Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2024, Vol. 18 Issue (2) : 240683    https://doi.org/10.1007/s11706-024-0683-y
(FeO)2FeBO3 nanoparticles attached on interconnected nitrogen-doped carbon nanosheets serving as sulfur hosts for lithium–sulfur batteries
Junhai Wang1, Huaqiu Huang1, Chen Chen2(), Jiandong Zheng1(), Yaxian Cao3, Sang Woo Joo4(), Jiarui Huang3()
1. School of Material and Chemical Engineering, Chuzhou University, Chuzhou 239000, China
2. College of Mechanical Engineering, Tongling University, Tongling 244000, China
3. Key Laboratory of Functional Molecular Solids of the Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
4. School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
 Download: PDF(8101 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO)2FeBO3 nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO)2FeBO3 can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g−1, the initial discharging and charging specific capacities of the (FeO)2FeBO3@NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g−1, respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g−1, displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO)2FeBO3 NPs is conducive to the performance improvement of Li–S batteries.

Keywords (FeO)2FeBO3      nitrogen-doped carbon      nanosheet      cathode      lithium–sulfur battery     
Corresponding Author(s): Chen Chen,Jiandong Zheng,Sang Woo Joo,Jiarui Huang   
Issue Date: 18 June 2024
 Cite this article:   
Junhai Wang,Huaqiu Huang,Chen Chen, et al. (FeO)2FeBO3 nanoparticles attached on interconnected nitrogen-doped carbon nanosheets serving as sulfur hosts for lithium–sulfur batteries[J]. Front. Mater. Sci., 2024, 18(2): 240683.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-024-0683-y
https://academic.hep.com.cn/foms/EN/Y2024/V18/I2/240683
  Scheme1 Synthesis process of the (FeO)2FeBO3@NCNs/S composite.
Fig.1  (a) XRD patterns and (b) Raman spectra of NCNs, (FeO)2FeBO3@NCNs-2, and (FeO)2FeBO3@NCNs-2/S.
Fig.2  SEM images of (a) NCNs, (b) (FeO)2FeBO3@NCNs-2, and (c) (FeO)2FeBO3@NCNs-2/S. TEM images of (d) NCNs, (e) (FeO)2FeBO3@NCNs-2, and (f) (FeO)2FeBO3@NCNs-2/S.
Fig.3  (a) High-magnification TEM image and (b) HRTEM image of (FeO)2FeBO3@NCNs-2. (c) TEM elemental mapping images of (FeO)2FeBO3@NCNs-2. SEM images of (d) (FeO)2FeBO3@NCNs-1, (e) (FeO)2FeBO3@NCNs-2, and (f) (FeO)2FeBO3@NCNs-3.
Fig.4  XPS spectra of the (FeO)2FeBO3@NCNs/S composite: (a) Fe 2p; (b) B 1s; (c) O 1s; (d) C 1s; (e) N 1s; (f) S 2p.
Fig.5  (a) N2 adsorption?desorption isotherm curves and (b) corresponding PSD curves of NCNs, (FeO)2FeBO3@NCNs-1, (FeO)2FeBO3@NCNs-2, and (FeO)2FeBO3@NCNs-3. (c) N2 adsorption?desorption isotherm curves and (d) corresponding PSD curves of NCNs/S, (FeO)2FeBO3@NCNs-1/S, (FeO)2FeBO3@NCNs-2/S, and (FeO)2FeBO3@NCNs-3/S.
Fig.6  TGA curves for resulted (FeO)2FeBO3@NCNs and (FeO)2FeBO3@NCNs/S composites: (a) (FeO)2FeBO3@NCNs-1, (FeO)2FeBO3@NCNs-2, and (FeO)2FeBO3@NCNs-3; (b) (FeO)2FeBO3@NCNs-1/S, (FeO)2FeBO3@NCNs-2/S, and (FeO)2FeBO3@NCNs-3/S.
Fig.7  (a) Cycling performances of NCNs/S, (FeO)2FeBO3/S, (FeO)2FeBO3@NCNs-1/S, (FeO)2FeBO3@NCNs-2/S, and (FeO)2FeBO3@NCNs-3/S cathodes at a current density of 0.2 A·g?1. (b) CV curves of the first five cycles for the (FeO)2FeBO3@NCNs-2/S cathode at a scan rate of 0.1 mV·s?1. (c) Discharging?charging profiles for the (FeO)2FeBO3@NCNs-2/S cathode at a current density of 0.2 A·g?1 corresponding to different cycle numbers. (d) Rate performances of NCNs/S, (FeO)2FeBO3/S, and (FeO)2FeBO3@NCNs-2/S cathodes. (e) Discharging?charging profiles for the (FeO)2FeBO3@NCNs-2/S cathode at different current densities.
Fig.8  (a) Long-term cycling capacities of NCNs/S, (FeO)2FeBO3/S, and (FeO)2FeBO3@NCNs-2/S at a current density of 1.0 A·g?1. (b) Cycling performance of (FeO)2FeBO3@NCNs-2/S at a current density of 0.5 A·g?1.
Fig.9  (a) The GITT curve for (FeO)2FeBO3@NCNs-2/S at a current density of 0.2 A·g?1. In-situ reaction resistances of NCNs/S, (FeO)2FeBO3/S, and (FeO)2FeBO3@NCNs-2/S: (b) discharging process; (c) charging process.
Fig.10  (a) CV curves for the (FeO)2FeBO3@NCNs-2/S cathode at a series of scan rates. (b) Plots of lgIp versus lgν corresponding to different current peaks for the (FeO)2FeBO3@NCNs-2/S cathode. (c) Contribution ratios of capacitance- and diffusion-controlled processes for the (FeO)2FeBO3@NCNs-2/S cathode at different scan rates. (d) Plots of Ip versus v1/2 for the (FeO)2FeBO3@NCNs-2/S cathode.
Fig.11  (a) Nyquist plots of fresh NCNs/S, (FeO)2FeBO3/S, and (FeO)2FeBO3@NCNs-2/S cathodes. (b) Nyquist plots of NCNs/S, (FeO)2FeBO3/S, and (FeO)2FeBO3@NCNs-2/S cathodes after 500 cycles. The insets show equivalent circuit models.
1 Z Y, Ma Q B, Wang Y H, Wang et al.. High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure.Frontiers of Materials Science, 2022, 16(4): 220624
https://doi.org/10.1007/s11706-022-0624-6
2 X L, Zhao Q, Wu F C, Wu et al.. A sandwich-structured bifunctional separator for durable and stable lithium–sulfur batteries.Journal of Electroanalytical Chemistry, 2023, 939: 117474
https://doi.org/10.1016/j.jelechem.2023.117474
3 Z Y, Pang H Z, Zhang L, Wang et al.. Towards safe lithium–sulfur batteries from liquid-state electrolyte to solid-state electrolyte.Frontiers of Materials Science, 2023, 17(1): 230630
https://doi.org/10.1007/s11706-023-0630-3
4 Y, Tian G, Li Y, Zhang et al.. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries.Advanced Materials, 2020, 32(4): 1904876
https://doi.org/10.1002/adma.201904876
5 Q, Cheng Z X, Pan H S, Rao et al.. Free-standing 3D nitrogen-doped graphene/Co4N aerogels with ultrahigh sulfur loading for high volumetric energy density Li–S batteries.Journal of Alloys and Compounds, 2022, 901: 163625
https://doi.org/10.1016/j.jallcom.2022.163625
6 J H, Wang J D, Zheng L P, Gao et al.. WO2 nanoparticle anchored hollow carbon spheres enhanced performance of lithium–sulfur battery.Journal of Electroanalytical Chemistry, 2023, 942: 117590
https://doi.org/10.1016/j.jelechem.2023.117590
7 H D, Liu Z L, Chen H, Man et al.. Template-guided synthesis of porous MoN microrod as an effective sulfur host for high-performance lithium–sulfur batteries.Journal of Alloys and Compounds, 2020, 842: 155764
https://doi.org/10.1016/j.jallcom.2020.155764
8 L, Ji X, Wang Y F, Jia et al.. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry.Advanced Functional Materials, 2020, 30(28): 1910533
https://doi.org/10.1002/adfm.201910533
9 S, Waluś C, Barchasz R, Bouchet et al.. Electrochemical impedance spectroscopy study of lithium-sulfur batteries: useful technique to reveal the Li/S electrochemical mechanism.Electrochimica Acta, 2020, 359: 136944
https://doi.org/10.1016/j.electacta.2020.136944
10 X J, Dong X Z, Liu P K, Shen et al.. Phase evolution of VC–VO heterogeneous particles to facilitate sulfur species conversion in Li–S batteries.Advanced Functional Materials, 2023, 33(3): 2210987
https://doi.org/10.1002/adfm.202210987
11 X J, Dong Q, Deng F X, Ling et al.. Vanadium-based compounds and heterostructures as functional sulfur catalysts for lithium–sulfur battery cathodes.Journal of Energy Chemistry, 2023, 86: 118–134
https://doi.org/10.1016/j.jechem.2023.07.003
12 J N, Shi Q, Kang Y, Mi et al.. Nitrogen-doped hollow porous carbon nanotubes for high-sulfur loading Li–S batteries.Electrochimica Acta, 2019, 324: 134849
https://doi.org/10.1016/j.electacta.2019.134849
13 A, Benítez Lecce D, Di G A, Elia et al.. A lithium-ion battery using a 3D-array nanostructured graphene–sulfur cathode and a silicon oxide-based anode.ChemSusChem, 2018, 11(9): 1512–1520
https://doi.org/10.1002/cssc.201800242
14 Z, Li B Y, Guan J T, Zhang et al.. A compact nanoconfined sulfur cathode for high-performance lithium–sulfur batteries.Joule, 2017, 1(3): 576–587
https://doi.org/10.1016/j.joule.2017.06.003
15 R J, Zhe T, Zhu X H, Wei et al.. Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(45): 24422–24433
https://doi.org/10.1039/D2TA06686F
16 Q, Lu Y J, Zhong W, Zhou et al.. Dodecylamine-induced synthesis of a nitrogen-doped carbon comb for advanced lithium–sulfur battery cathodes.Advanced Materials Interfaces, 2018, 5(9): 1701659
https://doi.org/10.1002/admi.201701659
17 F, Ma Z, Chen K, Srinivas et al.. VN quantum dots anchored N-doped carbon nanosheets as bifunctional interlayer for high-performance lithium–metal and lithium–sulfur batteries.Chemical Engineering Journal, 2023, 459: 141526
https://doi.org/10.1016/j.cej.2023.141526
18 J, Song M L, Gordin T, Xu et al.. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes.Angewandte Chemie International Edition, 2015, 54(14): 4325–4329
https://doi.org/10.1002/anie.201411109
19 F, Luna-Lama A, Caballero J L Morales . Synergistic effect between PPy: PSS copolymers and biomass-derived activated carbons: a simple strategy for designing sustainable high-performance Li–S batteries.Sustainable Energy & Fuels, 2022, 6(6): 1568–1586
https://doi.org/10.1039/D1SE02052H
20 J L, Zhu X J, Dong Q K, Zeng et al.. MnO–Mo2C heterogeneous particles supported on porous carbon: accelerating the catalytic conversion of polysulfides.Chemical Engineering Journal, 2023, 460: 141811
https://doi.org/10.1016/j.cej.2023.141811
21 H E, Wang K, Yin X, Zhao et al.. Coherent TiO2/BaTiO3 heterostructure as a functional reservoir and promoter for polysulfide intermediates.Chemical Communications, 2018, 54(86): 12250–12253
https://doi.org/10.1039/C8CC06924G
22 D, Wang J, Liu X J, Bao et al.. Macro/mesoporous carbon/defective TiO2 composite as a functional host for lithium–sulfur batteries.ACS Applied Energy Materials, 2022, 5(2): 2573–2579
https://doi.org/10.1021/acsaem.2c00033
23 Q, Zhao X, Bao L, Meng et al.. Nitrogen-doped hollow carbon@tin disulfide as a bipolar dynamic host for lithium–sulfur batteries with enhanced kinetics and cyclability.Journal of Colloid and Interface Science, 2023, 644: 546–555
https://doi.org/10.1016/j.jcis.2023.03.169
24 L S, Meng Y, Yao J, Liu et al.. MoSe2 nanosheets as a functional host for lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 47: 241–247
https://doi.org/10.1016/j.jechem.2020.02.003
25 Q, Deng X, Dong P K, Shen et al.. Li–S chemistry of manganese phosphides nanoparticles with optimized phase.Advanced Science, 2023, 10(9): 2207470
https://doi.org/10.1002/advs.202207470
26 X, Ai X, Zou H, Chen et al.. Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis.Angewandte Chemie International Edition, 2020, 59(10): 3961–3965
https://doi.org/10.1002/anie.201915663
27 Z L, Li P Y, Li X P, Meng et al.. The interfacial electronic engineering in binary sulfiphiliccobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium–sulfur batteries.Advanced Materials, 2021, 33(42): 2102338
https://doi.org/10.1002/adma.202102338
28 K, Chen G D, Zhang L P, Xiao et al.. Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium–sulfur batteries.Small Methods, 2021, 5(3): 2001056
https://doi.org/10.1002/smtd.202001056
29 D H, Xu G E, Luo J F, Yu et al.. Quadrangular-CNT–Fe3O4–C composite based on quadrilateral carbon nanotubes as anode materials for high performance lithium-ion batteries.Journal of Alloys and Compounds, 2017, 702: 499–508
https://doi.org/10.1016/j.jallcom.2017.01.259
30 Y, Lu J L, Qin T, Shen et al.. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li–S batteries.Advanced Energy Materials, 2021, 11(42): 2101780
https://doi.org/10.1002/aenm.202101780
31 B Z, Wu S, Qi X K, Wu et al.. FeBO3 as a low cost and high-performance anode material for sodium-ion batteries.Chinese Chemical Letters, 2021, 32(10): 3113–3117
https://doi.org/10.1016/j.cclet.2021.03.014
32 H, Zhang Q M, Gao Z Y, Li et al.. A rGO-based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li–S battery.Electrochimica Acta, 2020, 343: 136079
https://doi.org/10.1016/j.electacta.2020.136079
33 Y, Yi H, Li H, Chang et al.. Few-layer boron nitride with engineered nitrogen vacancies for promoting conversion of polysulfide as a cathode matrix for lithium–sulfur batteries.Chemistry, 2019, 25(34): 8112–8117
https://doi.org/10.1002/chem.201900884
34 E, Chmielewská W, Tylus M, Drábik et al.. Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal.Microporous and Mesoporous Materials, 2017, 248: 222–223
https://doi.org/10.1016/j.micromeso.2017.04.022
35 J, Gu C S, Hsu L, Bai et al.. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO.Science, 2019, 364(6445): 1091–1094
https://doi.org/10.1126/science.aaw7515
36 X F, Meng Y L, Xu X F, Sun et al.. Graphene oxide sheets-induced growth of nanostructured Fe3O4 for a high-performance anode material of lithium ion batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(24): 12938–12946
https://doi.org/10.1039/C5TA01617G
37 C C, Li X B, Liu L, Zhu et al.. Conductive and polar titanium boride as a sulfur host for advanced lithium–sulfur batteries.Chemistry of Materials, 2018, 30(20): 6969–6977
https://doi.org/10.1021/acs.chemmater.8b01352
38 L N, Wen X, Qin W, Meng et al.. Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries.Materials Science and Engineering B, 2016, 213: 63–68
https://doi.org/10.1016/j.mseb.2016.05.004
39 R Q, Liu D Y, Li D, Tian et al.. Promotional role of B2O3 in enhancing hollow SnO2 anode performance for Li-ion batteries.Journal of Power Sources, 2014, 251: 279–286
https://doi.org/10.1016/j.jpowsour.2013.11.068
40 M W, Xiang Y, Wang J H, Wu et al.. Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium–sulfur batteries.Electrochimica Acta, 2017, 227: 7–16
https://doi.org/10.1016/j.electacta.2016.11.139
41 W, Cai J, Zhou G, Li et al.. B, N-co-doped graphene supported sulfur for superior stable Li–S half cell and Ge–S full battery.ACS Applied Materials & Interfaces, 2016, 8(41): 27679–27687
https://doi.org/10.1021/acsami.6b08852
42 Y Z, Zhang K, Sun Z, Liang et al.. N-doped yolk–shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium–sulfur batteries.Applied Surface Science, 2018, 427: 823–829
https://doi.org/10.1016/j.apsusc.2017.06.288
43 C Y, Xu R, Du C B, Yu et al.. Glucose-derived micro–mesoporous carbon spheres for high-performance lithium–sulfur batteries.Energy & Fuels, 2023, 37(2): 1318–1326
https://doi.org/10.1021/acs.energyfuels.2c03421
44 A A, Mohammed Y T, Dong R, Zhang et al.. Understanding the high-performance Fe(OH)3@GO nanoarchitecture as effective sulfur hosts for the high capacity of lithium–sulfur batteries.Applied Surface Science, 2021, 528: 148032
45 L L, Gao T, Sheng H B, Ren et al.. Boron nitride wrapped N-doped carbon nanosheet as a host for advanced lithium–sulfur battery.Applied Surface Science, 2022, 597: 153687
https://doi.org/10.1016/j.apsusc.2022.153687
46 R, Saroha J S Cho . Nanofibers comprising interconnected chain-like hollow N-doped C nanocages as 3D free-standing cathodes for Li–S batteries with super-high sulfur content and lean electrolyte/sulfur ratio.Small Methods, 2022, 6(5): 2200049
https://doi.org/10.1002/smtd.202200049
47 T M, Chen Z C, Shang B, Yuan et al.. Rational design of Co–NiSe2@N-doped carbon hollow structure for enhanced Li–S battery performance.Energy Technology, 2020, 8(7): 2000302
https://doi.org/10.1002/ente.202000302
48 L X, Fang J S, Chen P, Wang et al.. Fabrication of carbon nanofibril/carbon nanotube composites with high sulfur loading from nanocellulose for high-performance lithium–sulfur batteries.Chemical Communications, 2022, 126: 109137
49 J, Liu T, Zhou T, Han et al.. Engineering a ternary one-dimensional Fe2P@SnP0.94@MoS2 mesostructure through magnetic-field-induced self-assembly as a high-performance lithium-ion battery anode.Chemical Communications, 2022, 58(33): 5108–5111
https://doi.org/10.1039/D2CC00230B
50 D L, Chen M, Zhu W W, Zhan et al.. Fe, N co-doped mesoporous carbon spheres as barrier layer absorbing and reutilizing polysulfides for high-performance Li–S batteries.Journal of Materials Science, 2022, 57: 13527–13540
https://doi.org/10.1007/s10853-022-07477-1
51 J Y, Liu L Y, Zhu Z H, Shen et al.. Novel doughnutlike graphene quantum dot-decorated composites for high-performance Li–S batteries displaying dual immobilization toward polysulfides.ACS Applied Energy Materials, 2021, 4(10): 10998–11003
https://doi.org/10.1021/acsaem.1c01943
52 Y, Mussa M, Arsalan E Alsharaeh . Cobalt oxide/graphene nanosheets/hexagonal boron nitride (Co3O4/CoO/GNS/h-BN) catalyst for high sulfur utilization in Li–S batteries at elevated temperatures.Energy & Fuels, 2021, 35(9): 8365–8377
https://doi.org/10.1021/acs.energyfuels.1c00476
53 J, Xu W X, Zhang Y, Chen et al.. MOF-derived porous N–Co3O4@N–C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(6): 2797–2807
https://doi.org/10.1039/C7TA10272K
54 S G, Deng Q H, Li Y H, Chen et al.. Dipolar and catalytic effects of an Fe3O4 based nitrogen-doped hollow carbon sphere framework for high performance lithium sulfur batteries.Inorganic Chemistry Frontiers, 2021, 8(7): 1771–1778
https://doi.org/10.1039/D0QI01393E
55 C Y, Zhou X C, Li H L, Jiang et al.. Pulverizing Fe2O3 nanoparticles for developing Fe3C/N-codoped carbon nanoboxes with multiple polysulfide anchoring and converting activity in Li–S batteries.Advanced Functional Materials, 2021, 31(18): 2011249
https://doi.org/10.1002/adfm.202011249
56 H, Su L Q, Lu M Z, Yang et al.. Decorating CoSe2 on N-doped carbon nanotubes as catalysts and efficient polysulfides traps for Li–S batteries.Chemical Engineering Journal, 2022, 429: 132167
https://doi.org/10.1016/j.cej.2021.132167
57 X Z, Zhang Z Y, Yu C L, Wang et al.. NC@CoPCo3O4 composite as sulfur cathode for high-energy lithium sulfur batteries.Journal of Materials Science, 2021, 56(16): 10030–10040
https://doi.org/10.1007/s10853-021-05931-0
58 D H, Duan W W, Zhao K X, Chen et al.. MOF-71 derived layered Co–CoP/C for advanced Li–S batteries.Journal of Alloys and Compounds, 2021, 886: 161203
https://doi.org/10.1016/j.jallcom.2021.161203
59 W C, Xu X X, Pan X, Meng et al.. Conductive sulfur-hosting material involving ultrafine vanadium nitride nanoparticles for high-performance lithium–sulfur battery.Electrochimica Acta, 2020, 331: 135287
https://doi.org/10.1016/j.electacta.2019.135287
60 J, Li X, Xu X, Yu et al.. Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries.ACS Applied Materials & Interfaces, 2020, 12(4): 4414–4422
https://doi.org/10.1021/acsami.9b16418
61 R R, Li H J, Shen E, Pervaiz et al.. Facile in situ nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium–sulfur batteries.Chemical Engineering Journal, 2021, 404: 126462
https://doi.org/10.1016/j.cej.2020.126462
62 Salem H, Al G, Babu C V, Rao et al.. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries.Journal of the American Chemical Society, 2015, 137(36): 11542–11545
https://doi.org/10.1021/jacs.5b04472
63 Z C, Xiao D B, Kong Q, Song et al.. A facile Schiff base chemical approach: towards molecular-scale engineering of N–C interface for high performance lithium–sulfur batteries.Nano Energy, 2018, 46: 365–371
https://doi.org/10.1016/j.nanoen.2018.02.016
64 G D, Park J H, Hong J H, Choi et al.. Synthesis process of CoSeO3 microspheres for unordinary Li-ion storage performances and mechanism of their conversion reaction with Li ions.Small, 2019, 15(24): 1901320
https://doi.org/10.1002/smll.201901320
[1] FMS-24683-OF-Wjh_suppl_1 Download
[1] Xiaoqing Jin, Yae Qi, Yongyao Xia. A high-capacity and long-lifespan SnO2@K-MnO2 cathode material for aqueous zinc-ion batteries[J]. Front. Mater. Sci., 2024, 18(3): 240694-.
[2] Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li. Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries[J]. Front. Mater. Sci., 2023, 17(3): 230651-.
[3] Wenjing Li, Ni Wu, Sai Che, Li Sun, Hongchen Liu, Guang Ma, Ye Wang, Chong Xu, Yongfeng Li. Polyurethane foam-supported three-dimensional interconnected graphene nanosheets network encapsulated in polydimethylsiloxane to achieve significant thermal conductivity enhancement[J]. Front. Mater. Sci., 2023, 17(3): 230653-.
[4] Junhai Wang, Jiandong Zheng, Liping Gao, Qingshan Dai, Sang Woo Joo, Jiarui Huang. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage[J]. Front. Mater. Sci., 2023, 17(3): 230654-.
[5] Zhiyuan Pang, Hongzhou Zhang, Lu Wang, Dawei Song, Xixi Shi, Yue Ma, Linglong Kong, Lianqi Zhang. Towards safe lithiumsulfur batteries from liquid-state electrolyte to solid-state electrolyte[J]. Front. Mater. Sci., 2023, 17(1): 230630-.
[6] Wenyu WU, Bin GUO, Xiaojing LIU, Huaxin MA, Zhao ZHANG, Zhi ZHANG, Minghao CUI, Yu GU, Ruijun ZHANG. Facile and scalable preparation of ultra-large boron nitride nanosheets and their use for highly thermally conductive polymer composites[J]. Front. Mater. Sci., 2022, 16(1): 220587-.
[7] Chunfu HUANG, Cong WU, Zilu ZHANG, Yunyun XIE, Yang LI, Caihong YANG, Hai WANG. Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries[J]. Front. Mater. Sci., 2021, 15(2): 202-215.
[8] Infant RAJ, Yongli DUAN, Daniel KIGEN, Wang YANG, Liqiang HOU, Fan YANG, Yongfeng LI. Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction[J]. Front. Mater. Sci., 2018, 12(3): 239-246.
[9] Jiangli XUE, Maosong MO, Zhuming LIU, Dapeng YE, Zhihua CHENG, Tong XU, Liangti QU. A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets[J]. Front. Mater. Sci., 2018, 12(2): 105-117.
[10] Guo CHEN, Changfeng SI, Pengpeng ZHANG, Kunping GUO, Saihu PAN, Wenqing ZHU, Bin WEI. Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer[J]. Front. Mater. Sci., 2017, 11(3): 233-240.
[11] Yingfang ZHU, Jingwei YOU, Haifu HUANG, Guangxu LI, Wenzheng ZHOU, Jin GUO. Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries[J]. Front. Mater. Sci., 2017, 11(2): 155-161.
[12] QI Hao, CAO Gao-shao, XIE Jian, ZHAO Xin-bing. Enhanced cycle stability of spinel LiMnO by a melting impregnation method[J]. Front. Mater. Sci., 2008, 2(3): 291-294.
[13] BIAN Xin-chao, HUO Chun-qing, ZHANG Yue-fei, CHEN Qiang. Preparation and photoluminescence of ZnO with nanostructure by hollow-cathode discharge[J]. Front. Mater. Sci., 2008, 2(1): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed