Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (2) : 150-159    https://doi.org/10.1007/s11467-011-0194-z
RESEARCH ARTICLE
(3+1)-TQFTs and topological insulators
Kevin Walker, Zhenghan Wang()
Microsoft Station Q, CNSI Bldg. Rm. 2243, University of California, Santa Barbara, CA 93106-6105, USA
 Download: PDF(260 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Levin-Wen models are microscopic spin models for topological phases of matter in (2+ 1)-dimension. We introduce a generalization of such models to (3+ 1)-dimension based on unitary braided fusion categories, also known as unitary premodular categories. We discuss the ground state degeneracy on 3-manifolds and statistics of excitations which include both points and defect loops. Potential connections with recently proposed fractional topological insulators and projective ribbon permutation statistics are described.

Keywords topological quantum field theory (TQFT)      topological insulator      premodular category     
Corresponding Author(s): Wang Zhenghan,Email:zhenghwa@microsoft.com   
Issue Date: 01 April 2012
 Cite this article:   
Kevin Walker,Zhenghan Wang. (3+1)-TQFTs and topological insulators[J]. Front. Phys. , 2012, 7(2): 150-159.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0194-z
https://academic.hep.com.cn/fop/EN/Y2012/V7/I2/150
1 M. Levin and X.-G. Wen, Phys. Rev. B , 2005, 71-045110 ; arXiv:cond-mat/0404617v2 , 2004
doi: 10.1103/PhysRevB.71.045110
2 X.-G. Wen, Phys. Rev. B , 2002, 65: 165113; arXiv:condmat/ 0107071 , 2001
3 X.-G. Wen, Phys.Rev. D , 2003, 68: 065003; arXiv:hepth/ 0302201 , 2003
4 M. Epple, Math. Intelligencer , 1998, 20(1): 45
doi: 10.1007/BF03024400
5 J. Maciejko, X.-L. Qi, A. Karch, and S.-C. Zhang, arXiv:1004.3628 , 2010
6 B. Swingle, M. Barkeshli, J. McGreevy, and T. Senthil, arXiv:1005.1076 , 2010
7 G.-Y. Cho and J. E. Moore, arXiv:1011.3485 , 2010
8 R. E. Gompf, J. Differential Geom. , 1985, 21(2): 283
9 M. H. Freedman and F. Quinn, Topology of 4-manifolds. Princeton Mathematical Series 39, Princeton , NJ: Princeton University Press, 1990: viii+259
10 E. Witten, Commun. Math. Phys. , 1988, 117: 353
doi: 10.1007/BF01223371
11 S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds. Oxford Mathematical Monographs. Oxford Science Publications . New York: The Clarendon Press, Oxford University Press, 1990: x+440
12 R. Dijkgraaf and E. Witten, Commun. Math. Phys . 1990, 129(2): 393
doi: 10.1007/BF02096988
13 J. Baez, Lett. Math. Phys. , 1996, 38(2): 129
doi: 10.1007/BF00398315
14 E. Witten, arXiv:1101.3216 , 2011
15 D. Freed, Commun. Math. Phys. , 1994, 159(2): 343
doi: 10.1007/BF02102643
16 E. Witten, Math. Res. Lett. , 1994, 1(6): 769
17 K. Walker, TQFTs , http://canyon23.net/math/
18 K. Walker and Z. Wang, (3+1)-TQFTs based on premodular categories, in preparation
19 Z. Wang, Topological quantum computation. CBMS Regional Conference Series in Mathematics, 112, Providence , RI: American Mathematical Society, 2010: xiv+115
20 R. Benedetti and C. Petronio, Ann. Mat. Pura Appl. , 2000, 178(4): 81
doi: 10.1007/BF02505889
21 M. Freedman, C. Nayak, K. Walker, and Z. Wang, On picture (2+1)-TQFTs, in: Topology and Physics, Nankai Tracts Math. 12, Hackensack , NJ: World Sci. Publ., 2008, 19; arXiv:0806.1926, 2008
22 L. Crane and D. Yetter, A categorical construction of 4D topological quantum field theories. Quantum Topology, 120130, Ser. Knots Everything, 3, River Edge , NJ: World Sci. Publ., 1993
23 X.-S. Lin, Topology and Physics, Nankai Tracts Math. 12, Hackensack , NJ: World Sci. Publ., 2008: 359
24 M. Müuger, J. Pure Appl. Algebra , 2003, 180(1-2): 159
doi: 10.1016/S0022-4049(02)00248-7
25 V. Turaev and A. Virelizier, arXiv:1006.3501 , 2010
26 B. Balsam and A. KirillovJr., arXiv:1004.1533 , 2010
27 V. Ostrik, arXiv:math/0401347 , 2004
28 E. Witten, Commun. Math. Phys. , 1989, 121(3): 351
doi: 10.1007/BF01217730
29 X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B , 2008, 78: 195424
doi: 10.1103/PhysRevB.78.195424
30 M. Freedman, M. B. Hastings, C. Nayak, X.-L. Qi, K. Walker, and Z. Wang, Phys. Rev. B , 2011, 83: 115; arXiv:1005.0583, 2010
doi: 10.1103/PhysRevB.83.115132
31 N. Read and Z. Wang, Spin modular categroies (in preparation)
32 M. Freedman, A. Kitaev, C. Nayak, J. Slingerland, K. Walker, and Z. Wang, Geometry and Topology , 2005, 9-53 : 2303; arXiv:math.GT/0503054, 2005
33 Z.-G. Gu, Z. Wang, and X.-G. Wen, arXiv:1010.1517 , 2010
34 E. Witten, J. Math. Phys. , 1994, 35(10): 5101
doi: 10.1063/1.530745
35 E. Witten, Bull. Amer. Math. Soc. (N. S.) , 2007, 44(3): 361 (electronic)
[1] Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor[J]. Front. Phys. , 2020, 15(5): 53201-.
[2] Chang-Yong Zhu, Shi-Han Zheng, Hou-Jian Duan, Ming-Xun Deng, Rui-Qiang Wang. Double Andreev reflections at surface states of the topological insulators with hexagonal warping[J]. Front. Phys. , 2020, 15(2): 23602-.
[3] Y. X. Zhao. Equivariant PT-symmetric real Chern insulators[J]. Front. Phys. , 2020, 15(1): 13603-.
[4] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[5] Junjie Qi, Haiwen Liu, Hua Jiang, X. C. Xie. Dephasing effects in topological insulators[J]. Front. Phys. , 2019, 14(4): 43403-.
[6] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[7] Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator[J]. Front. Phys. , 2015, 10(3): 107402-.
[8] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[9] Yi-Bin Hu, Yong-Hong Zhao, Xue-Feng Wang. A computational investigation of topological insulator Bi2Se3 film[J]. Front. Phys. , 2014, 9(6): 760-767.
[10] Ying Xing (邢颖), Yi Sun (孙祎), Meenakshi Singh, Yan-Fei Zhao (赵弇斐), Moses H. W. Chan, Jian Wang (王健). Electronic transport properties of topological insulator films and low dimensional superconductors[J]. Front. Phys. , 2013, 8(5): 491-508.
[11] Hui Li (李辉), Hailin Peng (彭海琳), Wenhui Dang (党文辉), Lili Yu (余力立), Zhongfan Liu (刘忠范). Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties[J]. Front. Phys. , 2012, 7(2): 208-217.
[12] Ivan Knez, Rui-Rui Du. Quantum spin Hall effect in inverted InAs/GaSb quantum wells[J]. Front. Phys. , 2012, 7(2): 200-207.
[13] Jun-liang Zhang, Si-jia Zhang, Hong-ming Weng, Wei Zhang, Liu-xiang Yang, Qing-qing Liu, Pan-pan Kong, Jie Zhu, Shao-min Feng, Xian-cheng Wang, Ri-cheng Yu, Lie-zhao Cao, Shoucheng Zhang, Xi Dai, Zhong Fang, Chang-qing Jin. Superconductivity of topological matters induced via pressure[J]. Front. Phys. , 2012, 7(2): 193-199.
[14] Yulin Chen. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy[J]. Front. Phys. , 2012, 7(2): 175-192.
[15] Yong-qing Li, Ke-hui Wu, Jun-ren Shi, Xin-cheng Xie. Electron transport properties of three-dimensional topological insulators[J]. Front. Phys. , 2012, 7(2): 165-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed