Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (1) : 220591    https://doi.org/10.1007/s11706-022-0591-y
RESEARCH ARTICLE
Controlled synthesis of Pt-loaded yolk–shell TiO2@SiO2 nanoreactors as effective photocatalysts for hydrogen generation
Min SHI, Niannian HU, Haimei LIU, Cheng QIAN, Chang LV, Sheng WANG()
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
 Download: PDF(2414 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Yolk–shell and hollow structures are powerful platforms for controlled release, confined nanocatalysis, and optical and electronic applications. This contribution describes a fabrication strategy for a yolk–shell nanoreactor (NR) using a post decoration approach. The widely studied yolk–shell structure of silica-coated TiO2 (TiO2@SiO2) was used as a model. At first, anatase TiO2 spheres were prepared, and subsequently were given a continuous coating of carbonaceous and silica layers. Finally, the carbonaceous layer was removed to produce a yolk–shell structure TiO2@SiO2. By using an in-situ photodeposition method, Pt-encased spheres (Pt-TiO2@SiO2) were synthesized with Pt nanoparticles grown on the surface of the TiO2 core, which contained void spaces suitable for use as NRs. The NR showed enhanced hydrogen production with a rate of 24.56 mmol·g−1·h−1 in the presence of a sacrificial agent under simulated sunlight. This strategy holds the potential to be extended for the synthesis of other yolk–shell photocatalytic NRs with different metal oxides.

Keywords nanoreactor      TiO2      SiO2      photocatalyst      hydrogen generation     
Corresponding Author(s): Sheng WANG   
About author:

Miaojie Yang and Mahmood Brobbey Oppong contributed equally to this work.

Issue Date: 06 April 2022
 Cite this article:   
Min SHI,Niannian HU,Haimei LIU, et al. Controlled synthesis of Pt-loaded yolk–shell TiO2@SiO2 nanoreactors as effective photocatalysts for hydrogen generation[J]. Front. Mater. Sci., 2022, 16(1): 220591.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0591-y
https://academic.hep.com.cn/foms/EN/Y2022/V16/I1/220591
Fig.1  Schematic illustration of the fabrication process of the Pt-TiO2@SiO2 NR.
Fig.2  SEM images (top) and TEM images (middle) of corresponding samples: (a)(e) TiO2; (b)(f) TiO2@C; (c)(g) TiO2@C@SiO2; (d)(h) TiO2@SiO2 spheres. (i) HAADF-STEM image of TiO2@SiO2 spheres.
Fig.3  EDX results of the samples obtained at different synthetic process: (a) TiO2 spheres; (b) TiO2@C; (c) TiO2@C@SiO2; (d) TiO2@SiO2.
Fig.4  (a) XRD patterns of samples obtained at different synthetic processes: TiO2 spheres, TiO2@C, TiO2@C@SiO2, and TiO2@SiO2. (b) N2 adsorption–desorption isotherms and the corresponding pore-size distribution plot (inset) of TiO2@SiO2.
Fig.5  (a)(b) TEM images and (c) the corresponding EDX spectrum of Pt-TiO2@SiO2. (d)(e) HAADF-STEM image of the Pt-TiO2@SiO2 sphere and the mapping results of Pt-TiO2@SiO2 with Si, Ti, and Pt. (f) Overlay image of the corresponding mapping image in panel (e).
Fig.6  XRD patterns of TiO2@SiO2 and Pt-TiO2@SiO2. Vertical green and purple bars correspond to theoretical diffraction patterns of anatase-TiO2 and Pt, respectively.
Fig.7  (a) UV–vis DRS results of TiO2, TiO2@SiO2, and Pt-TiO2@SiO2. (b) Photocatalytic hydrogen production the over different samples under simulated sunlight for 3 h (the Pt content is 2% relative to the mass of TiO2). (c) H2 production of the Pt-TiO2@SiO2 NR at different irradiation time. (d) Schematic illustration of electron transfer pathways for the hydrogen production over the Pt-TiO2@SiO2 NR.
1 Z Teng, W Li, Y Tang, et al.. Mesoporous organosilica hollow nanoparticles: synthesis and applications. Advanced Materials, 2019, 31(38): 1707612
https://doi.org/10.1002/adma.201707612 pmid: 30285290
2 W Zhu, Z Chen, Y Pan, et al.. Functionalization of hollow nanomaterials for catalytic applications: nanoreactor construction. Advanced Materials, 2019, 31(38): 1800426
https://doi.org/10.1002/adma.201800426 pmid: 30125990
3 L Ji, H Zheng, Y Wei, et al.. Temperature-controlled fabrication of Co–Fe-based nanoframes for efficient oxygen evolution. Science China Materials, 2022, 65(2): 431–441
https://doi.org/10.1007/s40843-021-1743-7
4 J Lee, S M Kim, I S Lee. Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today, 2014, 9(5): 631–667
https://doi.org/10.1016/j.nantod.2014.09.003
5 B Zuo, W Li, X Wu, et al.. Recent advances in the synthesis, surface modifications and applications of core–shell magnetic mesoporous silica nanospheres. Chemistry: An Asian Journal, 2020, 15(8): 1248–1265
https://doi.org/10.1002/asia.202000045 pmid: 32083794
6 C Gao, F Lyu, Y Yin. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881
https://doi.org/10.1021/acs.chemrev.0c00237 pmid: 32585087
7 S Xiong, R Tang, D Gong, et al.. Yolk–shell catalyst: from past to future. Applied Materials Today, 2020, 21: 100798
https://doi.org/10.1016/j.apmt.2020.100798
8 B Vaz, V Salgueirino, M Perez-Lorenzo, et al.. Enhancing the exploitation of functional nanomaterials through spatial confinement: the case of inorganic submicrometer capsules. Langmuir, 2015, 31(32): 8745–8755
https://doi.org/10.1021/acs.langmuir.5b00098 pmid: 25736568
9 M Sanles-Sobrido, M Perez-Lorenzo, B Rodriguez-Gonzalez, et al.. Highly active nanoreactors: nanomaterial encapsulation based on confined catalysis. Angewandte Chemie International Edition, 2012, 51(16): 3877–3882
https://doi.org/10.1002/anie.201105283 pmid: 22307952
10 K M Yeo, S Choi, R M Anisur, et al.. Surfactant-free platinum-on-gold nanodendrites with enhanced catalytic performance for oxygen reduction. Angewandte Chemie International Edition, 2011, 50(3): 745–748
https://doi.org/10.1002/anie.201005775 pmid: 21226168
11 M Xiao, C Zhao, H Chen, et al.. “Ship-in-a-bottle” growth of noble metal nanostructures. Advanced Functional Materials, 2012, 22(21): 4526–4532
https://doi.org/10.1002/adfm.201200941
12 J Chen, Y Bai, J Feng, et al.. Anisotropic seeded growth of Ag nanoplates confined in shape-deformable spaces. Angewandte Chemie International Edition, 2021, 60(8): 4117–4124
https://doi.org/10.1002/anie.202011334 pmid: 33037723
13 T Kwon, N Kumari, A Kumar, et al.. Au/Pt-egg-in-nest nanomotor for glucose-powered catalytic motion and enhanced molecular transport to living cells. Angewandte Chemie International Edition, 2021, 60(32): 17579–17586
https://doi.org/10.1002/anie.202103827 pmid: 34107153
14 S Tanaka, D Nogami, N Tsuda, et al.. Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range. Journal of Colloid and Interface Science, 2009, 334(2): 188–194
https://doi.org/10.1016/j.jcis.2009.02.060 pmid: 19398105
15 S Wang, T Wang, W Chen, et al.. Phase-selectivity photocatalysis: a new approach in organic pollutants’ photodecomposition by nanovoid core (TiO2)/shell (SiO2) nanoparticles. Chemical Communications, 2008, (32): 3756–3758
https://doi.org/10.1039/b802127a pmid: 18685767
16 T Wang, S Wang, W Chen, et al.. Chemical morphology freezing: chemical protection of the physical morphology of high photoactivity anatase TiO2 nanotubes. Journal of Materials Chemistry, 2009, 19(27): 4692–4694
https://doi.org/10.1039/b906896a
17 S Wang, T Wang, Y Gao, et al.. Wet photochemical filling: a new low-diameter tube-filling method based on differentiated nanotube surfaces. Journal of Materials Chemistry, 2011, 21(48): 19337–19343
https://doi.org/10.1039/c1jm13453a
18 P Mulvaney. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3): 788–800
https://doi.org/10.1021/la9502711
19 A Wood, M Giersig, P Mulvaney. Fermi level equilibration in quantum dot-metal nanojunctions. The Journal of Physical Chemistry B, 2001, 105(37): 8810–8815
https://doi.org/10.1021/jp011576t
20 R López, R Gómez. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 2012, 61(1): 1–7
https://doi.org/10.1007/s10971-011-2582-9
21 S Munir, S M Shah, H Hussain, et al.. Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Materials & Design, 2016, 92: 64–72
https://doi.org/10.1016/j.matdes.2015.12.022
22 E Can, B Uralcan, R Yildirim. Enhancing charge transfer in photocatalytic hydrogen production over dye-sensitized Pt/TiO2 by ionic liquid coating. ACS Applied Energy Materials, 2021, 4(10): 10931–10939
https://doi.org/10.1021/acsaem.1c01553
23 F Wang, Z Jin, Y Jiang, et al.. Probing the charge separation process on In2S3/Pt-TiO2 nanocomposites for boosted visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2016, 198: 25–31
https://doi.org/10.1016/j.apcatb.2016.05.048
24 B Cao, G Li, H Li. Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation. Applied Catalysis B: Environmental, 2016, 194: 42–49
https://doi.org/10.1016/j.apcatb.2016.04.033
25 J Zhang, Z Yu, Z Gao, et al.. Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. Angewandte Chemie International Edition, 2017, 56(3): 816–820
https://doi.org/10.1002/anie.201611137 pmid: 27966808
[1] Guopeng CHEN, Shuwen CHEN, Xinyi ZHANG, Fuchao YANG, Jing FU. Twofold bioinspiration of TiO2-PDA hybrid fabrics with desirable robustness and remarkable polar/nonpolar liquid separation performance[J]. Front. Mater. Sci., 2021, 15(1): 124-137.
[2] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[3] Yuming CHEN, Wenhao TANG, Jingru MA, Ben GE, Xiangliang WANG, Yufen WANG, Pengfei REN, Ruiping LIU. Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries[J]. Front. Mater. Sci., 2020, 14(3): 266-274.
[4] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[5] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[6] Zhihong JING, Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
[7] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[8] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[9] Vijaya KUMARI, Anuj MITTAL, Jitender JINDAL, Suprabha YADAV, Naveen KUMAR. S-, N- and C-doped ZnO as semiconductor photocatalysts: A review[J]. Front. Mater. Sci., 2019, 13(1): 1-22.
[10] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[11] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[12] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[13] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
[14] Stavros KATSIAOUNIS, Christina TIFLIDIS, Christina TSEKOURA, Emmanuel TOPOGLIDIS. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c[J]. Front. Mater. Sci., 2018, 12(1): 64-73.
[15] Shenglian YAO, Xujia FENG, Wenhao LI, Lu-Ning WANG, Xiumei WANG. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays[J]. Front. Mater. Sci., 2017, 11(4): 318-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed