Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (3) : 341-344    https://doi.org/10.1007/s12200-012-0271-0
RESEARCH ARTICLE
Local density of states in photonic crystal cavity
Peng QIU(), Guanglong WANG, Jianglei LU, Hongpei WANG
Institute of Nanotechnology and Microsystem, College of Ordnance Engineering, Shijiazhuang 050003, China
 Download: PDF(169 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Local radiative density of optical states (LDOS) offers a tool to control the radiative rate of spontaneous emission from molecules, atoms, and quantum dots, which is proportional to LDOS. This paper presents that LDOS how to make the population of excited-state decay exponentially in time, and how these dynamics can be affected. By adopting the plane-wave expansion method, properties of an inverse-opal photonic crystal are studied with the help of photonic dispersion relations. Results in this paper show that the LDOS is radically modified in photonic crystal, and the rate of spontaneous emission can be described by the functions of position in the crystal and orientation of transition dipole moment.

Keywords spontaneous emission      local radiative density of optical states (LDOS)      photonic crystal      plane-wave method     
Corresponding Author(s): QIU Peng,Email:qpfind@163.com   
Issue Date: 05 September 2012
 Cite this article:   
Guanglong WANG,Jianglei LU,Hongpei WANG, et al. Local density of states in photonic crystal cavity[J]. Front Optoelec, 2012, 5(3): 341-344.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0271-0
https://academic.hep.com.cn/foe/EN/Y2012/V5/I3/341
Fig.1  Scheme of interaction of two-level atom with vacuum-field mode
Fig.2  View of single unit cell of modeled inverse opal
Fig.3  LDOS calculated with plane-wave method in inverse-opal photonic crystal. LDOS at (a) (0, 0, 0) and (1/4, 1/4, 1/4) are shown by connected circles and triangles, respectively; (b) (1/4, 1/4, 0) projected on (1, 1, 0) and (0, 0, 1) directions are shown by connected squares and triangles, respectively
1 McPhedran R C, Botten L C, McOrist J, Asatryan A, de Sterke C, Nicorovici N. Density of states functions for photonic crystals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2004, 1(69): 16609
doi: 10.1103/PhysRevE.69.016609
2 Fussell D P, McPhedran R C, Sterke C M. Three-dimensional green’s tenser, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of clinders. Physical Review E , 2004, 2(70 ): 66608
doi: 10.1103/PhysRevE.70.066608
3 Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y, Vuckovi? J. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Physical Review Letters , 2005, 95(1): 013904
doi: 10.1103/PhysRevLett.95.013904 pmid:16090618
4 Lodahl P, Floris Van Driel A, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature , 2004, 430(7000): 654–657
doi: 10.1038/nature02772 pmid:15295594
5 Sprik R, van Tiggelen B A, Lagendijk A. Optical emission in periodic dielectrics. Europhysics Letters , 1996, 35(4): 265–269
doi: 10.1209/epl/i1996-00564-y
6 Sozuer H S, Haus J W, Inguva R. Photonic bands: convergence problems with the plane-wave method. Physical Review B: Condensed Matter and Materials Physics , 1992, 45(24): 13962–13972
doi: 10.1103/PhysRevB.45.13962
7 Yamaguchi M, Asano T, Kojima K, Noda S. Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot. Physical Review Letters , 2009, 15(80): 1–10
8 Zhou W D, Qiang Z X, Chen L. Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach. Applied Physics (Berlin) , 2007, 40(9): 2615–2623
9 Wu F M, Meng Y L, Xie G H. Chen P, Zhao Y. Top-emitting white organic light-emitting devices based on microcavity structure. Journal of Optoelectronics·Laser , 2008, 19(10): 1287–1290
10 Wang D H, Huang K Y, Xu Q. Spontaneous emission of a polarized atom in a medium between two parallel mirrors. Chinese Physical Society , 2010, 1(15): 138–144
[1] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[2] Hongfei WANG, Samit Kumar GUPTA, Biye XIE, Minghui LU. Topological photonic crystals: a review[J]. Front. Optoelectron., 2020, 13(1): 50-72.
[3] Chenyang WANG, Hongyu ZHANG, Hongyi YUAN, Jinrui ZHONG, Cuicui LU. Universal numerical calculation method for the Berry curvature and Chern numbers of typical topological photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 73-88.
[4] Oliver SALE, Safaa HASSAN, Noah HURLEY, Khadijah ALNASSER, Usha PHILIPOSE, Hualiang ZHANG, Yuankun LIN. Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics[J]. Front. Optoelectron., 2020, 13(1): 12-17.
[5] Huangjia LI, Boqin MA. Research development on fabrication and optical properties of nonlinear photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 35-49.
[6] Yulan FU, Tianrui ZHAI. Distributed feedback organic lasing in photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 18-34.
[7] Chunxiang ZENG, Zeqing WANG, Yingmao XIE. Transmission characteristics of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals[J]. Front. Optoelectron., 2019, 12(4): 365-371.
[8] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[9] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[10] Wenyu WANG, Ghazal Fallah TAFTI, Mingjie DING, Yanhua LUO, Yuan TIAN, Shuai WANG, Tomasz KARPISZ, John CANNING, Kevin COOK, Gang-Ding PENG. Structure formation dynamics in drawing silica photonic crystal fibres[J]. Front. Optoelectron., 2018, 11(1): 69-76.
[11] Ashkan PASHAMEHR,Mahdi ZAVVARI,Hamed ALIPOUR-BANAEI. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Front. Optoelectron., 2016, 9(4): 578-584.
[12] Mehdi SHIRDEL,Mohammad Ali MANSOURI-BIRJANDI. All-optical bistable switching, hard-limiter and wavelength-controlled power source[J]. Front. Optoelectron., 2016, 9(4): 560-564.
[13] Kaiwei LI,Ting ZHANG,Nan ZHANG,Mengying ZHANG,Jing ZHANG,Tingting WU,Shaoyang MA,Junying WU,Ming CHEN,Yi HE,Lei WEI. Integrated liquid crystal photonic bandgap fiber devices[J]. Front. Optoelectron., 2016, 9(3): 466-482.
[14] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[15] Yidong HUANG,Kaiyu CUI,Fang LIU,Xue FENG,Wei ZHANG. Novel optoelectronic characteristics from manipulating general energy-bands by nanostructures[J]. Front. Optoelectron., 2016, 9(2): 151-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed