|
|
Charge qubits based on ultra-thin topological insulator films |
Kexin Zhang1,2( ), Hugo V. Lepage2, Ying Dong1, Crispin H. W. Barnes2( ) |
1. Research Center for Quantum Sensing, Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 311121, China 2. Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom |
|
|
Abstract We study how to use the surface states in a Bi2Se3 topological insulator ultra-thin film that are affected by finite size effects for the purpose of quantum computing. We demonstrate that: (i) surface states under the finite size effect can effectively form a two-level system where their energy levels lie in between the bulk energy gap and a logic qubit can be constructed, (ii) the qubit can be initialized and manipulated using electric pulses of simple forms, (iii) two-qubit entanglement is achieved through a operation when the two qubits are in a parallel setup, and (iv) alternatively, a Floquet state can be exploited to construct a qubit and two Floquet qubits can be entangled through a Controlled-NOT operation. The Floquet qubit offers robustness to background noise since there is always an oscillating electric field applied, and the single qubit operations are controlled by amplitude modulation of the oscillating field, which is convenient experimentally.
|
Keywords
topological insulator
quantum computing
nanodevices
|
Corresponding Author(s):
Kexin Zhang,Crispin H. W. Barnes
|
Issue Date: 20 December 2023
|
|
1 |
Ando Y.. Topological insulator materials. J. Phys. Soc. Jpn., 2013, 82(10): 1
https://doi.org/10.7566/JPSJ.82.102001
|
2 |
Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
|
3 |
Z. Hasan M., E. Moore J.. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2011, 2(1): 55
https://doi.org/10.1146/annurev-conmatphys-062910-140432
|
4 |
Z. Lu H.Q. Shen S., Weak localization and weak anti-localization in topological insulators, in: Proc. SPIE, Vol. 9167 (2014)
|
5 |
Pesin D., H. MacDonald A.. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater., 2012, 11(5): 409
https://doi.org/10.1038/nmat3305
|
6 |
He M., Sun H., H. Qing L.. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
https://doi.org/10.1007/s11467-019-0893-4
|
7 |
Cho S., Kim D., Syers P., P. Butch N., Paglione J., S. Fuhrer M.. Topological insulator quantum dot with tunable barriers. Nano Lett., 2012, 12(1): 469
https://doi.org/10.1021/nl203851g
|
8 |
M. Herath T.Hewageegana P.Apalkov V., A quantum dot in topological insulator nanofilm, J. Phys.: Condens. Matter 26(11), 115302 (2014)
|
9 |
Kirczenow G.. Perfect and imperfect conductance quantization and transport resonances of two-dimensional topological-insulator quantum dots with normal conducting leads and contacts. Phys. Rev. B, 2018, 98(16): 165430
https://doi.org/10.1103/PhysRevB.98.165430
|
10 |
Li G., L. Zhu J., Yang N.. Magnetic quantum dot in two-dimensional topological insulators. J. Appl. Phys., 2017, 121(11): 114302
https://doi.org/10.1063/1.4978632
|
11 |
Steinberg H., B. Laloë J., Fatemi V., S. Moodera J., Jarillo-Herrero P.. Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B, 2011, 84(23): 233101
https://doi.org/10.1103/PhysRevB.84.233101
|
12 |
J. Ferreira G., Loss D.. Magnetically defined qubits on 3D topological insulators. Phys. Rev. Lett., 2013, 111(10): 106802
https://doi.org/10.1103/PhysRevLett.111.106802
|
13 |
A. Castro-Enriquez L., F. Quezada L., Martín-Ruiz A.. Optical response of a topological-insulator–quantum-dot hybrid interacting with a probe electric field. Phys. Rev. A, 2020, 102: 013720
https://doi.org/10.1103/PhysRevA.102.013720
|
14 |
Islam S., Bhattacharyya S., Nhalil H., Banerjee M., Richardella A., Kandala A., Sen D., Samarth N., Elizabeth S., Ghosh A.. Low-temperature saturation of phase coherence length in topological insulators. Phys. Rev. B, 2019, 99(24): 245407
https://doi.org/10.1103/PhysRevB.99.245407
|
15 |
X. Xiu F., T. Zhao T.. Topological insulator nanostructures and devices. Chin. Phys. B, 2013, 22(9): 096104
https://doi.org/10.1088/1674-1056/22/9/096104
|
16 |
W. Liu C., Wang Z., L. J. Qiu R., P. A. Gao X.. Development of topological insulator and topological crystalline insulator nanostructures. Nanotechnology, 2020, 31(19): 192001
https://doi.org/10.1088/1361-6528/ab6dfc
|
17 |
Li H., Peng H., Dang W., Yu L., Liu Z., insulator nanostructures:Materials synthesis Topological. Raman spectroscopy, and transport properties. Front. Phys., 2012, 7(2): 208
https://doi.org/10.1007/s11467-011-0199-7
|
18 |
B. Hu Y.H. Zhao Y.F. Wang X., A computational investigation of topological insulator Bi2Se3 film, Front. Phys. 9(6), 760 (2014)
|
19 |
X. Liu C., J. Zhang H., Yan B., L. Qi X., Frauenheim T., Dai X., Fang Z., C. Zhang S.. Oscillatory crossover from two- dimensional to three-dimensional topological insulators. Phys. Rev. B, 2010, 81(4): 041307
https://doi.org/10.1103/PhysRevB.81.041307
|
20 |
Z. Lu H., Y. Shan W., Yao W., Niu Q., Q. Shen S.. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B, 2010, 81(11): 115407
https://doi.org/10.1103/PhysRevB.81.115407
|
21 |
Oka T., Kitamura S.. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys., 2019, 10(1): 387
https://doi.org/10.1146/annurev-conmatphys-031218-013423
|
22 |
H. Kolodrubetz M., Nathan F., Gazit S., Morimoto T., E. Moore J.. Topological Floquet-Thouless energy pump. Phys. Rev. Lett., 2018, 120(15): 150601
https://doi.org/10.1103/PhysRevLett.120.150601
|
23 |
Oka T., Aoki H.. Photovoltaic Hall effect in graphene. Phys. Rev. B, 2009, 79(8): 81406
https://doi.org/10.1103/PhysRevB.79.081406
|
24 |
Bilitewski T., R. Cooper N.. Scattering theory for Floquet-Bloch states. Phys. Rev. A, 2015, 91(3): 033601
https://doi.org/10.1103/PhysRevA.91.033601
|
25 |
H. Wang Y., Steinberg H., Jarillo-Herrero P., Gedik N.. Observation of Floquet−Bloch states on the surface of a topological insulator. Science, 2013, 342(6157): 453
https://doi.org/10.1126/science.1239834
|
26 |
Boyers E., Pandey M., K. Campbell D., Polkovnikov A., Sels D., O. Sushkov A.. Floquet-engineered quantum state manipulation in a noisy qubit. Phys. Rev. A, 2019, 100(1): 012341
https://doi.org/10.1103/PhysRevA.100.012341
|
27 |
V. Lepage H., A. Lasek A., R. M. Arvidsson-Shukur D., H. W. Barnes C.. Entanglement generation via power-of-swap operations between dynamic electron-spin qubits. Phys. Rev. A, 2020, 101(2): 022329
https://doi.org/10.1103/PhysRevA.101.022329
|
28 |
X. Liu C., L. Qi X., J. Zhang H., Dai X., Fang Z., C. Zhang S.. Model Hamiltonian for topological insulators. Phys. Rev. B, 2010, 82(4): 045122
https://doi.org/10.1103/PhysRevB.82.045122
|
29 |
B. Visscher P., A fast explicit algorithm for the time-dependent Schrödinger equation, Comput. Phys. 5(6), 596 (1991)
|
30 |
R. M. Arvidsson-Shukur D., V. Lepage H., T. Owen E., Ferrus T., H. W. Barnes C.. Protocol for fermionic positive-operator-valued measures. Phys. Rev. A, 2017, 96(5): 052305
https://doi.org/10.1103/PhysRevA.96.052305
|
31 |
Lepage H., Fermionic quantum information in surface acoustic waves, PhD thesis, University of Cambridge, 2020
|
32 |
Takada S., Edlbauer H., V. Lepage H., Wang J., A. Mortemousque P., Georgiou G., H. W. Barnes C., J. B. Ford C., Yuan M., V. Santos P., Waintal X., Ludwig A., D. Wieck A., Urdampilleta M., Meunier T., Bäuerle C.. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat. Commun., 2019, 10(1): 4557
https://doi.org/10.1038/s41467-019-12514-w
|
33 |
H. Shirley J.. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev., 1965, 138(4B): B979
https://doi.org/10.1103/PhysRev.138.B979
|
34 |
Linder J., Yokoyama T., Sudbø A.. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Phys. Rev. B, 2009, 80(20): 205401
https://doi.org/10.1103/PhysRevB.80.205401
|
35 |
Lasek A.V. Lepage H.Zhang K.Ferrus T.H. W. Barnes C., Pulse-controlled qubit in semiconductor double quantum dots, arXiv: 2303.04823 (2023)
|
36 |
Gorman J., G. Hasko D., A. Williams D.. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett., 2005, 95(9): 090502
https://doi.org/10.1103/PhysRevLett.95.090502
|
37 |
Choi K.Liu H., Amplitude modulation, pp 90–100 (2016)
|
38 |
Fujisawa T., Shinkai G., Hayashi T., Ota T.. Multiple two-qubit operations for a coupled semiconductor charge qubit. Physica E, 2011, 43(3): 730
https://doi.org/10.1016/j.physe.2010.07.040
|
39 |
A. De Moura C.S. Kubrusly C., The Courant–Friedrichs–Lewy (CFL) Condition, Birkhäuser Boston, MA, 2012
|
40 |
Pandey L., Husain S., Chen X., Barwal V., Hait S., K. Gupta N., Mishra V., Kumar A., Sharma N., Kumar N., Saravanan L., Dixit D., Sanyal B., Chaudhary S.. Weak antilocalization and electron-electron interactions in topological insulator BixTey films deposited by sputtering on Si(100). Phys. Rev. Mater., 2022, 6(4): 044203
https://doi.org/10.1103/PhysRevMaterials.6.044203
|
41 |
Zhao C., Zheng Q., Zhao J.. Excited electron and spin dynamics in topological insulator: A perspective from ab initio non-adiabatic molecular dynamics. Fundamental Research, 2022, 2(4): 506
https://doi.org/10.1016/j.fmre.2022.03.006
|
42 |
Z. Lu H.Q. Shen S., Weak localization and weak anti-localization in topological insulators, in: Spintronics VII, Vol. 9167, pp 263–273, SPIE (2014)
|
43 |
Shiranzaei M., Parhizgar F., Fransson J., Cheraghchi H.. Impurity scattering on the surface of topological-insulator thin films. Phys. Rev. B, 2017, 95(23): 235429
https://doi.org/10.1103/PhysRevB.95.235429
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|