Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (4) : 403-406    https://doi.org/10.1007/s12200-009-0060-6
RESEARCH ARTICLE
All-optical filter for simultaneous implementation of microwave bandpass and notch responses based on semiconductor optical amplifier
Enming XU, Xinliang ZHANG(), Lina ZHOU, Yu ZHANG, Yuan YU, Fei WANG, Dexiu HUANG
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An all-optical filter structure to simultaneously implement microwave bandpass and notch filter is proposed and experimentally demonstrated. The structure is based on a recirculating delay line (RDL) loop consisting of a semiconductor optical amplifier (SOA) followed by a tunable narrowband optical filter and a 10∶90 coupler. The converted signal is generated in a wavelength conversion process based on cross-gain modulation of amplified spontaneous emission in the SOA. The converted signal circulating in RDL loop realizes a negative bandpass response. The negative bandpass filter and a broadband allpass filter are synthesized to achieve a notch filter with flat passband which can excise interference with minimal impact on the wanted signal.

Keywords microwave photonic      microwave filters      optical signal processing      semiconductor optical amplifier      cross-gain modulation      amplified spontaneous emission     
Corresponding Author(s): ZHANG Xinliang,Email:xlzhang@mail.hust.edu.cn   
Issue Date: 05 December 2009
 Cite this article:   
Enming XU,Xinliang ZHANG,Lina ZHOU, et al. All-optical filter for simultaneous implementation of microwave bandpass and notch responses based on semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(4): 403-406.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0060-6
https://academic.hep.com.cn/foe/EN/Y2009/V2/I4/403
Fig.1  Experimental setup for all-optical SOA-based microwave filter(λ:pump wavelength; λconverted wavelength)
Fig.2  Spectrum of ASE of SOA
Fig.3  Theoretical and measured allpass responses for SOA current of zero
Fig.4  Theoretical and measured bandpass responses for SOA current of 157.5 mA and TNOF of 1550.92 nm
Fig.5  Theoretical and measured notch frequency responses corresponding to the bandpass response in Fig. 4
Fig.6  Theoretical and measured frequency responses with a triangular shape
Fig.7  Theoretical and measured notch frequency responses with flat passband corresponding to the response in Fig. 6
1 Hunter D B, Minasian R A. Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure. IEEE Transactions on Microwave Theory and Techniques , 1997, 45(8): 1463-1466
doi: 10.1109/22.618455
2 Chan E H W, Minasian R A. Reflective amplified recirculating delay line bandpass filter. Journal of Lightwave Technology , 2007, 25(6): 1441-1446
doi: 10.1109/JLT.2007.895564
3 Ning G, Aditya S, Shum P, ZhouJ Q. Switchable coherence-free microwave photonic notch filter using a pair of intensity modulators. IEEE Photonics Technology Letters , 2008, 20(4): 261-263
doi: 10.1109/LPT.2007.912545
4 Wang J, Yao J P. A tunable photonic microwave notch filter based on all-optical mixing. IEEE Photonics Technology Letters , 2006, 18(1-4): 382-384
doi: 10.1109/LPT.2005.861961
5 Chan E H W, Minasian R A. Remodulation based coherence-free photonic notch filter with wide passband. Electronics Letters , 2007, 43(11): 641-642
doi: 10.1049/el:20070143
6 Chan E H W, Minasian R A. High-resolution photonics-based interference suppression filter with wide passband. Journal of Lightwave Technology , 2003, 21(12): 3144-3149
doi: 10.1109/JLT.2003.820039
7 Minasian R A, Alameh K E, ChanE H W. Photonics-based interference mitigation filters. IEEE Transactions on Microwave Theory and Techniques , 2001, 49(10): 1894-1899
doi: 10.1109/22.954804
8 YiX K, Fang W, Ng J H, LuC. Tunable microwave filter design using wavelength conversion technique and high dispersion time delays. IEEE Photonics Technology Letters , 2001, 13(8): 857-859
doi: 10.1109/68.935827
9 Liu D M, Ng J H, LuC. Wavelength conversion based on cross-gain modulation of ASE spectrum of SOA. IEEE Photonics Technology Letters , 2000, 12(9): 1222-1224
doi: 10.1109/68.874242
10 Xu E M, Zhang X L, ZhouL N, Zhang Y, HuangD X. All-optical microwave notch filter with flat passband based on semiconductor optical amplifier. Optics Communications , 2009, 282(12): 2297-2300
doi: 10.1016/j.optcom.2009.02.018
11 Xu E M, ZhangX L, ZhouL N, Zhang Y, HuangD X. A simple microwave photonic notch filter based on a semiconductor optical amplifier. Journal of Optics A: Pure and Applied Optics , 2009, 11(8): 085405
doi: 10.1088/1464-4258/11/8/085405
12 NingG, ChengL H, Aditya S, ShumP, ZhouJ Q. Microwave photonic filter with triangle shaped infinite impulse response. Electronics Letters , 2008, 44(3): 208-210
doi: 10.1049/el:20083086
[1] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[2] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[3] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[4] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[5] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[6] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[7] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[8] Rui YANG,Linjie ZHOU,Minjuan WANG,Haike ZHU,Jianping CHEN. Application of SOI microring coupling modulation in microwave photonic phase shifters[J]. Front. Optoelectron., 2016, 9(3): 483-488.
[9] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[10] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[11] Xiaoxiao XUE,Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs[J]. Front. Optoelectron., 2016, 9(2): 238-248.
[12] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[13] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[14] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[15] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed