Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (2) : 129-138    https://doi.org/10.1007/s11706-018-0422-3
RESEARCH ARTICLE
Utilization of surface differences to improve dyeing properties of poly(m-phenylene isophthalamide) membranes
Shenshen OUYANG, Tao WANG(), Longgang ZHONG, Shunli WANG, Sheng WANG()
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, China
 Download: PDF(467 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bulk poly(m-phenylene isophthalamide) (PMIA) can achieve flexibility upon dissolution by a LiCl/dimethylacetamide co-solvent, but remains hydrophobic despite the occasional emergence of cis amide groups providing a weak negative charge. In this study, based on the significant surface differences between PMIA membranes processed by nanofiber electrospinning and casting, a series of chemical analyses, in-situ Au nanoparticle depositions, and dye-adsorption experiments revealed that more cis-configuration amide groups appeared on the surface of the electrospun PMIA membrane than on that of the cast membrane. Based on this surface difference, a strategy was proposed to improve the dyeing properties of PMIA by reversibly changing the cis/trans configurations of electrospun and cast membranes. The reversible chain–segment switch mechanism is a novel method for tuning the macroscale properties of polymer materials based on inherent molecular characteristics.

Keywords wettability      polymer      surface difference      electrospun      PMIA      interfaces     
Corresponding Author(s): Tao WANG,Sheng WANG   
Online First Date: 16 May 2018    Issue Date: 29 May 2018
 Cite this article:   
Shenshen OUYANG,Tao WANG,Longgang ZHONG, et al. Utilization of surface differences to improve dyeing properties of poly(m-phenylene isophthalamide) membranes[J]. Front. Mater. Sci., 2018, 12(2): 129-138.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0422-3
https://academic.hep.com.cn/foms/EN/Y2018/V12/I2/129
Fig.1  Schematics of preparation and photographs and FESEM images of PMIA ESM and CM (inset: SCAs of water droplets, EDX spectra of the membrane samples).
Fig.2  (a) ATR-FTIR spectra of ESM and CM. Enlarged spectra in the ranges of (b) 1200–1700 cm−1 and (c) 650–850 cm−1.
Deposition/nm ESM element concentrations CM element concentrations
c(C)/% c(N)/% c(O)/% c(C)/% c(N)/% c(O)/%
9.5 77.75 10.56 11.69 78.08 10.56 11.83
7.0 75.51 12.34 12.15 75.21 12.34 12.97
4.5 72.21 13.47 14.32 77.12 13.47 10.82
2.5 66.29 15.41 18.30 76.08 10.46 13.46
Tab.1  Results of ARXPS fit for ESM and CM
Membrane Manufacture Zeta potential at pH 5.3/mV Contact angle/(º )
ESM electrospinning −26.2 0±1
CM casting −11.1 130±1
Tab.2  Characteristics of ESM and CM used in this study
Fig.3  Representative SCA images of (a) ESM and (d) CM, and SEM images of (b)(c) PMIA ESM/Au and (e)(f) PMIA CM/Au at Au precursor concentration of 0.01 mol·L−1.
Fig.4  UV-vis spectra of adsorption of (a)(b) MB and (c)(d) MO of the PMIA ESM and the CM. The membrane sample (0.01 g) are placed in 10 mL of 10 mg·L−1 dye solution.
Fig.5  (a) Adsorption isotherm curves for several cationic dyes. (b) Photographs of the dye-adsorption experiment of the PMIA ESM (at pH~7, room temperature). From left to right: BV 14, Rh B, MG, basic yellow 2, MB, basic blue 7.
Fig.6  Schematic of the adsorption mechanisms of MB and MO on the PMIA ESM and the CM.
Fig.7  (a) Schematic of the reversible chain segment switch and adsorption behavior for cationic dyes. (b) Change of contact angle (black line) and dye-adsorption capacity (red line) of the ESM/CM during the switching process. Digital images (inset) represent the colors of the ESM with adsorbed MB after multiple electrospinning cycles. (c)(d) Different dyes adsorbed by the ESM.
1 Kurusu R S, Demarquette N R. Blending and morphology control to turn hydrophobic SEBS electrospun mats superhydrophilic. Langmuir, 2015, 31(19): 5495–5503
https://doi.org/10.1021/acs.langmuir.5b00814 pmid: 25913789
2 Uhlmann P, Frenzel R, Voit B, et al.. Research agenda surface technology: Future demands for research in the field of coatings materials. Progress in Organic Coatings, 2007, 58(2–3): 122–126
https://doi.org/10.1016/j.porgcoat.2006.08.020
3 Yu X, Wang Z Q, Jiang Y G, et al.. Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity. Advanced Materials, 2005, 17(10): 1289–1293
https://doi.org/10.1002/adma.200401646
4 Zhang T, Luo T. High-contrast, reversible thermal conductivity regulation utilizing the phase transition of polyethylene nanofibers. ACS Nano, 2013, 7(9): 7592–7600
https://doi.org/10.1021/nn401714e pmid: 23944835
5 Chen M, Dong M, Havelund R, et al.. Thermo-responsive core–sheath electrospun nanofibers from poly (N-isopropylacrylamide)/polycaprolactone blends. Chemistry of Materials, 2010, 22(14): 4214–4221
https://doi.org/10.1021/cm100753r
6 Anwar N, Willms T, Grimme B, et al.. Light-switchable and monodisperse conjugated polymer particles. ACS Macro Letters, 2013, 2(9): 766–769
https://doi.org/10.1021/mz400362g
7 Xin B, Hao J. Reversibly switchable wettability. Chemical Society Reviews, 2010, 39(2): 769–782
https://doi.org/10.1039/B913622C pmid: 20111792
8 Anastasiadis S H, Retsos H, Pispas S, et al.. Neophytides smart polymer surfaces. Macromolecules, 2003, 36(6): 1994–1999
https://doi.org/10.1021/ma0211129
9 Sandra C D S, Loguercio L F, Corrêa D S, et al.. Interfacial properties and thermal stability of modified poly(m-phenylene isophthalamide) thin films. Surface and Interface Analysis, 2013, 45(4): 837–843
https://doi.org/10.1002/sia.5177
10 Horrocks A R. Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polymer Degradation & Stability, 2011, 96(3): 377–392
https://doi.org/10.1016/j.polymdegradstab.2010.03.036
11 Nimmanpipug P, Tashiro K, Maeda Y, et al.. Factors governing the three-dimensional hydrogen bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds: (1) Systematic classification of structures analyzed by the X-ray diffraction method. The Journal of Physical Chemistry B, 2002, 106(27): 6842–6848
https://doi.org/10.1021/jp013982i
12 Kakida H, Chatani Y, Tadokoro H. Crystal structure of poly(m-phenylene isophthalamide). Journal of Polymer Science Part B: Polymer Physics, 1976, 14(3): 427–435
https://doi.org/10.1002/pol.1976.180140305
13 Morgenstern B, Kammer H W. Solvation in cellulose–LiCl–DMAc solutions. Trends in Polymer Science, 1996, 4: 87–92
14 McCormick C L, Callais P A, Hutchinson J B H. Solution studies of cellulose in lithium chloride and N,N-dimethylacetmide. Macromolecules, 1985, 18(12): 2394–2401
https://doi.org/10.1021/ma00154a010
15 Yao L, Lee C, Kim J. Fabrication of electrospun meta-aramid nanofibers in different solvent systems. Fibers and Polymers, 2010, 11(7): 1032–1040
https://doi.org/10.1007/s12221-010-1032-6
16 Ren X, Zhao C, Du S, et al.. Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium(VI) removal. Journal of Environmental Sciences, 2010, 22(9): 1335–1341
https://doi.org/10.1016/S1001-0742(09)60259-X pmid: 21174963
17 Zhao C, Du S, Wang T, et al.. Arsenic removal from drinking water by self-made PMIA nanofiltration membrane. Advances in Chemical Engineering and Science, 2012, 2(3): 366–371
https://doi.org/10.4236/aces.2012.23043
18 Ouyang S, Wang T, Yu Y, et al.. From trans to cis conformation: further understanding the surface properties of poly(m-phenylene isophthalamide). ACS Omega, 2017, 2(1): 290–298
https://doi.org/10.1021/acsomega.6b00527
19 Skrovanek D J, Howe S E, Painter P C, et al.. Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide. Macromolecules, 1985, 18(9): 1676–1683
https://doi.org/10.1021/ma00151a006
20 Moore W H, Krimm S. Vibrational analysis of peptides, polypeptides, and proteins. II. β-poly(L-alanine) and β-poly(L-anaylglycine). Biopolymers, 1976, 15: 2465–2483
https://doi.org/10.1002/bip.1976.360151211 pmid: 1000052
21 Krimm S, Song S, Asher S A. Amide V overtone assignment of a configuration-sensitive band in the UV resonance Raman spectra of peptides and proteins. Journal of the American Chemical Society, 1989, 111(12): 4290–4294
https://doi.org/10.1021/ja00194a021
22 Mishra A K, Chattopadhyay D K, Sreedhar B, et al.. FT-IR and XPS studies of polyurethane-urea-imide coatings. Progress in Organic Coatings, 2006, 55(3): 231–243
https://doi.org/10.1016/j.porgcoat.2005.11.007
23 Spanjaard D, Guillot C, Desjonqueres M C, et al.. Surface core level spectroscopy of transition metals: A new tool for the determination of their surface structure. Surface Science Reports, 1985, 5(1–2): 1–85
https://doi.org/10.1016/0167-5729(85)90003-2
[1] Biyu ZHOU, Junbo LI, Binzhong LU, Wenlan WU, Leitao ZHANG, Ju LIANG, Junpeng YI, Xin LI. Novel polyzwitterion shell with adaptable surface chemistry engineered to enhance anti-fouling and intracellular imaging of detonation nanodiamonds under tumor pHe[J]. Front. Mater. Sci., 2020, 14(4): 402-412.
[2] Lan ZHANG, Zhaohua LIN, Qiang ZHOU, Suqian MA, Yunhong LIANG, Zhihui ZHANG. PEEK modified PLA shape memory blends: towards enhanced mechanical and deformation properties[J]. Front. Mater. Sci., 2020, 14(2): 177-187.
[3] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[4] Junbo LI, Junting JIANG, Biyu ZHOU, Chaohuang NIU, Wendi WANG, Wenlan WU. Synthesis of poly(ethylene glycol)-SS-poly(ε-caprolactone)-SS-poly(ethylene glycol) triblock copolymers via end-group conjugation and self-assembly for reductively responsive drug delivery[J]. Front. Mater. Sci., 2019, 13(4): 410-419.
[5] Ram Sevak SINGH, Anurag GAUTAM, Varun RAI. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Front. Mater. Sci., 2019, 13(3): 217-241.
[6] Guangyu DUAN, Yan WANG, Junrong YU, Jing ZHU, Zuming HU. Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride[J]. Front. Mater. Sci., 2019, 13(1): 64-76.
[7] Honghong ZOU, Lei WANG, Chenghui ZENG, Xiaolei GAO, Qingqing WANG, Shengliang ZHONG. Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications[J]. Front. Mater. Sci., 2018, 12(4): 327-347.
[8] Zhenrong JIA, Xuefeng XIA, Xiaofeng WANG, Tengyi WANG, Guiying XU, Bei LIU, Jitong ZHOU, Fan LI. All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells[J]. Front. Mater. Sci., 2018, 12(3): 225-238.
[9] Qian WANG, Guihua MENG, Jianning WU, Yixi WANG, Zhiyong LIU, Xuhong GUO. Novel robust cellulose-based foam with pH and light dual-response for oil recovery[J]. Front. Mater. Sci., 2018, 12(2): 118-128.
[10] Jiangli XUE, Maosong MO, Zhuming LIU, Dapeng YE, Zhihua CHENG, Tong XU, Liangti QU. A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets[J]. Front. Mater. Sci., 2018, 12(2): 105-117.
[11] Lulu WEI, Beibei LU, Lin CUI, Xueying PENG, Jianning WU, Deqiang LI, Zhiyong LIU, Xuhong GUO. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin[J]. Front. Mater. Sci., 2017, 11(4): 328-343.
[12] Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering[J]. Front. Mater. Sci., 2017, 11(4): 307-317.
[13] Lulu WEI, Beibei LU, Lei LI, Jianning WU, Zhiyong LIU, Xuhong GUO. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers[J]. Front. Mater. Sci., 2017, 11(3): 223-232.
[14] Wenlan WU,Junbo LI,Sheng ZOU,Jinwu GUO,Huiyun ZHOU. Construction of Au@Pt core--satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles[J]. Front. Mater. Sci., 2017, 11(1): 42-50.
[15] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed