Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (3) : 270-276    https://doi.org/10.1007/s12200-011-0131-3
REVIEW ARTICLE
Microwave photonic filters based on optical semiconductor amplifier
Enming XU1(), Peili LI1, Fei WANG2, Jianfei GUAN1
1. School of Opto-Electronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China; 2. School of Mathematics and Physics, Chongqing University of Technology, Chongqing 400050, China
 Download: PDF(207 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microwave photonic filters have been characterized by low loss, light weight, broad bandwidth, good tunability, and immunity to electromagnetic interference, and these filters can overcome inherent electronic limitations. Fiber-based filters are inherently compatible with fiber-optic microwave systems and can provide connectivity with built-in signal conditioning. This review paper presents developments of microwave photonic filters based on semiconductor optical amplifier in the last few years. Challenges in system implementation for practical application are also discussed.

Keywords microwave photonic      microwave filters      optical signal processing      semiconductor optical amplifier      cross-gain modulation     
Corresponding Author(s): XU Enming,Email:enmingxu@njupt.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Enming XU,Peili LI,Fei WANG, et al. Microwave photonic filters based on optical semiconductor amplifier[J]. Front Optoelec Chin, 2011, 4(3): 270-276.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0131-3
https://academic.hep.com.cn/foe/EN/Y2011/V4/I3/270
Fig.1  SOA-based microwave photonic notch filter with flat passband
Fig.2  Theoretical and measured responses of proposed microwave photonic notch filter
Fig.3  Simple SOA-based microwave photonic notch filter
Fig.4  Theoretical and measured responses of simple SOA-based microwave photonic notch filter
Fig.5  Conventional SOA-based bandpass filter
Fig.6  Measured frequency response of conventional SOA-based bandpass filter
Fig.7  Novel SOA-based microwave bandpass filter
Fig.8  Measured frequency response for detuning 4.12 nm at a given SOA bias current of 52.5 mA
Fig.9  Schematic scheme of hybrid filter
Fig.10  Measured frequency response of IIR filter
Fig.11  Measured frequency response of FIR filter
Fig.12  Measured frequency response of hybrid filter
Fig.13  Schematic scheme of IIR filter cascaded with IIR filter
Fig.14  Measured frequency response of front IIR filter and back IIR filter
Fig.15  Measured frequency response of cascaded filter
1 Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics , 2007, 1(6): 319–330
doi: 10.1038/nphoton.2007.89
2 Yao J P. Microwave Photonics. Journal of Lightwave Technology , 2009, 27(3): 314–335
doi: 10.1109/JLT.2008.2009551
3 Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Journal of Lightwave Technology , 2006, 24(1): 201–229
doi: 10.1109/JLT.2005.860478
4 Dong J J, Zhang X L, Xu J, Huang D X, Fu S N, Shum P. 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Optics Express , 2007, 15(6): 2907–2914
doi: 10.1364/OE.15.002907 pmid:19532526
5 Dong J J, Zhang X L, Xu J, Huang D X, Fu S, Shum P. Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier. Optics Letters , 2007, 32(10): 1223–1225
doi: 10.1364/OL.32.001223 pmid:17440541
6 Xu J, Zhang X L, Dong J J, Liu D M, Huang D X. High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter. Optics Letters , 2007, 32(13): 1872–1874
doi: 10.1364/OL.32.001872 pmid:17603598
7 Yi X K, Wei F, Hong N J, Chao L. Tunable microwave filter design using wavelength conversion technique and high dispersion time delays. IEEE Photonics Technology Letters , 2001, 13(8): 857–859
doi: 10.1109/68.935827
8 Liu D M, Hong N J, Chao L. Wavelength conversion based on cross-gain modulation of ASE spectrum of SOA. IEEE Photonics Technology Letters , 2000, 12(9): 1222–1224
doi: 10.1109/68.874242
9 Xu E M, Zhang X L, Zhou L N, Zhang Y, Huang D X. All-optical microwave notch filter with flat passband based on semiconductor optical amplifier. Optics Communications , 2009, 282(12): 2297–2300
doi: 10.1016/j.optcom.2009.02.018
10 Xu E M, Zhang X L, Zhou L N, Zhang Y, Huang D X. A simple microwave photonic notch filter based on a semiconductor optical amplifier. Journal of Optics. A, Pure and Applied Optics , 2009, 11(8): 085405
doi: 10.1088/1464-4258/11/8/085405
11 Zhou L N, Zhang X L, Xu E M, Huang D X. Q value analysis of a first-order IIR microwave photonic filter based on SOA. Acta Physica Sinica , 2009, 58(2): 1036–1041
12 Xu E M, Zhang X L, Zhou L N, Zhang Y, Yu Y, Li X, Huang D X. All-optical microwave filter with high frequency selectivity based on semiconductor optical amplifier and optical filter. Journal of Lightwave Technology , 2010, 28(16): 2358–2365
13 Xu E M, Zhang X L, Zhou L N, Zhang Y, Huang D X. Hybrid active-passive microwave photonic filter with high quality factor. Chinese Physics Letters , 2009, 26(9): 094208
doi: 10.1088/0256-307X/26/9/094208
14 Xu E M, Zhang X L, Zhou L N, Zhang Y, Yu Y, Li X, Huang D X. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Optics Letters , 2010, 35(8): 1242–1244
doi: 10.1364/OL.35.001242 pmid:20410980
15 ZhouJ L, Xia L,Chen X P,DongX P,Sum P. Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser. Applied Physics. B, Lasers and Optics , 2008, 91(1): 99–103
doi: 10.1007/s00340-008-2940-7
[1] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[2] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[3] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[4] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[5] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[6] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[7] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[8] Rui YANG,Linjie ZHOU,Minjuan WANG,Haike ZHU,Jianping CHEN. Application of SOI microring coupling modulation in microwave photonic phase shifters[J]. Front. Optoelectron., 2016, 9(3): 483-488.
[9] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[10] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[11] Xiaoxiao XUE,Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs[J]. Front. Optoelectron., 2016, 9(2): 238-248.
[12] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[13] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[14] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[15] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed