Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2019, Vol. 12 Issue (3) : 268-275    https://doi.org/10.1007/s12200-019-0848-y
RESEARCH ARTICLE
Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface
Neha JAIN1, O. P. SINHA2, Sujata PANDEY3()
1. Department of Electronics and Communication Engineering, Amity University UP, Noida, India
2. Amity Institute of Nanotechnology, Amity University UP, Noida, India
3. Department of Electronics and Telecom Engineering, Amity University UP, Noida, India
 Download: PDF(1160 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To increase the current density of the hole only device, 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) material has been inserted in the device at the indium tin oxide (ITO)/organic interface. Since HAT-CN molecule can withdraw electrons, it can alter electronic properties of the electrodes and hence inserted between the organic/metal interfaces. This paper deals with the optimization of the thickness of organic-metal layers to enhance the efficiency. Also, efforts have been made to increase the current density and reduce the operating voltage of the device. The material 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (Meo-Spiro-TPD) is used to simulate the hole only device because it is a thermally stable hole transport material. Simulated results shows that better current density values can be achieved compared to fabricated one by optimizing the organic metal layer thickness. The best optimized layer thickness of 22 nm for Alq3, 25 nm for CBP* doped with Ir(ppy)3, 9 nm for Meo-Spiro TPD and 4 nm for HAT-CN which results in current density of 0.12 A/cm2 with a reduction in operating voltage by approximately 2 V.

Keywords organic light emitting diode (OLED)      2, 7-bis [N,N-bis (4-methoxy-phenyl) amino]-9      9-spirobifluorene (Meo-Spiro-TPD)      indium tin oxide (ITO)      model      higher occupied molecular orbital (HOMO)      lower unoccupied molecular orbital (LUMO)     
Corresponding Author(s): Sujata PANDEY   
Online First Date: 28 May 2019    Issue Date: 16 September 2019
 Cite this article:   
Neha JAIN,O. P. SINHA,Sujata PANDEY. Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface[J]. Front. Optoelectron., 2019, 12(3): 268-275.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0848-y
https://academic.hep.com.cn/foe/EN/Y2019/V12/I3/268
Fig.1  Structure of simulated OLED
Fig.2  HOMO-LUMO energy level diagram
Fig.3  Current density versus voltage for device with and without HAT-CN
Fig.4  I-V characteristics comparison with and without HAT-CN
S. No. Parameter without HAT-CN withHAT-CN
1 Current 0.01 µA 5.79 µA
2 current density 2.0 A/µm 1160 A/µm
Tab.1  Current and Current density comparison with and without HAT-CN layer
Fig.5  Current density versus voltage for different HAT-CN thickness
Fig.6  Current density versus voltage for different CBP doped with Ir(ppy)3 thickness
Fig.7  Current density versus voltage for different Meo-spiro TPD thickness
Fig.8  Current density versus voltage for different Alq3 thickness
S. No. material thickness/nm current density/(A·µm−1)
1 HAT-CN 1 46.5
3 191
4 198
6 162
10 121
2 Ir(ppy)3 doped CBP 20 688
24 1120
25 1110
30 1066
40 968
3 Meo-Spiro-TPD 7 165
9 1010
10 832
15 497
25 253
4 Alq3 20 1020
22 1170
24 1150
25 1140
30 1090
Tab.2  Current density with respect to variation in layer thickness for different materials
Fig.9  Recombination versus applied voltage for the OLED structure
Fig.10  Electric field versus applied voltage for device
Fig.11  F (sqrt (electric field)) versus ln (current density) curve
1 C W Joo, K Lee, J Lee, H Cho, J W Shin, N S Cho, J Moon. Optical and structural approaches for improved luminance distribution and enhanced efficiency of organic light emitting diodes. Journal of Luminescence, 2017, 187: 433–440
https://doi.org/10.1016/j.jlumin.2017.03.057
2 G Rajan, V Yadav, P Manzhi, G Chauhan, C K Suman, R Srivastava, O P Sinha. Study of injection and transport properties of metal/organic interface using HAT-CN molecules as hole injection layer. Vacuum, 2017, 146: 530–536
https://doi.org/10.1016/j.vacuum.2017.07.007
3 P Juhasz, J Nevrela, M Micjan, M Novota, J Uhrik, L Stuchlikova, J Jakabovic, L Harmatha, M Weis. Charge injection and transport properties of an organic light-emitting diode. Beilstein Journal of Nanotechnology, 2016, 7: 47–52
https://doi.org/10.3762/bjnano.7.5 pmid: 26925351
4 T J Kung, J Y Huang, J J Huang, S H Tseng, M K Leung, T L Chiu, J H Lee, Y R Wu. Modeling of carrier transport in organic light emitting diode with random dopant effects by two-dimensional simulation. Optics Express, 2017, 25(21): 25492–25503
5 H A Méndez-Pinzón, D R Pardo-Pardo, J P Cuéllar-Alvarado, J C Salcedo-Reyes, R Vera, B A Páez-Sierra. Analysis of the current-voltage characteristics of polymer-based organic light-emitting diodes (OLEDs) deposited by spin coating. Javeriana, 2010, 15(1): 68–76
6 R Chowdhury, M R Haq, M S U Chowdhury, S Afrose, S Paul. Effect of higher carrier injection rate on charge transport and recombination in mixed-host organic light emitting diode. In: Proceedings of International Conference on Innovations in Science, Engineering and Technology (ICISET), IEEE, 2016
7 E Fišerová, M Kubala. Mean fluorescence lifetime and its error. Journal of Luminescence, 2012, 132(8): 2059–2064
https://doi.org/10.1016/j.jlumin.2012.03.038
8 I A Lysenko, L A Patrashanu, D D Zyko. Organic light emitting diode simulation using Silvaco TCAD tools. In: Proceedings of International Siberian Conference on Control and Communications (SIBCON), 2016
9 Atlas User’s Manual. Device Simulation Software. Santa Clara, 2013, (408): 567–1000
10 P Tobat, I Saragi, T Spehr, A Siebert, T F Lieker, J Salbeck. Spiro compounds for organic optoelectronics. Chemical Reviews, 2007, 107(4): 1011–1065
11 R Grover, R Srivastava, J Dagar, M N Kamalasanan, D S Mehta. Interface modified thermally stable hole transporting layer for efficient organic light emitting diodes. Journal of Applied Physics, 2014, 116(6): 063102
12 X M Xu, J C Peng, H J Li, S Qu, C J Zhao. Effect of temperature and applied voltage on the recombination efficiency in double layer organic light emitting diodes. Spectroscopy and Spectral Analysis, 2004, 24(1): 12–14 (in Chinese)
pmid: PMID:15768964
13 B Wang, L Zhang, Y Hu, X B Shi, Z K Wang, L S Liao. Doped hole injection bilayer for solution processable blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(27): 6570–6574
https://doi.org/10.1039/C6TC01624C
14 X Tang, L Ding, Y Q Sun, Y M Xie, Y L Deng, Z K Wang, L S Liao. Inverted and large flexible organic light-emitting diodes with low operating voltage. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(48): 12399–12402
https://doi.org/10.1039/C5TC03108G
15 L Zhang, F S Zu, Y L Deng, F Igbari, Z K Wang, L S Liao. Origin of enhanced hole injection in organic light-emitting diodes with an electron-acceptor doping layer: p-type doping or interfacial diffusion? ACS applied materials & interfaces, 2015, 7(22): 11965–11971
https://doi.org/10.1021/acsami.5b01989 pmid: 25970499
16 L Ding, X Tang, M F Xu, X B Shi, Z K Wang, L S Liao. Lithium hydride doped intermediate connector for high-efficiency and long-term stable tandem organic light-emitting diodes. ACS Applied Materials & Interfaces, 2014, 6(20): 18228–18232
https://doi.org/10.1021/am5051108 pmid: 25243919
17 W H Lee, J Jesuraj, M Song, H Hafeez. Improvement of charge balance, recombination zone confinement, and low efficiency roll-off in green phosphorescent OLEDs by altering electron transport layer thickness. Material Research Express, 2018, 5: 076201
18 A Salehi, S Ho, Y Chen, C Peng, H Yersin , F So. Highly efficient organic light-emitting diode using a low refractive index electron transport layer. Advanced Optical Materials, 2017, 5: 197–204
19 C Murawski, P Liehm, K Leo, M C Gather. Influence of cavity thickness and emitter orientation on the efficiency roll-off of phosphorescent organic light-emitting diodes. Advanced Functional Materials, 2014, 24(8): 1117–1124
https://doi.org/10.1002/adfm.201302173
20 D Terence. Quantum simulation of thermionic emission from diamond films. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2013, 31(2): 021401
21 I I Fishchuk, A K Kadashchuk, A Vakhnin, Yu Korosko, H Bässler, B Souharce, U Scherf. Transition from trap-controlled to trap-to-trap hopping transport in disordered organic semiconductors. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(11): 115210–1155221
https://doi.org/10.1103/PhysRevB.73.115210
22 P J Jesuraj, H Hafeez, D H Kim, J C Lee, W H Lee, D K Choi, C H Kim, M Song, C S Kim, S Y Ryu. Recombination zone control without sensing layer and the exciton confinement in green phosphorescent OLEDs by excluding interface energy transfer. Journal of Physical Chemistry C, 2018, 122(5): 2951–2958
https://doi.org/10.1021/acs.jpcc.7b11039
23 Z Gao, F Wang, K Guo, H Wang, B Wei, B Xu. Carrier transfer and luminescence characteristics of concentration-dependent phosphorescent Ir(ppy)3 doped CBP film. Optics & Laser Technology, 2014, 56: 20–24
https://doi.org/10.1016/j.optlastec.2013.07.011
[1] Xinglu QIAN, Jun ZOU, Mingming SHI, Bobo YANG, Yang LI, Ziming WANG, Yiming LIU, Zizhuan LIU, Fei ZHENG. Development of optical-thermal coupled model for phosphor-converted LEDs[J]. Front. Optoelectron., 2019, 12(3): 249-267.
[2] Tao Pan, Bingren Yan, Jiemei Chen, Lijun Yao. Discrete combination method based on equidistant wavelength screening and its application to near-infrared analysis of hemoglobin[J]. Front. Optoelectron., 2018, 11(3): 296-305.
[3] Ayad KAKEI, Jayantha A. EPAARACHCHI. Use of fiber Bragg grating sensors for monitoring delamination damage propagation in glass-fiber reinforced composite structures[J]. Front. Optoelectron., 2018, 11(1): 60-68.
[4] Yu HAN, Yubin WU, Danhua CAO, Peng YUN. Defect detection on button surfaces with the weighted least-squares model[J]. Front. Optoelectron., 2017, 10(2): 151-159.
[5] Heng ZHAO,Bo LI,Wenjin WANG,Yi HU,Youqin WANG. Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser[J]. Front. Optoelectron., 2016, 9(4): 592-598.
[6] Jiayun XIANG,Han NIE,Yibin JIANG,Jian ZHOU,Hoi Sing KWOK,Zujin ZHAO,Ben Zhong TANG. Blue fluorophores comprised of tetraphenylethene and imidazole: aggregation-induced emission and electroluminescence[J]. Front. Optoelectron., 2015, 8(3): 274-281.
[7] Mingzhang DENG,Weina SHI,Chen ZHAO,Bingbing CHEN,Yan SHEN. ITO surface modification for inverted organic photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 269-273.
[8] Hequn WANG,Jing PEI,Longfa PAN. Optimized multi-dimensional optical storage reading strategy[J]. Front. Optoelectron., 2014, 7(4): 467-474.
[9] Mohammad H. AKBARI, Mohsen JALALI. Position dependent circuit model for thin avalanche photodiodes[J]. Front Optoelec, 2013, 6(2): 194-198.
[10] Zhen WANG. Recent advances of optical imaging in animal stroke model[J]. Front Optoelec, 2013, 6(2): 134-145.
[11] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[12] Jie BI. Angular feature of conical emission in an isotropic amorphous medium pumped by femtosecond pulses[J]. Front Optoelec Chin, 2011, 4(4): 407-410.
[13] Lei DING, Fanghui ZHANG, Qian JIANG, Honggang YAN, Dinghan LIU. Carrier radiation distribution in organic light-emitting diodes[J]. Front Optoelec Chin, 2010, 3(4): 387-393.
[14] Shufeng LI, Chengren LI, Changlie SONG. Theoretical and experimental research on Er-doped and Yb-Er co-doped Al2O3 waveguide amplifiers[J]. Front Optoelec Chin, 2008, 1(3-4): 329-335.
[15] Liefeng ZHAO, Huajun FENG, Zhihai XU. Analysis of flash lamp structure using Monte Carlo photon tracing method[J]. Front Optoelec Chin, 2008, 1(3-4): 205-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed