Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33208    https://doi.org/10.1007/s11467-023-1364-5
RESEARCH ARTICLE
Charge qubits based on ultra-thin topological insulator films
Kexin Zhang1,2(), Hugo V. Lepage2, Ying Dong1, Crispin H. W. Barnes2()
1. Research Center for Quantum Sensing, Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 311121, China
2. Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
 Download: PDF(8898 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study how to use the surface states in a Bi2Se3 topological insulator ultra-thin film that are affected by finite size effects for the purpose of quantum computing. We demonstrate that: (i) surface states under the finite size effect can effectively form a two-level system where their energy levels lie in between the bulk energy gap and a logic qubit can be constructed, (ii) the qubit can be initialized and manipulated using electric pulses of simple forms, (iii) two-qubit entanglement is achieved through a SWAP operation when the two qubits are in a parallel setup, and (iv) alternatively, a Floquet state can be exploited to construct a qubit and two Floquet qubits can be entangled through a Controlled-NOT operation. The Floquet qubit offers robustness to background noise since there is always an oscillating electric field applied, and the single qubit operations are controlled by amplitude modulation of the oscillating field, which is convenient experimentally.

Keywords topological insulator      quantum computing      nanodevices     
Corresponding Author(s): Kexin Zhang,Crispin H. W. Barnes   
Issue Date: 20 December 2023
 Cite this article:   
Kexin Zhang,Hugo V. Lepage,Ying Dong, et al. Charge qubits based on ultra-thin topological insulator films[J]. Front. Phys. , 2024, 19(3): 33208.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1364-5
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33208
Fig.1  Top: Graphical representation of five Bi2Se3 QLs. The wave densities of the hybridized surface states and the combined qubit state | 1? in a 5-QL TI slab (finite in the z direction). The red dashed curve is anti-bonding state ΦU located at the upper energy level of the gapped Dirac Cone, while the blue dotted curve is the bonding state ΦL located at the lower energy level of the gapped Dirac cone. The black solid curve is the combined qubit state.
Fig.2  The Bloch sphere representation of basic rotation. (a) The initialization from Φ0 to | 0? and | 1?. The initialization to | 0? is achieved with a static electric field applied in the z direction and the initialization to |1? is achieved with a static electric field applied in the +z direction. (b) The relation between the field amplitude and the axes of rotations. The axis of rotation tilts from the x axis as the electric field increases; it always located in the xz plane.
Fig.3  The Bloch sphere representation of Rx, Ry and Rz rotations of angle 95° from O to A and the corresponding pulses. (a) The path of the Rx rotation, (b) the path of the Ry rotation, and (c) the path of the Rz rotation on the Bloch sphere. (d) The pulses used to generate each rotation. The pulse times are calculated in picoseconds. The Rz rotation is longer to achieve than the Rx and Ry rotations in the case of 95°.
Fig.4  (a) The electron density of |1(t)? (left) and |0(t)? (right) of a Floquet qubit vs. time. (b) The trajectory of a Rz rotation from Oz to A in the Floquet frame. (c) The pulses used to control the single qubit: initialization (black dash-dotted line), Rx (blue dashed line), and Rz (red solid line). (d) The trajectory of a Rx rotation from Ox to B in the static frame.
Fig.5  Setup of the two TI thin films supporting qubits 1 and 2 aligned in parallel with a separation lx, which is finite in the z direction.
Fig.6  Bands of the Hamiltonian Eq. (28) along the line ?1=? 2 with various lx. Band 1 is a black solid line, band 2 a red dashed line, band 3 a cyan dash-dotted line, and band 4 a green dotted line. (a) lx= 2 nm, Δ /J =0.05. (b) lx= 10 nm, Δ/J=0.15. (c) lx= 100 nm, Δ /J=1.5.
Fig.7  Time evolution of the state | LR? at various lx. (a) Time evolution of the state |LR? at lx= 2 nm. A SWAP gate occurs with a period of 521 ps. (b) Time evolution of the state | LR? at lx= 20 nm. A SWAP gate occurs with a period of 6266 ps.
Fig.8  Bands of the Hamiltonian Eq. (40) at lx= 0.5 nm vs. ?i. The bands remain in the Floquet states over the range of ?i. Band 1 is in black solid line, band 2 in red dashed line, band 3 in cyan dash-dotted line, and band 4 in green dotted line. (a) Along the line ? 1=0. (b) Along the line ?2= 0.40eV=?A. (c) Along the line ? 2=0.57eV>?A. (d) Along the line ? 2=0.23eV< ?A.
Fig.9  Time evolution of the state | RL? at various ?2. (a) Time evolution of the state |RL? at ?2=? A=0.40eV. CROT operations have a period of 0.25 ps. A CNOT gate is observed at 0.12 ps. (b) Time evolution of the state | RL? at ?2=0.57 eV>?A. CROT operations have a period of 0.19 ps. (c) Time evolution of the state |RL? at ?2=0.23eV<?A. CROT operations have a period of 0.19 ps.
1 Ando Y.. Topological insulator materials. J. Phys. Soc. Jpn., 2013, 82(10): 1
https://doi.org/10.7566/JPSJ.82.102001
2 Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
3 Z. Hasan M., E. Moore J.. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2011, 2(1): 55
https://doi.org/10.1146/annurev-conmatphys-062910-140432
4 Z. Lu H.Q. Shen S., Weak localization and weak anti-localization in topological insulators, in: Proc. SPIE, Vol. 9167 (2014)
5 Pesin D., H. MacDonald A.. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater., 2012, 11(5): 409
https://doi.org/10.1038/nmat3305
6 He M., Sun H., H. Qing L.. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
https://doi.org/10.1007/s11467-019-0893-4
7 Cho S., Kim D., Syers P., P. Butch N., Paglione J., S. Fuhrer M.. Topological insulator quantum dot with tunable barriers. Nano Lett., 2012, 12(1): 469
https://doi.org/10.1021/nl203851g
8 M. Herath T.Hewageegana P.Apalkov V., A quantum dot in topological insulator nanofilm, J. Phys.: Condens. Matter 26(11), 115302 (2014)
9 Kirczenow G.. Perfect and imperfect conductance quantization and transport resonances of two-dimensional topological-insulator quantum dots with normal conducting leads and contacts. Phys. Rev. B, 2018, 98(16): 165430
https://doi.org/10.1103/PhysRevB.98.165430
10 Li G., L. Zhu J., Yang N.. Magnetic quantum dot in two-dimensional topological insulators. J. Appl. Phys., 2017, 121(11): 114302
https://doi.org/10.1063/1.4978632
11 Steinberg H., B. Laloë J., Fatemi V., S. Moodera J., Jarillo-Herrero P.. Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B, 2011, 84(23): 233101
https://doi.org/10.1103/PhysRevB.84.233101
12 J. Ferreira G., Loss D.. Magnetically defined qubits on 3D topological insulators. Phys. Rev. Lett., 2013, 111(10): 106802
https://doi.org/10.1103/PhysRevLett.111.106802
13 A. Castro-Enriquez L., F. Quezada L., Martín-Ruiz A.. Optical response of a topological-insulator–quantum-dot hybrid interacting with a probe electric field. Phys. Rev. A, 2020, 102: 013720
https://doi.org/10.1103/PhysRevA.102.013720
14 Islam S., Bhattacharyya S., Nhalil H., Banerjee M., Richardella A., Kandala A., Sen D., Samarth N., Elizabeth S., Ghosh A.. Low-temperature saturation of phase coherence length in topological insulators. Phys. Rev. B, 2019, 99(24): 245407
https://doi.org/10.1103/PhysRevB.99.245407
15 X. Xiu F., T. Zhao T.. Topological insulator nanostructures and devices. Chin. Phys. B, 2013, 22(9): 096104
https://doi.org/10.1088/1674-1056/22/9/096104
16 W. Liu C., Wang Z., L. J. Qiu R., P. A. Gao X.. Development of topological insulator and topological crystalline insulator nanostructures. Nanotechnology, 2020, 31(19): 192001
https://doi.org/10.1088/1361-6528/ab6dfc
17 Li H., Peng H., Dang W., Yu L., Liu Z., insulator nanostructures:Materials synthesis Topological. Raman spectroscopy, and transport properties. Front. Phys., 2012, 7(2): 208
https://doi.org/10.1007/s11467-011-0199-7
18 B. Hu Y.H. Zhao Y.F. Wang X., A computational investigation of topological insulator Bi2Se3 film, Front. Phys. 9(6), 760 (2014)
19 X. Liu C., J. Zhang H., Yan B., L. Qi X., Frauenheim T., Dai X., Fang Z., C. Zhang S.. Oscillatory crossover from two- dimensional to three-dimensional topological insulators. Phys. Rev. B, 2010, 81(4): 041307
https://doi.org/10.1103/PhysRevB.81.041307
20 Z. Lu H., Y. Shan W., Yao W., Niu Q., Q. Shen S.. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B, 2010, 81(11): 115407
https://doi.org/10.1103/PhysRevB.81.115407
21 Oka T., Kitamura S.. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys., 2019, 10(1): 387
https://doi.org/10.1146/annurev-conmatphys-031218-013423
22 H. Kolodrubetz M., Nathan F., Gazit S., Morimoto T., E. Moore J.. Topological Floquet-Thouless energy pump. Phys. Rev. Lett., 2018, 120(15): 150601
https://doi.org/10.1103/PhysRevLett.120.150601
23 Oka T., Aoki H.. Photovoltaic Hall effect in graphene. Phys. Rev. B, 2009, 79(8): 81406
https://doi.org/10.1103/PhysRevB.79.081406
24 Bilitewski T., R. Cooper N.. Scattering theory for Floquet-Bloch states. Phys. Rev. A, 2015, 91(3): 033601
https://doi.org/10.1103/PhysRevA.91.033601
25 H. Wang Y., Steinberg H., Jarillo-Herrero P., Gedik N.. Observation of Floquet−Bloch states on the surface of a topological insulator. Science, 2013, 342(6157): 453
https://doi.org/10.1126/science.1239834
26 Boyers E., Pandey M., K. Campbell D., Polkovnikov A., Sels D., O. Sushkov A.. Floquet-engineered quantum state manipulation in a noisy qubit. Phys. Rev. A, 2019, 100(1): 012341
https://doi.org/10.1103/PhysRevA.100.012341
27 V. Lepage H., A. Lasek A., R. M. Arvidsson-Shukur D., H. W. Barnes C.. Entanglement generation via power-of-swap operations between dynamic electron-spin qubits. Phys. Rev. A, 2020, 101(2): 022329
https://doi.org/10.1103/PhysRevA.101.022329
28 X. Liu C., L. Qi X., J. Zhang H., Dai X., Fang Z., C. Zhang S.. Model Hamiltonian for topological insulators. Phys. Rev. B, 2010, 82(4): 045122
https://doi.org/10.1103/PhysRevB.82.045122
29 B. Visscher P., A fast explicit algorithm for the time-dependent Schrödinger equation, Comput. Phys. 5(6), 596 (1991)
30 R. M. Arvidsson-Shukur D., V. Lepage H., T. Owen E., Ferrus T., H. W. Barnes C.. Protocol for fermionic positive-operator-valued measures. Phys. Rev. A, 2017, 96(5): 052305
https://doi.org/10.1103/PhysRevA.96.052305
31 Lepage H., Fermionic quantum information in surface acoustic waves, PhD thesis, University of Cambridge, 2020
32 Takada S., Edlbauer H., V. Lepage H., Wang J., A. Mortemousque P., Georgiou G., H. W. Barnes C., J. B. Ford C., Yuan M., V. Santos P., Waintal X., Ludwig A., D. Wieck A., Urdampilleta M., Meunier T., Bäuerle C.. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat. Commun., 2019, 10(1): 4557
https://doi.org/10.1038/s41467-019-12514-w
33 H. Shirley J.. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev., 1965, 138(4B): B979
https://doi.org/10.1103/PhysRev.138.B979
34 Linder J., Yokoyama T., Sudbø A.. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Phys. Rev. B, 2009, 80(20): 205401
https://doi.org/10.1103/PhysRevB.80.205401
35 Lasek A.V. Lepage H.Zhang K.Ferrus T.H. W. Barnes C., Pulse-controlled qubit in semiconductor double quantum dots, arXiv: 2303.04823 (2023)
36 Gorman J., G. Hasko D., A. Williams D.. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett., 2005, 95(9): 090502
https://doi.org/10.1103/PhysRevLett.95.090502
37 Choi K.Liu H., Amplitude modulation, pp 90–100 (2016)
38 Fujisawa T., Shinkai G., Hayashi T., Ota T.. Multiple two-qubit operations for a coupled semiconductor charge qubit. Physica E, 2011, 43(3): 730
https://doi.org/10.1016/j.physe.2010.07.040
39 A. De Moura C.S. Kubrusly C., The Courant–Friedrichs–Lewy (CFL) Condition, Birkhäuser Boston, MA, 2012
40 Pandey L., Husain S., Chen X., Barwal V., Hait S., K. Gupta N., Mishra V., Kumar A., Sharma N., Kumar N., Saravanan L., Dixit D., Sanyal B., Chaudhary S.. Weak antilocalization and electron-electron interactions in topological insulator BixTey films deposited by sputtering on Si(100). Phys. Rev. Mater., 2022, 6(4): 044203
https://doi.org/10.1103/PhysRevMaterials.6.044203
41 Zhao C., Zheng Q., Zhao J.. Excited electron and spin dynamics in topological insulator: A perspective from ab initio non-adiabatic molecular dynamics. Fundamental Research, 2022, 2(4): 506
https://doi.org/10.1016/j.fmre.2022.03.006
42 Z. Lu H.Q. Shen S., Weak localization and weak anti-localization in topological insulators, in: Spintronics VII, Vol. 9167, pp 263–273, SPIE (2014)
43 Shiranzaei M., Parhizgar F., Fransson J., Cheraghchi H.. Impurity scattering on the surface of topological-insulator thin films. Phys. Rev. B, 2017, 95(23): 235429
https://doi.org/10.1103/PhysRevB.95.235429
[1] Qingwang Bai, Mingxiang Xu. Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping[J]. Front. Phys. , 2024, 19(3): 33210-.
[2] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[3] Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu, Chaoyu Chen. Intrinsic magnetic topological materials[J]. Front. Phys. , 2023, 18(2): 21304-.
[4] Lei Shi, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (III)[J]. Front. Phys. , 2023, 18(2): 21307-.
[5] Yiqing Tian, Yiqi Zhang, Yongdong Li, R. Belić Milivoj. Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones[J]. Front. Phys. , 2022, 17(5): 53503-.
[6] Kai-Tong Wang, Fuming Xu, Bin Wang, Yunjin Yu, Yadong Wei. Transport features of topological corner states in honeycomb lattice with multihollow structure[J]. Front. Phys. , 2022, 17(4): 43501-.
[7] Jiahao Fan, Huaqing Huang. Topological states in quasicrystals[J]. Front. Phys. , 2022, 17(1): 13203-.
[8] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[9] Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor[J]. Front. Phys. , 2020, 15(5): 53201-.
[10] Chang-Yong Zhu, Shi-Han Zheng, Hou-Jian Duan, Ming-Xun Deng, Rui-Qiang Wang. Double Andreev reflections at surface states of the topological insulators with hexagonal warping[J]. Front. Phys. , 2020, 15(2): 23602-.
[11] Y. X. Zhao. Equivariant PT-symmetric real Chern insulators[J]. Front. Phys. , 2020, 15(1): 13603-.
[12] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[13] Junjie Qi, Haiwen Liu, Hua Jiang, X. C. Xie. Dephasing effects in topological insulators[J]. Front. Phys. , 2019, 14(4): 43403-.
[14] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[15] He-Liang Huang,You-Wei Zhao,Tan Li,Feng-Guang Li,Yu-Tao Du,Xiang-Qun Fu,Shuo Zhang,Xiang Wang,Wan-Su Bao. Homomorphic encryption experiments on IBM’s cloud quantum computing platform[J]. Front. Phys. , 2017, 12(1): 120305-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed