y, Wu C Q. All-optical differentiator and high-speed pulse generation based on cross-polarization modulation in a semiconductor optical amplifier. Optics Letters , 2009, 34(6): 830-832
doi: 10.1364/OL.34.000830 pmid:19282947
3 Xu J, Zhang X L, Dong J J, Liu D M, Huang D X. All-optical differentiator based on cross-gain modulation in semiconductor optical amplifier. Optics Letters , 2007, 32(20): 3029-3031
doi: 10.1364/OL.32.003029 pmid:17938689
4 Velanas P, Bogris A, Argyris A, Syvridis D. High-speed all-optical first- and second-order differentiators based on cross-phase modulation in fibers. Journal of Lightwave Technology , 2008, 26(18): 3269-3276
doi: 10.1109/JLT.2008.923930
5 Liu F, Wang T, Qiang L, Ye T, Zhang Z, Qiu M, Su Y. Compact optical temporal differentiator based on silicon microring resonator. Optics Express , 2008, 16(20): 15880-15886
doi: 10.1364/OE.16.015880 pmid:18825224
6 Preciado M A, Muriel M A. Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission. Optics Letters , 2008, 33(21): 2458-2460
doi: 10.1364/OL.33.002458 pmid:18978886
7 Kulishov M, Aza?a J. Long-period fiber gratings as ultrafast optical differentiators. Optics Letters , 2005, 30(20): 2700-2702
doi: 10.1364/OL.30.002700 pmid:16252746
8 Slavík R, Park Y, KulishovM, Aza?aJ. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Optics Letters , 2009, 34 (20): 3116-3118
9 Zheng K, Li P. S.S.JianResearch on the characteristics of long-period fiber grating ultraviolet-written by amplitude mask. Acta Optica Sinica , 2004, 24(7): 902-906
10 Gu Y, Chiang K S, Rao Y J. Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser. IEEE Photonics Technology Letters , 2009, 21(10): 657-659
doi: 10.1109/LPT.2009.2016217
11 Humbert G, Malki A. High performance bandpass filters based on electric arc-induced-shifted long-period fiber gratings. Electronics Letters , 2003, 39(21): 1506-1507
doi: 10.1049/el:20030971
12 Savin S, Digonnet M J F, Kino G S, Shaw H J. Tunable mechanically induced long-period fiber gratings. Optics Letters , 2000, 25(10): 710-712
doi: 10.1364/OL.25.000710 pmid:18064159
13 Zhou X J, Shi S, Zhang Z, Zou J, Liu Y. Mechanically-induced π-shifted long-period fiber gratings. Optics Express , 2011, 19(7): 6253-6259
doi: 10.1364/OE.19.006253 pmid:21451650
14 Zhou X J, Shi S H, Zhang Z Y, Fang K, Yang F, Song Z, Liu Y. Optical differentiator based on mechanically-induced long-period fiber-gratings. In: Proceedings of IEEE 2011 International Topical Meeting on Microwave Photonics . 2011, 18-21 .
[1] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[2] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[3] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[6] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[7] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[8] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[9] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
[10] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
[11] Enming XU, Peili LI, Fei WANG, Jianfei GUAN. Microwave photonic filters based on optical semiconductor amplifier[J]. Front Optoelec Chin, 2011, 4(3): 270-276.
[12] Xinwan LI, Zehua HONG, Xiaomeng SUN. Photonic nano-device for optical signal processing[J]. Front Optoelec Chin, 2011, 4(3): 254-263.
[13] Yong LIU, Ligong CHEN, Tianxiang XU, Jinglei MAO, Shangjian ZHANG, Yongzhi LIU. All-optical signal processing based on semiconductor optical amplifiers[J]. Front Optoelec Chin, 2011, 4(3): 231-242.
[14] Enming XU, Xinliang ZHANG, Lina ZHOU, Yu ZHANG, Yuan YU, Fei WANG, Dexiu HUANG. All-optical filter for simultaneous implementation of microwave bandpass and notch responses based on semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(4): 403-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed